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Dispersion of Elastic Waves in an Asymmetric Three-Layered
Structure in the Presence of Magnetic and Rotational Effects

Rahmatullah I. Nuruddeen1, 2, *, Rab Nawaz1, and Qazi M. Z. Zia1

Abstract—The present paper investigates the propagation and dispersion of elastic surface waves in an
asymmetric inhomogeneous isotropic three-layered plate in the presence of magnetic field and rotational
effects. The skin layers are exposed to an external magnetic field force while the core layer is assumed
to be in a rotational frame of reference, which are perfectly bounded together with free-ends conditions.
The resultant displacements and shear stresses in the respective layers are derived analytically together
with the general dispersion relation. Further, the general dispersion relation is analyzed for some
physical cases of interest. Finally, the effects of the magnetic field, rotation, and electric field on the
propagation and dispersion of the present model are presented graphically.

1. INTRODUCTION

Wave propagation in elastic bodies has been extensively investigated long ago owing to its various
applications in many fields of sciences and engineering, including civil engineering, geology, earthquakes,
modern aerospace, automotive industries, and meta-materials among others, see [1–3]. Besides, some
of these studies were incorporated with external forces that affect the propagation of waves in the
respective bodies under consideration. The external forces can be due to the presence of magnetic
field forces [4–6], thermal or temperature presence [7–9], and gravitational force [10]. Furthermore,
other effects that play a part in an elastic wave propagation include the rotational effects [11, 12],
thermal stress [13], initial stress [14], voids presence [15], damping effects [16], and various structural
and material discontinuities [17, 18] just to mention a few. Of particular interest, multilayered elastic
structures [19, 20] have also been greatly examined in the literature due to their various applications such
as in sandwich plates, composite rods, layered laminates, photovoltaic panels, and beams considerations.
For instance, the harmonic wave determination in elastic sandwich plates was presented by Lee and
Chang [21], while the dispersion of elastic waves in a three-layered laminate which was considered to
be inhomogeneous was given by Kaplunov et al. [22]. Other studies comprise theories governing the
propagations in layered photovoltaic panels and laminated glass [23], buckling and bending analysis
of vibrating laminated composite and sandwich beams presented by Sayyad and Ghugal [24], the
determination of lowest motion modes of an elastic beam with varying layers given by Sahin et al. [25],
a layer-wise finite element analysis for laminated and composite plates by Belarbi et al. [26] and for
sandwich five-layered composite plate by Shishehsaz et al. [27]. Furthermore, regarding the influence
of some external forces on the propagation of waves in layered media, Jiangong et al. examined the
propagation of waves in magneto-electro-elastic inhomogeneous hollow cylinders in [28], and the same
investigation was carried out by Bin et al. [29] on elastic plates. In [30] by Mandi et al., an analytic
solution of Love wave travelling in a double layered media placed over an inhomogeneous half-space
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layer was determined in addition to the dispersion relation analysis, see also [31–36] and the references
therein for relevant studies.

However, in the present paper, the propagation and dispersion of elastic surface waves in an
asymmetric inhomogeneous isotropic three-layered plate in the presence of magnetic field and rotation
are investigated. The model is to be governed by an anti-plane motion with appropriate prescribed
interfacial and boundary conditions within and outside the plate under consideration. The skin layers
will be assumed in the presence of a magnetic field with the core layer in a rotational frame of reference.
The respective displacements, shear stresses, and general dispersion relation will be determined and
analyzed. Some physical cases of interest will be investigated from the general dispersion relation.
Additionally, the arrangement of the paper goes as follows. Section 2 presents the problem formulation,
and the problem-solution is given in Section 3. Section 4 reveals the Rayleigh-Lamb dispersion relation,
and Section 5 gives numerical results and discussion. Section 6 concludes the study.

