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H-Shaped Fractal Slots Based Highly Miniaturized Substrate
Integrated Waveguide Metamaterial Bandpass Filters
for C-Band Applications

Ayad M. Hamzah' 2 *, Lukman Audah', and Nasr Alkhafaji?

Abstract—A new family of substrate integrated waveguide SIW-metamaterial bandpass filters is
proposed which support backward and forward wave propagations with two adjacent passbands under
the cutoff frequency of the conventional SIW structure. Through varying the fractal slots sizes etched
over SIW structures, different frequency transmission responses were realized. Extraction of the
metamaterial parameters was achieved via scattering parameters. The equivalent electrical length of a
fractal slot is larger than the conventional slot, making it suitable to design highly miniaturized filters.
The equivalent circuit model was analyzed in detail to provide comprehension on the SIW-metamaterial
unit cells. Three filters using the 3rd iteration H-shaped SIW-metamaterial unit cells were designed and
tested using subwavelength resonators. Filter design was used to extract the coupling coefficient and
external quality factor to obtain the filters’ optimized physical dimensions. The out-of-band rejection
can be enhanced by reconfiguring the fractal slots or the SIW. A wide upper out-of-band rejection with
attenuation > 30 dB with the range 5.5 GHz to 8 GHz was realized. The proposed filters offer advantages
through low insertion loss, easy fabrication, high selectivity, small size, and low cost. The measured
scattering parameters So; and Sp; were in good agreement with the simulated ones.

1. INTRODUCTION

Bandpass filters (BPFs) are one of the main components of transceivers as in image-reject or band-select
types. Filters with low insertion loss and high rejection to interferences fallen out of the interesting band,
relaxing requirements of large dynamic ranges of different components, such as mixers and low noise
amplifiers (LNAs) in the existence of crowded Radio frequency RF environments, are preferred. Filters
designed based on waveguides have high quality factors and low losses, but they are bulky devices.
Thus, the alternative possible option to exploit the significant properties of waveguides to design good
filters is the printed or substrate integrated waveguide (SIW) [1-3]. However, the main drawback of
these filters is their big size because they work above the cutoff frequency [4,5]. Dong et al. proposed a
new technique which is called metamaterial, allowing microwave filters to work below cutoff frequencies
of waveguides [5].

Theoretical concepts of the metamaterial were presented for the first time by Veselago five decades
ago [6]. About two decades ago, Smith et al. implemented the first practical experiment using
metamaterial structures. The difference between the material found in nature and the metamaterial
that does not exist in nature is that the metamaterial has simultaneously negative permeability and
permittivity. These unusual properties enable researches to design a new family of microwave and
millimeter wave components [7,8]. Double negative (DNG) material and left-handed material (LHM)
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are other names for the metamaterial found in the literature. The split ring resonators (SRRs) and thin
wires are the main components utilized by Shelby et al. to realize the well-known DNG metamaterials [9].
The thin wires provide negative permittivity, while the SRRs provide negative permeability. Based
on the duality concepts, Falcone et al. proposed complementary split ring resonators (CSRRs) which
provide negative permittivity if they are axially excited by an electrical field [10,11]. In addition to
that, the slot can provide negative permeability [12]. Thus, these four elements (SRRs, thin wires,
CSRRs, and slots) are the key components, and they attract big interest among researchers to build
metamaterials microwave components having small size and high selectivity. SRRs and slots behave as
magnetic dipoles, whereas CSRRs and thin wires act as electrical dipoles. All these four elements can
be realized using the planar technology such as microstrip and coplanar waveguide (CPW).

SIW is a planar counterpart of the conventional rectangular waveguide introduced for the first
time about two decades ago [1]. The dispersion and propagation characteristics of SIW are similar to
what the rectangular waveguide has. SIW consists of two rows of vias drilled along the longitudinal
edges of a substrate and connected by two metal plates connected at the bottom and top faces of the
substrate. SIW structures attract researchers to design a variety of microwave components with high
quality @Q-factor, low cost, and high-power handling. As mentioned above, the only problem that STW
structures suffer is large size [13]. There are several ways to miniaturize such devices designed using
SIW structures, especially in low frequencies. A folded SIW is one of the ways where the width of
the original SIW structure is cut to half [14]. Also, the original width of the SIW can be reduced
by 40% by adding a central row of vias, called ridge SIW [15]. Exploiting fictitious magnetic walls
to obtain a reduced SIW, namely half-mode SIW (HMSIW) and quarter-mode SIW (QMSIW), has
been proposed, studied, and analyzed with the same behavior as that of the conventional rectangular
waveguide bandpass filters [16-18]. All ratios of miniaturization attained by these techniques cannot
exceed 50% compared to the classical STW prototypes.

