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Abstract—This paper presents the design of a compact size, passive, W to K band subharmonic mixer
with post-wall waveguide (substrate integrated waveguide) RF input interface. The mixer is based on a
silica-glass structure where the post-wall waveguide and microstrip line are on separate substrates. This
configuration maximizes the performance as the substrate thicknesses can be separately optimized for
the lowest loss and mono-mode operation. Integration of different types of guiding structures also allows
realization of e.g., millimetre-wave waveguide filters and microstrip circuits in a single structure, while
preserving low-cost, low-weight and compact size. Furthermore, post-wall waveguides can be easily
interfaced with conventional rectangular waveguides, as demonstrated in the paper, which simplifies
millimeter-wave circuit packaging and eventual system integration. Design methodology of the mixer
and transition circuits as well as measurements are presented. Minimum conversion loss of 19.6 dB was
achieved at 86 GHz with 13.7 dBm/32.4 GHz LO signal. The presented design would be suitable for the
future W-band cellular, radar, or satellite communication systems.

1. INTRODUCTION

W-band (75–110 GHz) and E-band (60–90 GHz) will play an important role in the future cellular (such as
5G), radar, and spaceborne communication systems. Meeting performance requirements of millimeter-
wave systems often requires integration of different guiding structures. Air-filled rectangular waveguide
is common for antenna interfaces, whereas post-wall waveguides (PWW) are very suitable for realizing
low-loss millimeter-wave filters (e.g., [8], [9], [10]), antennas ([7]) or other circuits. For instance, the
PWW-based filters can outperform the microstrip equivalents in terms of Q-factor, which in turn yields
better selectivity [6]. Furthermore, millimeter-wave filters designed using this silica-based PWW have
superior thermal stability, compared to the standard rectangular waveguide filters [10]. In the antenna
domain, microstrip patch antenna arrays suffer from low efficiency at millimeter-wave frequencies due
to conductor losses and radiation losses of the feeding network [18]. A suitable and more efficient
alternative is a planar slotted waveguide antenna array in a post-wall waveguide structure [7]. Planar
circuitry is mostly realized using microstrip lines. Creating low-loss transitions between these structures
while preserving compact size of the device is desirable for integration purposes.

Several W-band passive subharmonic mixers based on Schottky diodes have been proposed and built
(e.g., [1], [4] or [5]) based on a microstrip or coplanar waveguide input interface. This work presents
a W-band subharmonic mixer with silica-based post-wall waveguide RF input interface. The circuit is
fabricated on a single integrated structure that supports both the silica-based PWW and microstrip
line. The mixer is based on an anti-parallel diode pair (APDP) topology operating in a subharmonic
mode, thus relaxing the LO frequency requirement. APDP topology has the advantages of rejecting the
fundamental mixing product, suppressing AM noise in the LO signal and higher output spectral purity
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due to inherent rejection of even order mixing products [14]. Opposed to an active MMIC solutions,
passive mixer has zero power consumption, however at the expense of higher conversion loss.

The paper is organized as follows: Section 2 describes the used guiding structures and transition
circuits between them. Section 3 demonstrates the subharmonic mixer design, and Section 4 presents
the measured results. Conclusions are presented in the Section 5.

2. GUIDING STRUCTURES AND TRANSITIONS

2.1. Guiding Structures

The proposed mixer is realized on a silica glass block that incorporates both the PWW and microstrip
line. The former serves as an RF input for the mixer, and the latter contains planar circuitry and
IF/LO signal ports.

The vertical stack of the structure is shown in the Fig. 1. The PWW is created by placing metallic
walls on the top and the bottom of the silica glass substrate and creating rows of metallic posts along it.
The diameter and spacing between the posts are 100 µm and 200 µm, respectively. The parameters of
the silica glass substrate which were used in the design are: thickness 500µm, εr = 3.814@60 GHz and
tan δ = 0.000542@60 GHz. Microstrip line is realized by placing a thin film resin, serving as a substrate,
on top of the PWW’s metallic wall, as depicted in Fig. 1. Another layer of copper forming the signal
trace is placed on the resin’s top.

Figure 1. Top view and side view of the silica/resin stack and the blind-via apparatus (courtesy of
Fujikura).

Modal analysis of the PWW reveals that only TEm0 modes are supported, as other modes require
longitudinal current flow on the side walls, which is not possible due to their discontinuity [11]. Treating
the PWW as a rectangular waveguide with width a, height b and dielectric filling εr allows calculating
approximate cutoff frequencies of the TEm0 modes as follows:
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More accurate estimation of the fcmn requires calculating the effective PWW width which accounts
for the discontinuous side walls. The effective width usually lies between a and a − d where d is a
diameter of the post [11].