2. FORMULATION OF THE PROBLEM

The general governing equation of motion in the presence of a magnetic field force in a homogenous
elastic media is considered to be [11, 12, 34–36]

∂σij

∂xj
+ �Fi = ρ

∂2ui

∂t2
, i = j = 1, 2, ..., (1)

where ρ is the density, and σij is the stress-strain relation given by

σij = λεkkδij + 2μεij , (2)

with λ and μ being the Lame’s elastic constants, δij the Kronecker delta, and εij the strain-displacement
relation given by

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Furthermore, �Fi is the magnetic force obtainable from the linearized Maxwell equations for
electromagnetic field of a conducting medium given by

Curl �H = �J × ε0
∂ �E

∂t
,

Curl �E = −μ0
∂ �H

∂t
,

Div �H = 0, Div �E = 0,

�E = μ0

(
∂�u

∂t
× �H

)
,

�h = Curl(�u × �H),

as follows [34–36]

�Fi = μ0H
2
0

(
∂e

∂xi
− ε0μ0

∂2ui

∂t2

)
, (3)

where �H = H0 + �h, �h is the induced magnetic field, ε0 the electric field permeability, μ0 the magnetic
permeability, and e = Δ�u, Δ the Laplacian operator. Additionally, in the rotating frame of reference,
the acceleration on the right hand side of Eq. (1) takes the following form [36]

∂2ui

∂t2
→ ∂2ui

∂t2
+ �Ω × (�Ω × �u) + 2�Ω × ∂�u

∂t
, (4)

where Ω is the angular velocity of the medium, and �Ω × (�Ω × �u) and 2�Ω × ∂�u
∂t are the centripetal and

Coriolis accelerations, respectively.
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Figure 1. Asymmetric three-layered plate.

However, the anti-plane shear motion [22] of an asymmetric isotropic three-layered plate as shown
in Figure 1 is considered; consisting of the lower skin layer of thickness h1, the core layer of thickness
h2, and the upper skin layer of thickness h3 (the skin layers are considered to be of the same material).
Also, the skin layers are subjected to an external force under the influence of the magnetic field �F , while
the core layer is assumed in a rotational frame of reference.

Let (x1, x2, x3) be a Cartesian coordinates system. Then, the anti-plane motion [22] in (x1, x2)
plane with displacements (u1, u2, u3) such that

u1(x1, x2, t) = 0, u2(x1, x2, t) = 0, u3(x1, x2, t) = u, (5)

is considered, where t is the time variable.
The equations of motions in the skin layers under the influence of the magnetic force from Eqs. (1)–

(3) are given by
∂σs

13

∂x1
+

∂σs
23

∂x2
= (ρs + ε0μ

2
0H

2
0 )

∂2us

∂t2
, s = l, u, (6)

for s = l, u standing for the lower and upper skin layers, respectively, and ρl = ρu.
Moreover, the equation of motion in the core layer with rotational effect from Eqs. (1), (2), and

(4) is given by
∂σc

13

∂x1
+

∂σc
23

∂x2
= ρc

(
∂2uc

∂t2
− Ω2uc

)
, (7)

where �Ω = Ω(0, 0, 1), that is, the core layer medium is assumed to rotate along x3 axis; the superscript
c denotes the core layer.

The shear stresses σr
j3, in Eqs. (6), (7) are obtained from Eq. (2) to be

σr
j3 = μr

∂ur

∂xj
, j = 1, 2, r = c, l, u, (8)

where μl = μu.
The continuity conditions between the layers are prescribed as follows

(i) ul (x1, x2, t) = uc (x1, x2, t) , at x2 = h1,

(ii) σl
23(x1, x2, t) = σc

23(x1, x2, t), at x2 = h1,

(iii) uc (x1, x2, t) = uu (x1, x2, t) , at x2 = h1 + h2,

(iv) σc
23(x1, x2, t) = σu

23(x1, x2, t), at x2 = h1 + h2,

(9)

and the traction-free boundary conditions on the outer faces of the skin layers as

(v) σl
23(x1, x2, t) = 0, at x2 = 0,

(vi) σu
23(x1, x2, t) = 0, at x2 = h1 + h2 + h3.