Surprisingly, SIW structures automatically provide effective negative permittivity when working
under the cutoff frequency of the dominant mode TE g without utilizing any type of resonant structure.
Waves with frequencies smaller than the cutoff frequency cannot propagate, called evanescent waves.
This property seems impractical in conventional waveguide components, but it turns out very interesting
under the scenario of DNG metamaterials [19]. By allowing the evanescent waves to propagate inside
SIW structures and to make them work under the cutoff frequency, miniaturization ratios higher
than 50% can be attained easily. This is called the evanescent-mode technique. There are two
options to convert the evanescent into propagating modes. The first option is to convert the negative
permittivity to the positive called the forward propagation (i.e., both permittivity and permeability
positive), and the second option is to make the permeability negative called the backward propagation
(i.e., both permittivity and permeability negative). Based on the evanescent-mode technique, when
either the electric or magnetic dipoles are loaded on the top wall of the SIW, forward or backward
passbands below the cutoff frequency of the SIW can be obtained. Different filter designs using the
electric dipoles (i.e., CSRRs) etched on the top wall of the SIWs are proposed in the order of the
miniaturization [5, 20, 21]. Also, the fractal and stepped impedance resonator (SIR)-CSRRs are proposed
to get further miniaturization [22,23]. When using the SIR-CSRR, each arm in the CSRRs is replaced
by its equivalent slotted SIR arrangements. The aim of using SIR configurations is to highly reduce
the SIW-metamaterial unit cells. Backward wave propagation which is another option is realized by
loading the magnetic dipoles (i.e., slots) over the top walls of the SIW structures. Most designs that
use this method are antennas [24], but in our designs, we will use this method to realize compact and
high-performance filters. In [24], interdigital slots working as capacitors are used instead of classical
slots as a step to efficiently occupy all the top surfaces of the SIW structures.

In this research paper, fractal slots are used as magnetic dipoles because of their capability to fill
spaces of the top surfaces of SIW structures. Very compact SIW-metamaterial unit cells and filters
are expected as a result of using very long slots. Based on the principles of the complementarity and
duality, fractal slots can be derived from conventional fractal transmission lines. STW-metamaterial unit
cells with different iterations which are the 1st, 2nd, and 3rd will be presented and investigated. Filters
using the 3rd iteration fractal slots will be designed, simulated, fabricated, and tested. The proposed
miniaturized SIW-metamaterial unit cells with fractal slots could provide negative permeability and
permittivity at the same time at a specific frequency band. However, our proposed designs also convert
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the negative permittivity to the positive at another frequency band. Fortunately, these two bands are
very close to each other, adjacent bands, with no gap. According to the best of the authors’ knowledge,
SIW-metamaterial unit cells and filters supporting both backward and forward wave propagations will
be introduced for the first time as an original contribution.

Finally, this paper is organized as follows. In Section 2, H-shaped fractal slots based SIW-
metamaterial unit cells are investigated in detail. This section includes different parts to cover all
the required information useful for understanding our work. Section 3 explains the Filter Design
Methodology. Next, in Section 4, the simulation and measurement results are presented. Section 5
introduces the conclusion.

2. FRACTAL METAMATERIAL-SIW UNIT CELLS

Configurations of fractal curves are first introduced in this section, followed by the working principles
of the proposed SIW-metamaterial unit cells. Extraction of the effective SIW-metamaterial parameters
of unit cells are then presented to demonstrate that the proposed unit cells can work under the
cutoff frequency of the SIW with the scenarios of backward propagation (i.e., double negative DNG
metamaterial) and forward propagation (i.e., double positive DPS metamaterial). At the end of this
section, the equivalent circuit model is derived and analyzed, and losses caused by the different factors
are demonstrated.

2.1. Fractal Curves

The end of the 19th century witnessed the emergence of fractal geometry when Peano proposed a
continuous curve passing through all points of a specified space [25]. A successive repetition of one
specific geometrical form, in an iterative manner, was used to generate fractal curves. In other words,
it can be described as a collection of scaled replicas of the first form. The higher orders of fractal curves
obtained after each iteration have longer curves than those generated in the preceding iterations to
entirely fill the given area where they were generated. The space-filling property of the fractal geometry
was exploited to highly miniaturize passive microwave components because, theoretically, traces (lines)
with infinite-lengths can be realized on small areas.

Some designs using a fractal geometry have shown that very compact antennas, resonators, and
filters can be realized due to its very long microstrip lines being printed on small given substrates.
Also, a wide variety of applications such as high impedances surfaces HISs [26], frequency selective
surfaces F'SSs [27], RF identifications [28], and left-handed metamaterials LHMs [29] utilized the fractal
geometry to design multi-band and small structures.

The non-integer dimension is a property of fractal curves which is between 1 and 2 for planar fractal
curves. It can be considered as a measure of how the fractal curves can fill small regions. The ratio in
Eq. (1) can be used to calculate the dimensions of the fractal curves,

_ log(k)
~ log(r) (1)

where k is the number of self-similar segments of the fractal curves attained from one segment after
each iteration, and r is the number of segments obtained from one segment in each iteration. Figure 1

L Hi
FI|FT
HI|HI
FI FI

Figure 1. A comparison between the conventional straight-line (e.g., transmission-line) and its length-
equivalent fractal curve.
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displays a conventional transmission-line (i.e., straight line with a specific width) and its equivalent
fractal configuration. Ideally, although the fractal transmission-line can be printed on a small area, both
fractal curves and the conventional transmission-line may have the same electrical length. Using fractal
geometry allows the use of shorter transmission-lines, but with longer equivalent electrical length. This
aids to miniaturize transmission-lines, being a key part to the miniaturization processes of microwave
circuits and antennas.