The designed PWW has a width of 1.5 mm which approximately results in fTE10 of 53 GHz and
fTE20 of 106 GHz. This configuration ensures monomode operation in the band of interest (81–86 GHz).

2.2. Transition Circuits

2.2.1. WR-10 to PWW

Air-filled rectangular waveguide is a common interface of various measuring equipment and antennas.
Transition from the WR-10 to the PWW is based on inserting a quarter-wave section between the
waveguides. Equivalent characteristic impedance of a waveguide can be calculated by use of the modified
power-voltage definition, which takes following form [15]
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This definition allows calculating waveguide characteristic impedance depending on its geometrical
size and type of the dielectric filling. If we denote Z1 and Z3 as characteristic impedances of the WR-10
and PWW, corresponding quarter-wave waveguide section should have a characteristic impedance of
Z2 =

√
Z1Z3 [16]. Once Z2 is known, physical size of the quarter-wave section can be derived from

Eq. (2). However, additional EM optimization is required to achieve desired performance as parasitic
inductances and capacitances arising from geometrical changes in the width and height between different
waveguides are not taken into account.

The designed transition including the physical dimensions is shown in Figs. 2(a) and 2(b).
Impedance of the matching section is controlled by changing the height and fixing the width.

(b)(a)

Figure 2. Horizontal and vertical cut of WR-10 to post-wall waveguide transition.

2.2.2. PWW to Microstrip

As outlined in the introduction, integration of microstrip line and post-wall waveguide has the advantage
of realizing waveguide circuits together with microstrip circuits in a compact structure. In order to
maximize the performance of each, it is necessary to minimize the insertion loss and ensure mono-mode
operation. At the same time, low-loss transition between the two is desired. For the microstrip line, it is
desirable to keep the thickness of the substrate low, in order to prevent excitation of higher-order modes
and minimize the amount of radiation [12, 17]. On the contrary, the loss of the rectangular waveguide
and PWW increases with decreasing thickness [13]. Therefore, the thickness of the PWW should be
optimized for low insertion loss as well as rejection of the higher order modes. The proposed two layer
structure (Fig. 1) is suitable for this purpose as the thickness requirements for both the microstrip line
and PWW can be simultaneously fulfilled on separate substrates.

Transition from PWW to microstrip line is realized by inserting a blind-via, connected to a
microstrip line, into the PWW’s substrate as depicted in Fig. 1. Blind-via works similarly as an E-plane
probe in an air-filled rectangular waveguide and is placed approximately λg/4 away from the PWW’s
wall.

CST simulated insertion loss and matching of the end-to-end transition (WR-10 to PWW to
microstrip) is shown in Fig. 3(a). Physical lengths of the WR-10 waveguide, post-wall waveguide
and microstrip line are 37 mm, 6 mm and 1 mm, respectively. The transition exhibits 0.8 dB of loss and
better than −15 dB matching in approximately 10 GHz of bandwidth. The resin substrate is the main
contributor to the total loss. Physical dimensions of the transition, with respect to the notation in the
Fig. 1, are as follows: Lmsl = 1000µm, Lvia = 300µm, Din = 100µm, Dout = 150µm, h = 450µm.
Transition circuits 2.2.1 and 2.2.2 were modelled and optimized in the CST Studio, using the time-
domain solver.

3. SUBHARMONIC MIXER DESIGN

The basic subharmonic mixer topology is shown in Fig. 3(b) and is similar to the ones employed in
[1] or [2]. Center frequencies for the RF, LO and IF signals are 83.5 GHz, 32.4 GHz and 18.7 GHz,
respectively. The mixer is based on anti-parallel diode pair (APDP) connection which is very suitable
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Figure 3. (a) Simulated end-to-end transition from WR-10 waveguide to PWW to microstrip line.
(b) Block diagram of the designed subharmonic mixer.

for subharmonic operation, as it inherently suppresses the fundamental mixing product as well as even
order mixing products and even harmonics of the LO [3]. APDP is formed by using two discrete Macom
MA4E1310 Schottky diodes. Dimension of each diode is approximately 330 µm × 660 µm. The total
capacitance and series resistance of the diode are 0.04 pF and 6 Ohm, respectively. The remaining diode
parameters used in the simulations were taken from data provided by Macom. The mixer was simulated
and optimized in Keysight ADS using the Harmonic Balance simulator together with Momentum EM
solver. The CST simulation result of the transition circuits was exported as a touchstone file and placed
in the RF port of the mixer in the Keysight ADS simulator.