(10)
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3. SOLUTION OF THE PROBLEM

In this section, the formulated problem will be solved by first reducing the given partial differential
equations to suitable ordinary differential equations via the use of the harmonic wave solution
assumptions. The related displacements and shear stresses in the respective layers will also be
determined using the prescribed continuity and traction-free boundary conditions.

3.1. The Dynamics of the Skin Layers with Magnetic Effects

Substituting the stress equation given in Eq. (8) into Eq. (8), the following wave equation is obtained

∂2us

∂x2
1

+
∂2us

∂x2
2

=
(

1
c2
s

+
ε0μ

2
0H

2
0

μs

)
∂2us

∂t2
, s = l, u, (11)

where cs =
√

μs

ρs
is the transverse shear velocity for the skin layers.

Furthermore, a harmonic wave solution along x1 direction of the following form is assumed

us(x1, x2, t) = vs(x2)eik(x1−ct), s = l, u, (12)

where i =
√−1, k is the wave number, and c is the phase speed velocity. Thus, Eq. (11) is reduced to

d2vs

dx2
2

+ k2

(
c2

c2
s

+ R

)
vs = 0, s = l, u, (13)

where

R =
c2ε0μ

2
0H

2
0

μs
− 1.

The solutions to Eq. (13) in the lower and upper skin layers are respectively given as

vl(x2) = A1 cos

(
kx2

√
c2

c2
s

+ R

)
+ A2 sin

(
kx2

√
c2

c2
s

+ R

)
,

vu(x2) = B1 cos

(
kx2

√
c2

c2
s

+ R

)
+ B2 sin

(
kx2

√
c2

c2
s

+ R

)
.

(14)

where An, Bn, (n = 1, 2) are constants to be determined from the given conditions above.

3.2. The Dynamics of the Core Layer with Rotational Effects

Also, from Eqs. (7) and (8), the following wave-like equation is obtained

∂2uc

∂x2
1

+
∂2uc

∂x2
2

=
1
c2
c

(
∂2uc

∂t2
− Ω2uc

)
, (15)

where cc =
√

μc

ρc
is the transverse shear velocity for the core layer. Again, assuming the harmonic

solution along x1 direction in Eq. (15) of the form

uc(x1, x2, t) = vc(x2)eik(x1−ct), (16)

then Eq. (15) is reduced to
d2vc

dx2
2

+ k2

(
c2

c2
c

+ N

)
vc = 0, (17)

where

N =
Ω2

k2c2
c

− 1.
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Therefore, the solution of Eq. (17) of the core layer is given as

vc(x2) = C1 cos

(
kx2

√
c2

c2
c

+ N

)
+ C2 sin

(
kx2

√
c2

c2
c

+ N

)
, (18)

where C1 and C2 are constants to be determined from the given conditions above.

3.3. The Related Exact Displacements and Stresses

The related exact dimensional displacements and stresses in the lower skin layer, upper skin layer, and
core layer are respectively given as follows

ul = cos (kMsη2) ,

σl
13 = iμsk cos (kMsη2) ,

σl
23 = −μskMs sin (kMsη2) ,

(19)

uu = χ sec (h3kMs) cos (k (ξ2 − (h1 + h2 + h3))Ms) ,

σu
13 = iμskχ sec (h3kMs) cos (k (ξ2 − (h1 + h2 + h3))Ms) ,

σu
23 = −μskMsχ sec (h3kMs) cos (k (ξ2 − (h1 + h2 + h3)) Ms) ,

(20)

and
uc = cos (h1kMs) sin (kMc (h1 + ζ2)) − G sin (h1kMs) cos (kMc (h1 + ζ2)) ,

σc
13 = iμck (cos (h1kMs) sin (kMc (h1 + ζ2)) − G sin (h1kMs) cos (kMc (h1 + ζ2))) ,

σc
23 = μckMc (cos (h1kMs) cos (kMc (h1 + ζ2)) + G sin (h1kMs) sin (kMc (h1 + ζ2))) ,

(21)

where
χ = cos (h2kMc) cos (h1kMs) − G sin (h2kMc) sin (h1kMs) , (22)

over the interval,
0 ≤η2 ≤ h1,

h1 ≤ξ2 ≤ h1 + h2,

h1 + h2 ≤ζ2 ≤ h1 + h2 + h3.