Today, there are a lot of fractal curves which are well known such as Piano, Koch, and Serpiniski.
In order to determine which fractal curve is suitable for our design, some criteria should be considered in
advance. The miniaturization ratio that a fractal curve can introduce is one of the intentions considered
in this research study, so dimensions of the fractal curve are chosen as the most important parameter.
The fractal curves which reach dimension 2 are better because of its ability to efficiently fill in small
areas, therefore obtaining very compact devices. Several fractal curves have dimensions equal to 2
which is the maximum value, and Figure 2 shows some of them such as H-shaped, Piano, and Hilbert
fractal curves. In our design, H-shaped fractal curve is chosen over others for reasons shown later in this
research work. Figure 3 depicts the process of the H-shaped fractal curve generation. As can be seen,
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Figure 2. Three types of fractal curves (H-shaped, Piano, and Hilbert).
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Figure 3. Process of the H-shaped fractal curve generation.
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the dimension of an H-shaped fractal curve tends to reach 2 with the increase of an iteration order,
filling the whole given area.

2.2. Working Principles of the Proposed SIW-Metamaterial Unit Cells

In the proposed work, the conventional H-shaped fractal transmission-lines are replaced with their
counterparts which are H-shaped fractal slots. According to a fractal iteration, the 3rd iteration was
chosen to fulfill the design requirements. Typically, a conventional slot etched below a microstrip
transmission-line, shown in Figure 4(a), is utilized to realize the negative permeability in the vicinity
of the resonant frequency. Thus, the proposed H-shaped fractal slot is also used to obtain the effective
negative permeability. Extraction of the real parts of permittivity ¢ and permeability p (i.e., constitutive
parameters) of the 3rd iteration H-shaped fractal slot etched beneath a transmission-line on the ground
using the S-parameters is depicted in Figure 4(b), and Figure 4(c) displays the comparison between
the effective permeability p of the conventional and fractal slots. The figure shows that the negative
permeability is from about 6 GHz to 7.9 GHz, with a bandwidth about 1.9 GHz for the structure with
the fractal slot, whereas the negative permeability is from about 5.4 GHz to 8 Hz, with a bandwidth
about 2.6 GHz for the structure with the conventional slot. Moreover, the permittivity is still positive
for both structures and for all frequencies. Hence, evanescent waves occur, resulting in band-stop filters
BSF's at these two frequency bands.

Conventional Slot

Microstrip Trnasmission-lines
H-Shaped Fractal Slot

Permeability p
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Figure 4. (a) Structures with conventional and H-shaped fractal slots, (b) the effective permeability and
permittivity of a structure with the 3rd H-shaped fractal slot, (c) a comparison between the effective
permeability of a structure with the 3rd H-shaped fractal slot (solid-line) and a structure with the
conventional slot (dashed-line).
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Figure 5. Simulated frequency responses (So; — insertion-losses or transmission coefficients) of a

structure with the 3rd H-shaped fractal slot (red-line) and a structure with the conventional slot (blue-
line).

Figure 5 depicts the comparison between the S-parameters of the conventional and the 3rd iteration
H-shaped fractal slots, etched on the ground of the conventional microstrip transmission-lines. As can
be seen, both structures impede signals to pass from one port to another around the same frequency
although the two responses do not have the same bandwidth. The miniaturization due to the space
filling property of the fractal geometry can be observed. From the response of the fractal slot, there
is another band around the frequency of 8.85 GHz, confirming the multiband property that fractal
structures have. Consequently, if the H-shaped fractal slot has the same side length as the length of the
conventional slot, a frequency of the fractal slot will decrease to lower frequencies.

In order to obtain metamaterial structures, parameters € and p should be negative. This is as in
the proposed filter which uses the substrate integrated waveguide SIW as a transmission-line instead
of the conventional microstrip transmission-line. The SIW provides negative permittivity under the
cutoff frequency. This results in the proposed design to be simpler than other metamaterial structures
(i.e., unit-cells) [19]. As shown above, the slot which acts as a magnetic dipole provides negative
permeability at specific bands of frequencies. The fractal slots are etched over the broad (top) walls of
the SIW structures. However, slots can also be etched on the grounds of the SIW structures, introducing
the same responses. However, keeping the ground solid, it is preferred to reduce the noise and radiation
losses in high-frequency radio systems.

