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The Dependence of Time-Domain Radiation Loss on the
Circumference and Wire Radius of a Circular Loop Antenna

Edmund K. Miller*

Abstract—The Lienard-Wiechert potentials show explicitly that charge acceleration, i.e., a change in
charge velocity, causes radiation of an electromagnetic field. The goal of this discussion is to explore
the rate of energy loss due to radiation from current and charge flowing on a circular loop as a function
of the loop’s circumference (or curvature) and wire radius. The results presented are obtained using
a thin-wire, time-domain (TWTD) computer model for Gaussian-pulse excitation. Some results for a
straight wire are also presented for comparison. Representative analytical estimates for the curvature
and wire-radius effects are developed from best-fits expressions to the computed results.

1. INTRODUCTION

It has been observed [1–5] and quantitatively demonstrated [6] that charge and current (Q/I) waves
propagating on a straight wire attenuate or decay with time and distance due to radiation. The amount
of similar radiation-caused decay for a circular-loop antenna due to wire curvature and wire radius is
explored in the following. Radiation from a straight wire is also included as a reference.

The results presented here are obtained from a well-validated, time-domain, integral-equation
model, TWTD (Thin-Wire Time Domain) [7]. A detailed description of the analytical and numerical
basis for TWTD can be found elsewhere [8, 9]. Briefly, it is based on a thin-wire approximation to an
electric-field integral equation solved using the method of moments. The solution is developed from an
explicit time-stepping procedure using a 9-term, second-order polynomial basis expansion in space and
time and delta-function sampling.

Modeling an antenna in the time domain usually involves applying an impulsive voltage to one
segment of the wire model as is done here. The time-dependent voltage used for the loop results that
follow is a Gaussian Pulse as given by

Vex(t) = Vo exp[−a2(t − tmxx)2]. (1)
The loops and dipoles are modeled using a segment length dx = 0.05 m long and a time step
dt = 1.667 × 10−10 sec so that cdt = dx.

Time-domain results are presented below for loop antennas of circumference C = 2πR ranging
from 5 to 60 m with a wire radius r, varying from 10−2 to 10−9 m, and for straight wires of comparable
length, L, and radii. The primary quantity to be examined is an energy measure W (t) [6] derived from
their time-dependent propagating current, I(x, t) in amps, and charge density, Q(x, t) in coulombs/m
as given by

W (t) =
∫ CorL

0
[I2(x, t) + Q2 (x, t) c2]dx = WI (t) + WQ (t) (2)

with c the speed of light for free space, and the upper limit of the integral is C for loop circumference,
or L for dipole length. The quantities WI and WQ are the respective current (or magnetic) and charge
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Figure 1. The current (red) and charge density times c (blue) on a 1199-segment loop (59.95 m
circumference) with a wire radius r of 0.01 m excited at segment 600 by a Gaussian pulse.

(or electric) energies associated with the magnetic and electric fields at the surface of the wire due to
the propagating current and charge. Results for the loop and dipole antennas are presented respectively
in the following.

A representative example of the impulsive current and charge density for a circular loop having a
circumference of 59.95 m (1199 segments) and a wire a radius, r, of 0.01 m is shown in Fig. 1 at intervals
of 100 time steps. The width parameter, a, for the impulsive voltage of Equation (1) is 5 × 10+8/sec/
with tmax = 3 × 10−8 sec and Vo = 1V. Note that I(x, t) = ±cQ(x, t) away the feedpoint at segment
600 or where the counter-propagating charge pulses overlap on the opposite side of the loop. The decay
of the current and charge with distance from the feedpoint is clear evidence of the curvature-caused
charge acceleration and consequent radiation that occurs.

2. NUMERICAL RESULTS FOR THE LOOP ANTENNA

2.1. Varying the Loop Circumference

The three energy quantities of Equation (2) are plotted in Fig. 2 for a loop 5-m (100-segments)
in circumference with a wire of radius 0.01 m as a function of time step. The width parameter
a = 3.25× 109/sec for the variable loop circumferences and radii results that follow. The wide dynamic

Figure 2. The current energy WI , charge energy WQ, and total energy W as a function of time step
for a loop of 5m (100 segment) circumference and wire radius of 0.01 m as a function the time step.
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range of this plot is used to demonstrate that WQ approaches zero with increasing time. The oscillatory
decay it exhibits occurs because each time the opposite-signed, oppositely propagating charge pulses
meet moving around the loop, they cancel to produce alternating minima. The charge energy eventually
becomes zero as the loop radiates the time-dependent energy deposited by the impulsive excitation. This
results in a uniform, non-radiating, late-time current Io and charge neutrality around the loop.