(23)

Note that the exponential multiple eik(x1−ct) is omitted in Eqs. (19)-(21), while Mc,Ms and G are given
in the next section.

4. THE RAYLEIGH-LAMB DISPERSION RELATION

In this section, the Rayleigh-Lamb dispersion relation or rather the dispersion relation of the formulated
problem is derived and analysed for certain cases of interests.

4.1. General Dispersion Relation

To derive the general dispersion relation for the formulated problem, the continuity and traction-free
conditions prescribed in Eqs. (9), (10) coupled to the obtained solutions found in Eqs. (12) and (16)
via Eqs. (14) and (18) are considered. Therefore, the following system of homogeneous equations is
obtained:

Ax = 0, (24)

where x = (A1, B1, B2, C1, C2)T , and

A =

⎛
⎜⎜⎜⎝

0 cos (klMs) sin (klMs) − cos (klMc) − sin (klMc)
− cos (kh1Ms) 0 0 cos (kh1Mc) sin (kh1Mc)

0 G sin (klMs) −G cos (klMs) − sin (klMc) cos (klMc)
G sin (kh1Ms) 0 0 − sin (kh1Mc) cos (kh1Mc)

0 − sin (khMs) cos (khMs) 0 0

⎞
⎟⎟⎟⎠ , (25)
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where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l = h1 + h2, h = h1 + h2 + h3,

Ms =

√
c2

c2
s

+ R, Mc =

√
c2

c2
c

+ N,

G =
Msμs

Mcμc
.

(26)

Therefore, from the 5 × 5 matrix given in Eq. (25), the general dispersion relation is obtained as
follows:

tan (h1kMs) tan (h3kMs) − Mcμc

Msμs
cot (h2kMc) (tan (h1kMs) + tan (h3kMs)) =

(
Mcμc

Msμs

)2

. (27)

The general dispersion relation in Eq. (27) is the needed dispersion relation posed by the formulated
problem under consideration for the propagation of Rayleigh waves in an asymmetric three-layered
inhomogeneous structure in the presence of some effects as described earlier. However, the general
dispersion relation given in Eq. (27) is analyzed in the subsequent subsection.

4.2. Some Cases of the Dispersion Relation

Here, the obtained general dispersion relation is analyzed by studying both the symmetric and
antisymmetric structure cases. Also, the situations with and without magnetic and rotational effects
will be investigated.

4.2.1. Symmetric Structure

Consider a symmetric structure, which can be seen from Figure 1 when the skin layers are assumed to
be of the same length. Thus, h1 = h3 is set in Eq. (27) to obtain the corresponding dispersion relation
for the symmetric structure as follows:

tan2 (h1kMs) − 2
(

Mcμc

Msμs

)
cot (h2kMc) tan (h1kMs) =

(
Mcμc

Msμs

)2

. (28)

Case one:

If R → 0 and N → 0, then the symmetric dispersion relation given in Eq. (28) is reduced to:

tan2

(
k

c

cs
h1

)
− 2

(
csμc

ccμs

)
cot
(

k
c

cc
h2

)
tan

(
k

c

cs
h1

)
=
(

csμc

ccμs

)2

. (29)

Case two:

If H0 → 0, Ω → 0, μs → μc → μ, and ρs → ρc → ρ, that is, in the absence of magnetic field and
rotation, and also assuming the layers to be of the same materials, the symmetric dispersion relation
given in Eq. (28) is reduced to:

tan2

(
h1k

√
c2

c2
1

− 1

)
− 2 cot

(
h2k

√
c2

c2
1

− 1

)
tan

(
h1k

√
c2

c2
1

− 1

)
= 1, (30)

where c1 =
√

μ
ρ .