In order to achieve high coupling between the SIW structures and fractal slots, the fractal slots are
etched at centers of the waveguides, exciting by the maximum electric field of the fundamental mode
TEjg. Figure 6 shows three metamaterial unit cells along with the conventional SIW structure. The
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Figure 6. (a) Conventional SIW, (b) the 1st iteration H-shaped fractal SIW-metamaterial unit cell, (c)
the 2nd iteration H-shaped fractal SIW-metamaterial unit cell, (d) the 3rd iteration H-shaped fractal
SIW-metamaterial unit cell.
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SIW structures-based metamaterial unit cells with the 1st, 2nd, and 3rd iterations of H-shaped fractal
slots are introduced. An FR4 substrate with thickness h = 1.2mm and dielectric constant &, = 4.6
was used in all simulations and fabrications. The width of the SIW w.g was 7.8 mm to have the cutoff
frequency at about 10.3 GHz; the via diameter a was 1 mm, the distance between any two successive
vias b was equal to 1.5 mm; the side length of the fractal curve p was 6.4 mm; and the slot width g
was 0.15mm. Figure 7 displays the S-parameters of the conventional SIW and the SIW based fractal
metamaterial unit-cells. As can be seen, metamaterial unit cells allow signals to pass through them
under the cutoff frequency of the SIW structures which was about 10.3 GHz, while the conventional
SIW prohibits signals under that cutoff frequency, having evanescent modes. Thus, we can name them
as evanescent resonators. Figure 8 displays the current distributions of the conventional SIW structure
and the 3rd iteration H-shaped fractal SIW-metamaterial unit cell to confirm that signals can propagate
inside the proposed fractal SIW-metamaterial unit cells while being prohibited from propagation inside
the conventional SIW structure under the cutoff frequency, for example, at 5 GHz. In addition to that,
the current distributions of the 3rd iteration H-shaped fractal SIW-metamaterial unit cell at 3 GHz and
8 GHz have been illustrated to show that the structure can also prohibit signals from propagation outside
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Figure 7. (a) Frequency responses (S11) of structures shown in Figure 6(a) (green line), Figure 6(b)
(black line), Figure 6(c) (blue line), and Figure 6(d) (red line), (b) frequency responses (S21) of structures
shown in Figure 6(a) (green line), Figure 6(b) (black line), Figure 6(c) (blue line), and Figure 6(d) (red
line).
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Figure 8. (a) Current distribution inside the conventional SIW at a frequency of 5 GHz, (b) current
distribution inside the 3rd iteration H-shaped fractal SIW-metamaterial unit cell at a frequency of
5 GHz, (c) current distribution inside the 3rd iteration H-shaped fractal SIW-metamaterial unit cell at a
frequency of 3 GHz, (d) current distribution inside the 3rd iteration H-shaped fractal STW-metamaterial
unit cell at a frequency of 10 GHz.
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the allowed band. These figures give a quick glance to see which frequency can be distributed inside
the proposed unit cells. The normal components of the dominant electrical fields extending from the
ground to the broad wall of the SIW structure excite the fractal slots acting as magnetic dipoles, while
components of the magnetic field are parallel to the top wall of the SIW and are normal to the sidewalls.
Moreover, the center frequency of the passband decreases as the fractal iteration increases. Although
the frequency response of the 1st iteration H-shaped fractal SIW-metamaterial unit cell has a passband
slightly below the cutoff frequency of the conventional SIW structure, the emergence of the passband,
at the frequency 10.1 GHz, was clear. In other words, the typical responses of waveguides which were
highpass were turned into bandpass. Center frequencies of the 2nd and 3rd iterations H-shaped fractal
SIW-metamaterial unit cells were 6.875 GHz and 4.959 GHz, respectively. Maintaining the same side
lengths for different iterations of the fractal slots inside the SIW-metamaterial unit cells having the
same overall size resulting in responses with different frequencies, which was equivalent to reduction
in size. The reduction ratios of the 2nd and 3rd iterations H-shaped fractal SIW-metamaterial unit
cells compared to the 1st iteration unit cell were equal to 32.9% and 51.6%, respectively. The 2nd and
3rd iterations H-shaped fractal SIW-metamaterial unit cells offer good filtering responses as illustrated
in Figure 7. The fractal slots etched on SIW structures introduced two transmission poles where two
non-identical modes were excited and coupled. Furthermore, two transmission zeros were introduced as
well, leading to enhancing the filtering selectivity. The fractal SIW-metamaterial unit cells had highpass
characteristics located after the passbands which moved to higher frequencies than the cutoff frequency
of the initial SIW structures. This phenomenon occurs because the proposed fractal SIW-metamaterial
unit cells squeeze the primary TE1g modes by slots, resulting in shorter guides. For more details, readers
can refer to [5].

2.3. Extraction of Metamaterial Parameters

To better clarify the principles of the backward transmission of passbands under the cutoff frequency of
the SIW structure, the proposed metamaterial unit cells were analyzed and investigated to demonstrate
that they have negative permittivity and permeability at specific bands. Only the SIW-metamaterial
unit cell with the 3rd iteration H-shaped fractal slot was chosen to extract its effective metamaterial
parameters for the sake of simplicity. The transmission response of the 3rd iteration H-shaped fractal
SIW-metamaterial unit cell was centered almost at 5 GHz, compared to the response of the conventional
SIW with the same overall dimension as shown in Figure 9(a). The overall size of the fractal slot plays
a vital role in determining the center frequency for the passband, so three different sizes for the 3rd
iteration H-shaped fractal slots were engraved on the top wall of the SIW structure. These sizes were
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Figure 9. (a) A comparison between the frequency (scattering) response of the 3rd iteration H-shaped
fractal SIW-metamaterial unit cell (solid line) and the conventional SIW (dashed line) S; is blue and
S11 is red, (b) the transmission coefficient (S21) of the 3rd iteration H-shaped fractal SIW-metamaterial
unit cell for three different fractal slot sizes of p = 4.5 mm is red, 5.5 mm is blue, and 6.5 mm is black.
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with a side length of p = 4.5 mm, 5.5 mm, and 6.5 mm. As the overall size of a fractal slot increases, the
frequency decreases as shown in Figure 9(b) where the insertion losses So; are presented. The bigger size
of the 3rd iteration H-shaped fractal slot was adopted in all our future designs. Figure 10(a) shows the
simulated permittivity and permeability of the 3rd iteration H-shaped fractal-SIW-metamaterial unit
cell. As illustrated in the figure, the shaded areas are where both the permittivity and permeability
were simultaneously negative or positive, supporting the backward or forward propagation. These two
effective metamaterial parameters were extracted depending on the simulated S-parameters. From
the results, we can deduce that there are two different types of propagations relying on the signs of
permittivity and permeability. They are negative at a frequency range of about 4.4 GHz to 5.15 GHz,
while they change their signs into positive from about 5.15 GHz to 5.9 GHz. Fortunately, these two
frequency bands are closely adjacent, leading to a balanced response. It is worth noting that our
proposed metamaterial unit can support both the backward and forward propagations. Figure 10(b)
depicts the normalized dispersion diagram which exhibits both negative and positive slopes for backward
and forward wave propagations, respectively. These two types of propagation modes result in the
emergence of two poles in the transmission responses of the proposed unit cells, called dual-mode
responses. The attenuation constant curve, shown in Figure 10(b), is another parameter approving
that the signals can pass through the proposed guide under the cutoff frequency, because the losses are
very low. Moreover, a transition of the attenuation constant curve between the backward and forward
propagation areas is smooth without any ripple.
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Figure 10. (a) Permittivity and permeability (constitutive parameters) of the 3rd iteration H-shaped
fractal STW-metamaterial unit cell, (b) propagation and attenuation constants of the 3rd iteration
H-shaped fractal SIW-metamaterial unit cell.