The inductance L of an arbitrary-geometry, Gaussian-Pulse-excited, wire loop is inversely
proportional to the late-time current Io as given by [10, 11]

L =
√

π

aIo
=

1.77245
aIo

Henries. (3)

Equation (3) yields a value of 4.452× 10−6 Henries with Io = 1.225× 10−4 A for the case of Fig. 2.
Since the energy stored in an indictor carrying a current Io is given by

WI =
1
2
LI2

o J (4a)

it follows that

WI =
√

π

2a
Io J. (4b)

A calibration factor for Fig. 2 is obtained using Equation (4b) of (1.77245)× (1.225× 10−4)/[2× 3.25×
109] = 3.349 × 10−14 J.

The time-dependent, normalized total energy on several circular loops of radius 0.01 m and
circumferences varying from 5 to 60 m are plotted in Fig. 3(a) and on an expanded scale in Fig. 3(b). A
normalized energy is plotted for convenient comparison of the various cases included here, but for this
particular example the peak energy is nearly independent of loop size. The decay rates exhibited by the
total energy plots in Fig. 3 are initially independent of the loop size. Subsequently they vary not only
with loop size but with time as exhibited by the decreasing slopes of the W (t) curves with increasing
time. An average decay rate per unit distance for the normalized total energy W (t) to decrease by a
ΔW of 0.2 to 0.1 for the various loop radii of Fig. 3 is plotted on a ln-ln scale in Fig. 4. A best-fit straight
line to the data points of Fig. 4 yields a representative analytical estimate for the loop energy-loss rate
dWL,R(ΔW,R)

dx as a function of the loop radius R as

Ln

[
dWL,R (ΔW,R)

dx

]
= Ln

[
0.1

c × dt (TS0.2 − TS0.1)

]
≈ −2.7 − 0.77Ln(R). (5a)

where “TSxx is the time step at normalized energy level xx. On rewriting Equation (5a) in terms of
loop circumference C there results

dWL,C (ΔW,C)
dx

≈ 6.72 × 10−2

R0.77
=

6.72 × 10−2

C0.77
× (2π)0.77 =

0.277
C0.77

. (5b)

If instead the average decay rate is estimated using a ΔW of 0.1 to 0.05 the best-fit straight line
in Fig. 4 is given by

dWL,C (ΔW,C)
dx

≈ 2.75 × 10−2

R0.72
=

2.75 × 10−2

C0.72
× (2π)0.72 =

0.103
C0.72

. (5c)

The average dWL,C(ΔW,C)
dx is found to decrease with increasing loop circumference about as ∼ 1/C0.75

for which an energy-decrease estimate is given by
dWL,C (ΔW,C)

dx
≈ KL,C (ΔW )

C0.75
(5d)

with KL,C(ΔW ) accounting for the variation in the multiplying constant in Equations (5a) through
(5c).

The dependence on loop curvature occurs because the charge acceleration decreases with decreasing
loop curvature. The decreasing slope of W (t) with increasing time in Fig. 3 results in dWL,C(ΔW,C)

dx

becoming smaller as the loop currents approach uniformity. Samples of estimated dWL,C(ΔW,C)
dx values

from Equation (5b) and the original samples from Fig. 4 are compared in Fig. 5. They agree within a
few percent to validate Equation (5).
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(b)

(a)

Figure 3. Normalized total energy as a function of time for loops having a wire radius of 0.01 m and
variable circumferences in m (a) and on an expanded scale (b).

Figure 4. The energy-loss rate dWL,R(ΔW,R)
dx over the normalized ranges 0.2 to 0.1 (red) and 0.1 to 0.05

(blue) as a function of the radius of an impulsively excited circular loop having a wire radius of 0.01 m.
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Figure 5. The energy-loss rate dWL,C(ΔW,C)
dx values derived from Figure 3 (the red data points) and

samples estimated from Equation (5b) (the blue dots) as a function of the loop radius for a wire radius
of 0.01 m.

2.2. Varying the Loop Wire Radius

The effect on the normalized energy measure of varying the wire radius for a loop of 5m (100 segment)
circumference is plotted in Fig. 6(a) and on an expanded scale in Fig. 6(b). The energy decay rate
is seen to vary with not only the wire radius but also in time as was found above for varying the
loop circumference. The average loss rate dWL,r(ΔW,r)

dx for the results of Fig. 6 was computed over the
energy range 0.2 to 0.1 as before. In contrast with the results of Fig. 4, however, plotting the inverse of
dWL,r(ΔW,r)

dx versus Ln(r) now results in a straight-line relationship shown in Fig. 7. A best-fit straight
line to the data of Fig. 7 is given by

dWL,r (ΔW, r)
dx

=
0.1

[c (TS0.2 − TS0.1)]
≈ 1

−30 + 20Log(r)
. (6)

3. COMPARING A LOOP AND STRAIGHT WIRE

A comparison of the normalized total energies for loops and straight wires (dipoles) 1199 segments
(59.95 m) long and of variable wire radii is presented in Fig. 9. The normalized energy results are
numerically identical out to about 180 time steps for r = 10−2 m and increasing to about 250 time
steps for r = 10−9 m. The voltage pulse used for these results has a = 9.69031 × 108/sec and
tmax = 8.33333 × 10−9 sec with dt = 1.66667 × 10−10 sec.