Case three:

If H0 → 0 and Ω → 0, that is, in the absence of magnetic field in the skin layers and rotation in
the core layer, the symmetric dispersion relation given in Eq. (28) is reduced to:

tan2

(
h1k

√
c2

c2
s

−1

)
−2
(

μccs

μscc

)√
c2−c2

c

c2−c2
s

cot

(
h2k

√
c2

c2
c

−1

)
tan

(
h1k

√
c2

c2
s

−1

)
=

c2
s

(
c2−c2

c

)
μ2

c

c2
c (c2−c2

s) μ2
s

. (31)
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4.2.2. Antisymmetric Structure

We analyse the obtained antisymmetric dispersion relation given in Eq. (27) for the following special
cases:

Case one:

If R → 0 and N → 0, then the antisymmetric dispersion relation given in Eq. (27) is reduced to:

tan
(

h1
c

cs
k

)
tan

(
h3

c

cs
k

)
− csμc

ccμs
cot
(

h2
c

cc
k

)(
tan

(
h1

c

cs
k

)
+ tan

(
h3

c

cs
k

))
=
(

csμc

ccμs

)
2. (32)

Case two:

If H0 → 0, Ω → 0, μs → μc → μ, and ρs → ρc → ρ, that is, in the absence of magnetic field
and rotation, and also assuming the layers to be of the same materials, the antisymmetric dispersion
relation given in Eq. (27) is reduced to:

cot

(
h2k

√
c2

c2
1

− 1

)(
tan

(
h1k

√
c2

c2
1

− 1

)
+ tan

(
h3k

√
c2

c2
1

− 1

))

= tan

(
h1k

√
c2

c2
1

− 1

)
tan

(
h3k

√
c2

c2
1

− 1

)
− 1,

(33)

where c1 =
√

μ
ρ .

Case three:

If H0 → 0 and Ω → 0, that is, in the absence of magnetic field in the skin layers and rotation in
the core layer, the antisymmetric dispersion relation given in Eq. (27) is reduced to:

μccs

μscc

√
c2 − c2

c

c2 − c2
s

cot

(√
c2

c2
c

− 1h2k

)(
tan

(
h1k

√
c2

c2
s

− 1

)
+ tan

(
h3k

√
c2

c2
s

− 1

))

= tan

(
h1k

√
c2

c2
s

− 1

)
tan

(
h3k

√
c2

c2
s

− 1

)
− c2

s

(
c2 − c2

c

)
μ2

c

c2
c (c2 − c2

s)μ2
s

.

(34)

5. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results and their interpretations are demonstrated. These involve the analysis
of the obtained displacements and shear stresses of the formulated problem given in Eqs. (19)–(21)
and the general dispersion relation given in Eq. (27). Mathematica software is adopted for the present
numerical simulations and also makes use of cq as μq/ρq for our convenience. In this regard, the
inhomogeneous plate is considered to have the following thicknesses in the respective layers: the lower
skin layer h1 = 6m, the core layer h2 = 10 m, and the upper skin layer h3 = 8 m, and also fixed k = 0.01.
Further, the following values for c (speed of light is considered), μ0 (magnetic permeability), and ε0

(electric field permeability) are considered as follows [13]

c = 2.998 × 108 ms−1, μ0 = 4π × 10−7, ε0 = 8.85 × 10−12. (35)

Moreover, the upper and lower skin layers are assumed to be of copper materials with the following
material properties [34]

ρs = 8.954 × 103 Kgm−3, μs = 3.86 × 1010 Pa, (36)

while the core layer is of aluminum material with the following material parameters [35]:

ρc = 2.66 × 103 Kgm−3, μc = 2.46 × 1010 Pa. (37)



172 Nuruddeen, Nawaz, and Zia

Figure 2. Variation of the displacement vl in the lower skin layer given in Eq. (19) with variation of
magnetic field.

Figure 3. Variation of the shear stress σl
23 in the lower skin layer given in Eq. (19) with variation of

magnetic field.

Figures 2 and 3 give the variations of the displacements and shear stresses in the lower skin layer with
respect to the space variable x2, in the presence of magnetic field H0. The displacements start off from
1, while the shear stresses start from 0 and gradually oscillate periodically with uniform wavelengths
and amplitudes; however, these can be seen clearly on a broader interval of x2. Further, it is observed
that both the displacement and shear stress decrease with respect to the space variable x2 with an
increase in magnetic field, and at the side time a significant increase in the respective amplitudes is
noted.