2.4. Circuit Model and Losses

In this subsection, we establish the equivalent-circuit model which was used to predict the operation
of the proposed unit cell, see Figure 11(a). The model starts by considering the SIW structure as a
conventional two-wire transmission-line formed by the top wall of the SIW and the ground, connected
to an infinite number of short-circuited stubs along the equivalent transmission-line. There are pieces
of transmission-lines, connecting between an array of vias and the main two-wire transmission-line, so
if we look from the center of the guide the short-circuited stubs appear as an equivalent inductance,
represented by L,;,. This inductance contributes to the highpass characteristics of the SIW structure.
The equivalent transmission-line of the SIW can be represented as distributed shunt capacitance Cy and
distributed series inductance Ly. The fractal slot is modeled by means of a series capacitance Cfrq.. The
coupling between the fractal slot and the SIW is a combination of electric (capacitive) and magnetic
types (inductive). Thus, C. and L. were used to describe these types of coupling. C,. indicates the
capacitive connection between the ground of the SIW and small patches confined between the arms
of the fractal slots. Because Cy is dominant, C. is implicitly included within C,;. Thus, one can find
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Figure 11. (a) The equivalent-circuit model of the H-shaped fractal SIW-metamaterial unit cell
(Lg = 1pH, L. = 0.2nH, Ly, = 8.3nH, Cy = 4.2pF, and Cfy. = 0.93pF), (b) a comparison between
the frequency (scattering) response of the 3rd iteration H-shaped fractal STW-metamaterial unit cell
and its equivalent circuit model, (c) and (d) the frequency (scattering) response of the equivalent circuit
model with varying Cfq. and L., respectively.

Cy4 in our derived formulas but is not found in the equivalent circuit model. The inductive coupling,
which is realized by the SIW structure and fractal slots, is given by L.. The proposed circuit model is
only valid for a limited range of frequencies, and the influence of high-order modes of resonators cannot
be reflected by this equivalent-circuit model. Moreover, material, dielectric, and radiation losses are
ignored for the sake of simplicity.
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Although we consider a simple circuit model, it is clearly accurate and fully predicts the transmission
characteristics of the proposed unit cells. Figure 11(b) compares between the results obtained from the
full-wave simulation using the advanced design system ADS simulator and the circuit model. Values
of the equivalent lumped elements are given in the caption of Figure 11. These lumped element values
were obtained using the built-in optimization tool in ADS. Several hundreds of iterations were run to
match between frequency responses of both the full-wave electromagnetic solver and the circuit model.
However, there is a discrepancy because impacts of different factors have been ignored in the equivalent
circuit model. We can infer from the circuit model impacts of equivalent lumped elements on the whole
response of the unit cell, so we can configure the unit cell dimensions to realize any desired frequency
response as explained in the following.

The frequency of the first transmission zero occurring below the passband is given by Eq. (2)

1
- - 2

I 277\/ Lchmc ( )
L. governs the location of the transmission zero. As L. increases, the transmission zero is shifted down
to lower frequencies. As known, when the locations of transmission zeros are closer to a passband, it
exhibits a tremendously sharp rejection roll-off and leads to enhancing the filter selectivity. A strength
of the magnetic coupling between the fractal slot and the SIW determines the value of L.. In other
words, a location of the fractal slot and slot width ¢ govern the value of L.. Thus, we can vary the
location of the first transmission zero once we change a location of fractal slot which in turn varies L,
see Figure 11(d). Moreover, all proposed unit cells are dual-mode structures. The dual-mode response
is not clear in the response of the 1st iteration H-shaped fractal SIW-metamaterial unit cell because of
the weak coupling between the slot and SIW. Lg and Cjy. control the frequency of the 1st mode. In
other words, the substrate’s dielectric constant and thickness, size and width of the fractal slot are the
main parameters which determine values of these two equivalent lumped elements. The frequency of
the first mode is 1

3
27T\/(Ld + Lvia) (Cfmc +Cq + Cc) ( )

As can be seen, Cpy. contributes to both frequencies of the transmission zero and the 1st mode
simultaneously. The frequency of the 2nd mode is

f 1st-mode =

1

nd-mode — 4
f2 dmod 27/ Lyiq (Cd + Cc) ( )

This analysis aids to know which parameter can be used to evaluate the response of the proposed unit
cells. However, some of these parameters cannot be altered after selecting the dimensions of the initial
SIW such as Cg, Lg, and Ly;,. However, C. and Cjy. are the most important parts which play a vital
role in determining the frequency of the proposed unit cells. Figures 11(c) and (d) show the responses
of the equivalent-circuit model when varying Cf,. and L., respectively. As Cjy. increases, both the
transmission zero and the 1st mode tend to reach a lower frequency, whereas only the transmission zero
varies with the varying value of L.. From the circuit analysis, we can establish a procedure connecting
between the circuit model and the electromagnetic unit cell structures but is left as a future work.