The initial W (t) results here decrease more slowly than those of the 5-m loop of Fig. 6 since the
loop curvature in this case is almost 12 times smaller. It can be seen that the dipole and loop have
equal normalized energies for 150 or more time steps beyond their peak values. Referring to Fig. 1,
the changing shapes (decreasing amplitude and broadening width) with time of the current and charge
pulses show that the higher-frequency content is radiated earlier in their propagation along both the
loop and dipole. This may explain the early-time equality of their energy loss in Fig. 8.

The normalized energy values at time step 600 are plotted in Fig. 9 as a function of the wire radius
for both the loop and dipole. The loop exhibits a greater loss for a given wire radius due to the effect
of its curvature.

The dWD,r(ΔW,r)
dx values averaged over 100 time steps centered at TS 400 for dipoles of various radii

whose normalized total energies are obtained from Fig. 9 as given in Table 1 can be estimated using

dWD,r (400, r)
dx

≈ [WD,r (450) − WD,r (350)]
100

(7)
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Figure 6. Normalized total energy for a loop 5-m (100-segment) in circumference with the wire radius
a parameter showing that the loss energy loss rate decreases with decreasing wire radius.

Figure 7. The inverse of dWL,r(ΔW,r)
dx as a function of the radius of a loop 5-m (100 segment) in

circumference compared with the model estimate of Equation (6).
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Figure 8. The normalized loop energy WL(t) and dipole energy WD(t) as a function of time step for
several wire radii and total wire lengths of 59.95 m or 1199 segments.

Figure 9. The normalized energy at time step 600 as a function of the wire radius for the loop and
dipole.

Table 1.

Wire Radius (m) WD (350) WD (450) dWD,r(400,r)
dx /m

10−2 0.39 0.371 1.9 × 10−4

10−3 0.565 0.542 2.3 × 10−4

10−5 0.7 0.678 2.2 × 10−4

10−9 0.8 0.778 2.2 × 10−4

the results of which shown in Table 1. The average of the four dWD,r(400,r)
dx values in Table 1 is 2.15/m,

demonstrating that the late-time energy loss for the dipole is essentially independent of the wire radius
over a 7-decade range even though their absolute values differ by a factor of 2 or so.

For comparison, the similarly averaged dWL,r(400,r)
dx values at TS 400 as given by Table 2 show that

the late-time energy loss for the 1199-segment loop varies by a factor of about 4/3 over the same range
of wire radii. For the 5-m circumference (100-segment) loop of Fig. 6, the ELRL variation is about 15
to 1.
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Table 2.

Wire Radius (m) WL (350) WL (450) dWL,r(400,r)
dx /m

10−2 0.285 .22 6.6 × 10−4

10−3 0.475 .41 6.5 × 10−4

10−5 0.6355 .585 5.05 × 10−4

10−9 0.765 .716 4.9 × 10−4

Samples of the current at successive intervals of 50 time steps on a 1200-segment loop and dipole
excited by an impulsive 1-V source at segment 600 are shown in Fig. 10 where a is 9.69 s 108. The
pulses are plotted at successive intervals of 50 time steps over the wire half extending from 600 to 1200
segments. Besides the greater decay rate of the loop compared with the dipole, the peak of the loop
current is seen to move slightly faster, as a result of the loop’s curvature. This is demonstrated in
Fig. 11 where best-fit straight lines are fit to the peak space locations as a function of time.

Figure 10. The current pulses on 1200-segment (60 m) dipole and circular loop at 50 time-step intervals
beginning at time-step 50.

Figure 11. Best-fit straight lines to the locations of the peaks of the current pulses of Fig. 10 are
shown here as a function of time together with their respective propagation speeds.
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4. CONCLUDING COMMENTS

Examined above is the influence of the size and wire radius on the rate at which an impulsively excited,
circular wire loop loses energy due to radiation. Some results for a straight wire for varying wire radius
have been included for comparison. A representative analytical estimate for the energy-decay rate,
dWL,C(ΔW,C)

dx , as a function of the loop circumference, C, for a wire radius of 0.01 m was obtained as

dWL,C (ΔW,C)
dx

≈ KL,C (ΔW )
C0.75

. (8)

The numerator factor, in Eq. (8), is a variable determined by where in time the decay rate is determined.
Similarly, an estimate of the dependence of the energy-decay rate as a function of the wire radius

r, dWL,r(ΔW,r)
dx , has been determined from the time-domain results for a 5-m (100-segment) loop to be

given by
dWL,r (ΔW, r)

dx
≈ 1

−30 + 20Ln(r)
. (9)

Observe that Equation (9) was derived specifically for a loop having a wire radius of 0.01 m.
Similarly, Equation (10) was developed specifically for a loop 5-m in circumference. The energy-decay
rate for the 60-m loop is much less sensitive to the wire radius. Thus, generalizing these results over a
wider parameter range, subject to the limits of TWTD, would probably be useful.
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