In Figures 4 and 5, the variations of the displacements and shear stresses in the upper skin layer
with respect to the space variable x2 in the presence of variation of magnetic field H0 with fixed rotation
Ω = 1 × 106 are depicted. The wave displacements and shear stresses move periodically with uniform
wavelengths and amplitudes. Also, it is observed that both the displacement and shear stress increase
with respect to the space variable x2 with an increase in magnetic field and at the same time with a
decrease in the respective wavelengths.

In Figures 6 and 7, the variations of the displacements and shear stresses in the core layer with
respect to the space variable x2 in the presence rotation Ω with fixed value of magnetic field, i.e.,
H0 = 1×106, are shown. It is observed that both the displacement and shear stress decrease periodically
with respect to the space variable x2 with an increase in rotation.

Figure 8 displays the variation of the dimensional dispersion relation given in Eq. (27) with respect
to the rotation with variation in magnetic field. It is noted that an increase in magnetic field results
in a decrease of the dimensional dispersion relation curves with respect to the rotation. In Figure 9,
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Figure 4. Variation of the displacement vu in the upper skin layer given in Eq. (20) with variation of
magnetic field.

Figure 5. Variation of the shear stress σu
23 in the upper skin layer given in Eq. (20) with variation of

magnetic field.

Figure 6. Variation of the displacement vc in core layer given in Eq. (21) with variation of rotation.

increase in rotation produces an increase in the dispersion relation curves with respect to the magnetic
field. It is also noted here that the dispersion relation curves decrease continuously with an increase in
magnetic field.

In Figure 10, the variation of the general dispersion relation given in Eq. (27) with respect to
the magnetic field with variation in electric field with Ω = 1 × 106 is shown. Figure 11 depicts the
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Figure 7. Variation of the shear stress σc
23 in the core layer given in Eq. (21) with variation of rotation.

Figure 8. Variation of the dispersion relation given in Eq. (27) with respect to the rotation with
variation in magnetic field.

Figure 9. Variation of the general dispersion relation given in Eq. (27) with respect to the magnetic
field with variation in rotation.

variation of the same dispersion relation with respect to the rotation with variation in electric field at
H0 = 1 × 109. In the plots in Figures 10 and 11, the dispersion relation is noted to decrease with an
increase in electric field. However, dispersion relation curves are seen decreasing continuously with an
increase in magnetic field in Figure 10, while opposite trend is observed in Figure 11 with an increase
in rotation.
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Figure 10. Variation of the general dispersion relation given in Eq. (27) with respect to the magnetic
field with variation in electric field.

Figure 11. Variation of the general dispersion relation given in Eq. (27) with respect to the rotation
with variation in electric field.

6. CONCLUSION

In conclusion, the present paper investigates the propagation and dispersion of elastic surface waves in an
asymmetric inhomogeneous isotropic three-layered plate in the presence of magnetic field and rotation.
The model is governed by an anti-plane equation of motion with prescribed continuity (interlayer) and
free-ends conditions within and outside the plate, respectively. The skin layers are exposed to magnetic
field force while the core layer is considered to be in a rotational frame of reference. The respective
displacements, shear stresses, and general dispersion relation have been determined and analyzed. Some
physical cases of interest in regards to the general dispersion relation are also investigated. Further, the
obtained quantities alongside the general dispersion relation are examined numerically; the fundamental
mode of the general dispersion relation is considered for the examination. Lastly, the presence of a
magnetic field in the skin layers and rotation in the core layer are noted to greatly affect the dispersion
of elastic waves in the plate. However, it is worth mentioning here that variations in the displacements
and shear stresses (excluding the lower skin layer) and on the other hand in the general dispersion
relation are only observed for higher values of rotation Ω ≥ 1 × 106 unlike what is obtainable in most
of the literature; this could be because the rotation is only assumed in the core layer.
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