Next, as the slots are etched on the top walls of the SIW structures and are not fully covered,
radiation losses are expected. Losses in our proposed unit cells are considered as a practical issue
confronted during the design. However, according to calculations, we found that the radiations losses
were not significant, being less than 0.03 in a whole band. If we consider other losses such as dielectric
and conductor losses in our calculations, the total losses become less than 0.176, see Figure 12. These
losses were normalized and calculated using the formula in Eq. (5).

Losses =1 — | Sy |* — |S11|? (5)

Radiation losses increased as the slot width increased, leading to an increase in power leaked to space.
Since the fractal slot acts as a magnetic diploe, it works similarly to a magnetic dipole antenna. The
very small radiation will be normal on the structure, and it can be easily avoided by shielding the
structure. The adjacent components will not be largely affected. Compared to [5,30], the radiation
losses in the proposed unit cells are smaller. In addition to the property of low radiation loss, they offer
advantages in terms of size and selectivity.
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Figure 12. Calculated total losses (red line) and only radiation losses (blue line) for the 3rd iteration
H-shaped fractal SIW-metamaterial unit cell.

3. FILTER DESIGN METHODOLOGY

Having investigated and discussed the proposed metamaterial unit cells (resonators) earlier in this
paper, now we will follow the regular procedure (classical methodology) to synthesize filters using only
the proposed 3rd iteration H-shaped fractal SIW-metamaterial unit cell [31]. The regular method used
to meet the given design specifications depends on the coupling coefficient £ and the external quality
factor Qeyt- Three different filters were simulated using the advanced design system ADS simulator
based on the momentum. The 3rd iteration H-shaped fractal SIW-metamaterial unit cell shown in
Figure 6(d) is the basis of these three filters which are the one, three, and five stages STW-metamaterial
filters, presented in this section. In other words, number of the filter stage is according to how many
unit cells are used in the proposed filters, see Figure 13. Although the proposed SIW-metamaterial
unit cells offer transmissions of passbands under the cutoff frequency of the initial SIW structures,
there is no control on their bandwidths and scattering parameters S. Fortunately, the interaction
between the fractal slots and SIW structures can increase the degree of freedom to properly obtain
the required filter specifications. The filter design method will be briefly deliberated in this section
exploiting the conventional coupled resonators scheme. The design process is outlined in the beginning,
and then a simple illustration is provided to give some useful guidelines. In the first step, the circuit
synthesis based on filter requirements is introduced. The external quality factor and coupling coefficient
parameters being the basis of the filter design can be determined in terms of the low-pass filter circuit
elements. Calculating these two parameters aids to establish a relationship between the SIW-fractal
slot interaction which in turn determines the physical dimensions of the filters and the low-pass filter
circuit elements.

In general, all the proposed unit cells have dual poles (i.e., dual modes) in their responses as
mentioned above. These two separate resonance frequencies are useful to extract the coupling coefficient
and external quality factor. The coupling coefficient is given by:

f3 — f7
k="5—= 6
3+ 1t )
and the external quality factor is given by:
2fo
Qemt - W (7)

where fo and fi refer to frequencies of the higher and lower modes of the electromagnetically coupled
fractal slot resonator with the SIW structure. f, stands for the central resonance frequency, and BW
is the 3dB bandwidth.

Some design dimensions were carefully tuned during investigations to extract both the coupling
coefficient k£ and the external quality factor Qe;:. Thus, we can establish two curves for the coupling
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(b)

(©)

Figure 13. Configurations of (a) one stage 3rd iteration H-shaped fractal SIW-metamaterial bandpass
filter, (b) three stages 3rd iteration H-shaped fractal SIW-metamaterial bandpass filter, (c) five
stages 3rd iteration H-shaped fractal SIW-metamaterial bandpass filter (w = 7.8 mm, w; = 0.68 mm,
[ =0.8mm, [y =239mm, a = lmm, b = 1.5mm, p=6.4mm, g = 0.15mm).

coefficient and the external quality factor versus physical dimensions of the proposed filters in an effort
to facilitate optimizing the design. For the sake of simplicity, parameters k and Q. are only shown for
the proposed one stage 3rd iteration H-shaped SIW-metamaterial filter. After determining k and Q ¢y,
the optimized physical dimensions of the three filters presented in this paper can be established.