The mixer circuitry contains matching networks, return paths, soldering pads, and probing pads.
The two λRF /4 transmission lines in the IF branch create an open circuit condition for the RF signal,
thus preventing its leakage into the IF port. The grounded λLO/2 stub serves as a DC return path
and a return for the LO signal, which improves the LO-to-IF isolation. The open-circuited λRF /4 stub
behind the diodes is a return path for the RF signal and prevents the leakage into the LO port. WR-10
RF input interface, with cutoff frequency above the IF and LO signals, inherently provides LO-to-RF
and IF-to-RF isolations. Furthermore, it provides an open circuit termination for the image frequency,
located at 46.1 GHz.

4. MEASUREMENTS

The manufactured mixer circuit is shown in Fig. 4. The total size of the silica glass structure (including
the PWW) is 12 × 4mm2. The size of the mixer circuit on it is approximately 2.2 × 2.7 mm2. The
two Schottky diodes were manually soldered using the Indalloy Solder Research Kit from Indium

Figure 4. Fabricated structure inserted into the waveguide transformer (without the diodes mounted).
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Figure 5. Block diagram and picture of the test setup.

(b)(a)

Figure 6. Measured and simulated RF and IF port matching. (a) RF port matching. (b) IF port
matching.

Corporation. The used solder type #42 (46Bi/34Sn/20Pb) together with the flux #5RA from the
kit have the advantage of low-temperature melting point, which reduces the thermal stress on the
diodes. Access to the LO and IF ports is via the ground-signal-ground-signal-ground (GSGSG) probing
interface with 150 µm pitch.

Conversion gain, impedance matching of the ports, and isolation measurements were performed.
The test setup is shown in Fig. 5. Results of the RF and IF port matching are shown in Figs. 6(a)
and 6(b). The higher measured RF return loss compared to the simulations could be attributed to an
imperfect tight contact between the milled waveguide transformer and the PWW. In fact, additional
CST simulations revealed that presence of air-gaps between the transformer (Fig. 2(a)) and the PWW
causes some deterioration of the impedance matching. A frequency offset in the tuning of the IF
matching network is likely due to an overestimated relative permittivity of the substrate.

For the conversion gain measurement, the W-band RF signal was generated by a Ku-band frequency
synthesizer followed by an active x6 frequency multiplier AFM6 75-110 which was connected to the
WR-10 waveguide attenuator Hughes 45726H-1000. This chain generated a −30 dBm W-band signal
which was fed into the input of the WR-10 to PWW transformer. Output power was verified with
the Erickson PM5 power meter. The injection of the LO signal and extraction of the IF signal was
via a Dual Infinity GSGSG probe from Cascade Microtech. Output power at the IF frequency was
measured with a spectrum analyzer. The measured and simulated conversion gain versus RF frequency
is shown in Fig. 7(a) and versus LO power in Fig. 7(b). Maximum conversion gain of −19.6 dB was
achieved at 86 GHz with 13.7 dBm of LO power. The narrow conversion gain bandwidth is mainly due
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(b)(a)

Figure 7. Measured and simulated conversion gain versus RF frequency and LO power.

to the narrow IF matching bandwidth as visible from the Fig. 6(b). Post-measurement analysis and
simulations revealed that the microstrip line connected to the blind via transforms an open-circuit input
impedance at the IF frequency to a low value. Subsequently, this affects the input impedance at the
IF port and makes it difficult to match over a wide bandwidth, due to the Bode-Fano limit. Therefore,
in the future design iterations, the microstrip line length from the blind via should be more carefully
adjusted to preserve an open-circuit impedance for the IF frequency. A frequency offset of the conversion
gain curve is due to the frequency offset of the IF matching network. The measured LO-to-IF isolation
was −19 dB. The simulated RF-to-LO and RF-to-IF isolations are −18.8 and −21 dB, respectively.
Simulated P1 dB compression point is +14dBm. A comparison of different W-Band subharmonic mixers
is in Table 1.

Table 1. Comparison of W-band subharmonic downconverting mixers.

Ref. Technology Gcnv,max [dB] RF [GHz] IF [GHz] PLO [dBm]
This work WR-10 + PWW + Microstrip −19.6 81–86 19–21.5 13.7

[5] WR-10 + Microstrip −22.3 85–95 9 10
[4] WR-10 + Q-MMIC −8 75–110 DC-18 10
[1] CPW −7 83–96 2–4 8.5

5. CONCLUSIONS

A W-band passive subharmonic mixer with post-wall waveguide interface was designed, manufactured,
and measured. The peak conversion gain of −19.6 dB was achieved at the RF frequency of 86 GHz with
13.7 dBm/32.4 GHz LO signal. The mixer was built on a silica glass structure where microstrip line
and post-wall waveguide have separate substrates. This arrangement allows minimizing the loss of both
guiding structures and ensures mono-mode operation. Integrating the silica-based post-wall waveguide
circuits with planar circuits based on thin film microstrip lines is suitable for designing future hybrid
millimeter-wave systems.
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