For illustration, a simple example is given. In this example, a one stage SIW-metamaterial filter
utilizing single 3rd iteration H-shaped fractal slot is placed in the middle of the guide, see Figure 13(a).
The physical dimensions w; and [ of the filter shown in the figure are changed to calculate parameters
k and Q¢ following the procedure explained above. The filter has a passband located about 5.3 GHz
with about a 0.65 GHz bandwidth. Although the SIW is incorporated with a single fractal slot, its
response is dual modes. Thus, a second order circuit synthesis is carried out where k15 = ko1 = 0.052
and Qe = 25.3. The electromagnetic simulation is used to determine the initial dimensions of the
resonator (i.e., unit cell). The external quality factor is preferred to be higher to see clearly the two
resonance frequencies of the dual mode behavior, known as even and odd as well.

In Figure 14(a), the external quality factor and the coupling coefficient of the one stage 3rd
iteration H-shaped SIW-metamaterial filter versus the physical dimensions w; have been plotted, while
Figure 14(b) shows these two parameters versus [ for the same filter. These two plots expedite the
procedure to obtain the proper dimensions to design a filter with required properties. Figures 14(c)
and 14(d) exhibit current distributions of the low and high modes, respectively.
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Figure 14. Coupling coeflicients and external quality factors for the one stage 3rd iteration H-shaped
fractal SIW-metamaterial filter as a function of (a) wi, (b) [, (c) current distribution for low mode, (d)
current distribution for high mode.

These initial dimensions dependent on the design curves were optimized using the electromagnetic
ADS simulator. Also, there are other physical dimensions considered in filter designs, but they are not
provided here. The remaining two filters presented in this paper have been optimized following the
same procedure used in the previous filter.

As illustrated, the coupling coefficient and the external quality factor can be controlled in several
ways. Meanwhile, we can use the equivalent circuit model demonstrated above to assist in determining
some design properties such as governing the transmission zeroes and bandwidths. The space between
the vias and the fractal slot w; as well as the space between feeding edge and the fractal slot [ play a vital
role in determining the filter bandwidth as can be seen in Figure 14. Increasing w; leads to decreasing
k and increasing Q..+ while increasing [ leads to increasing k and decreasing Q,:. In the first case, the
cutoff frequency becomes lower, and the current distribution of the fundamental mode occupies bigger
area. Therefore, the coupling between the fractal slot and SIW becomes less. In contrast, the cutoff
frequency remains the same in the second case, but the slot interacts effectively with SIW guide, leading
to obtaining higher coupling. Varying [ does not change k£ and Q.+ as much as w; does for the same
reasons mentioned above.

However, obtaining proper physical dimensions is critical because of the overall size. Thus,
compromise between the performance and the design requirements from one side and the size from
another side is necessary. The final filter configuration is chosen according to w; and [ with 0.8 mm
and 0.65 mm, respectively. Figure 13 also shows the design layouts of the three and five stages SITW-
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metamaterial filters. Physical dimensions of these two filters have been determined after a huge amount
of tuning and optimization using the electromagnetic solver. It is important to bear in mind that the
increase in number of usage slots represents the increase in the filter order.

4. SIMULATION AND MEASUREMENT RESULTS

This section is devoted to demonstrating and practically validating the proposed filters developed in
the previous sections. Photographs of the fabricated filters are shown in Figure 15. The filter stage
relies on a number of fractal slots etched in each SIW structure as illustrated in Figures 13 and 15.
The 3rd iteration H-shaped fractal slots are etched over the top walls of the SIW structures, and they
are placed linearly along the printed guide (SIW). An FR4 substrate having a thickness of 1.2 mm and
a relative permittivity 4.6 was used in all fabrications using the standard printed circuit board (PCB)
process in the Electrical Engineering Department, University of Tun Hussein Onn Malaysia UTHM in
Malaysia. Dielectric and metallic losses were considered in all simulations by using the tangent loss
(tand) of 0.01 for substrate and the conductivity (o) of 5.8 x 10e” S/m for copper, respectively. The
vector network analyzer VNA was used to measure and evaluate filters’ performances. The measured
data were compared with the simulated one, and the agreement between them was very good.

Figure 15. A photograph of the fabricated SIW-metamaterial filters.

The fabricated filters shown in Figure 15 are very compact although they fall within a category of
waveguide filters. Physical dimensions of the filters are all given within the caption of Figure 13. The
three filters were designed following the formerly mentioned procedure given in the previous section.
Figure 16 compares between the measured (solid line) and simulated (dashed line) frequency responses
of the one stage 3rd iteration H-shaped fractal SITW-metamaterial filter. As expected, this filter has
transmission characteristics similar to what the 3rd iteration H-shaped fractal SIW-metamaterial unit
cell has because both of them consist of single unit cells. The 3 dB bandwidth was about 0.65 GHz and
the center frequency about 5.3 GHz with two poles in the passband. Thus, the fractional bandwidth was
approximately 122%, achieving a broadband filter because of its high internal coupling coefficient and
low external quality factor. Furthermore, the slots can be scaled up or down to obtain any frequency of
interest. Furthermore, two zeros can be observed, located around 4.4 GHz and 7.2 GHz, respectively. Its
maximum simulated transmission coefficient (i.e., insertion loss) was 0.5 dB while the measured insertion
loss was approximately 1.5dB, which includes losses caused by the SMA connectors not considered in
the simulation. The minimum in-band reflection coefficient (i.e., return loss) of the simulated result was
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Figure 16. Measured (solid line) and simulated (dashed line) transmission response of the one stage
3rd iteration H-shaped fractal SIW-metamaterial bandpass filter (S17 is red and So; is blue curves.).
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Figure 17. Measured unwrapped phase of So; response of the one stage 3rd iteration H-shaped fractal
SIW-metamaterial filter.

about 19 dB which is almost the same as the measured one. As known, the presence of transmission zeros
in frequency responses aids to increase the filter selectivity. As illustrated in the results, the measured
rejection in the lower stopband was about 45 dB, while it is equal to 30 dB in upper stropband. Figure 17
shows the measured unwrapped phase response of the proposed one stage filter. As can be seen, the
phase is positive (phase-lead) and decreased to become negative (phase-lag) in the passband from about
5.05 GHz to 5.7 GHz. Varying the phase from the positive to negative confirms that there are two natures
for the wave propagation within the passband, the backward and forward wave propagations.

It is worth noting that this filter is very compact where its overall physical size is 7.5 x 8 mm? or
0.12)4 x 0.15),, where )\, is the guided wavelength at a center frequency of 5.3 GHz.

The simulated (dashed line) and measured (solid line) frequency responses of the three and five
stages 3rd iteration H-shaped fractal SIW-metamaterial filters are portrayed in Figures 18(a) and (b),
respectively. Six poles are clearly observed in Figure 18(a), while there are eight poles for the filter
presented in Figure 18(b). The second filter has two zeros placed before and after the passband, and
the third filter has three transmission zeros. As the number of transmission zeros increases, the filter
response roll-off becomes very sharp. For the second filter, the measured 3dB bandwidth and center
frequency are about 1.2 GHz and 5 GHz, respectively, while the measured 3 dB bandwidth is 1.3 GHz,
and the center frequency is 5 GHz for the third filter. As can be seen, the center frequency of the
proposed one stage filter is shifted down to become around 5 GHz for the proposed three and five stages
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Figure 18. Measured (solid line) and simulated (dashed line) transmission response of (a) the three
stage 3rd iteration H-shaped fractal SIW-metamaterial filter, (b) the five stage 3rd iteration H-shaped
fractal SIW-metamaterial filter (571 is red and Ss; is blue curves.).

filters. This is normal because of electromagnetic coupling between slots for filters with more slots.

Also, the bandwidth becomes wider for the last two filters.

Table 1 summarizes the measured maximum in-band insertion loss and measured minimum in-band
return loss for the second and third filters. The stopband rejection was highly improved as a filter order
increased and quickly went below 45dB up to 8 GHz for the second filter. It was about 50dB up to
8 GHz for the third filter. As anticipated, the measured results agree very well with the simulated

Table 1. A summary of the measured in-band return and insertion losses.

Filter Maximum in-band Minimum in-band
Stage No. Insertion Loss (measured) Return Loss (measured)

Three 2.5dB 14dB

Five 1.8dB 17dB

Table 2. A comparison of the proposed one stage filter with other works.

Reference Fractional Insertion Return Size (A, x A,)
Bandwidth (%) Loss (dB) Loss (dB) g

[32] 5.2 4 12 0.3663 x 0.24

[5] 11.2 1.6 15 0.263 x 0.146
[33] 7 1.9 20 0.333 x 0.65
[34] 9.6 1.22 15 0.463 x 0.22

[35] 11 1.2 16.7 0.2053 x 0.166
[36] 10.9 1.2 35 0.183 x 0.09
[37] 8.3 1.2 20 0.075 x 0.075
[38] 8.2 0.5 10 0.34 x 0.15
This work 12.25 0.75 23 0.12 x 0.15
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ones. However, slight discrepancies between the measured and simulated results are by many reasons
such as using ideal environments in simulations, errors in fabrications, and losses in measurements.
Therefore, our proposed designs tend to increase the out-of-band rejection as number of slots used in
designs increases at the cost of size.

Table 2 introduces the comparison of the proposed one stage 3rd iteration H-shaped SIW-
metamaterial filter with other reported SIW based metamaterial bandpass filters. Compact size, high
rejection, easy integration, frequency scale, and small insertion loss are the advantages that our proposed
filters have.

5. CONCLUSION

In this study, new SIW-metamaterial unit cells were designed and investigated. Instead of using CSRR
inclusions as in the conventional SIW-metamaterial unit cells, fractal slots were etched over the top
walls of the SIW structures. The 3rd iteration of the H-shaped fractal curve was selected to get more
compact unit cells compared to other fractal iterations. Both backward and forward wave propagations
were supported under the cutoff frequency of the SIW with two passbands being closely adjacent. The
permittivity, permeability, and dispersion diagram were extracted using the s-parameters to approve
the metamaterial concepts. Furthermore, the equivalent circuit model of the proposed unit cell was
established and analyzed.

Afterwards, different filters with different stages which were one, three, and five stages were
designed, simulated, fabricated, and tested. Based on these passbands, a different family of bandpass
filters supporting both backward and forward wave propagations were presented for the first time
according to the best of authors’ knowledge. Both the external quality factors and coupling coefficients,
which are important parameters in the classical filter design methodology, versus some physical
dimensions, were explored to obtain the required properties of filters. The proposed SIW-metamaterial
unit cells and filters offer several advantages such as compact sizes, easy integration with other PCB
components and capability to scale-up or down, broadband frequency responses, high selectivity with
the aid of existence of the transmission zeros, low insertion loss, and low cost. Measured and simulated
results were in good agreement. Thus, these significant advantages enable our new filters based on
fractal slots to be suitable for practical applications.
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