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A Numerical Simulation System for Mobile Telephony Base Station
EMF Exposure Using Smartphones as Probes and a Genetic

Algorithm to Improve Accuracy
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Abstract—With the increasing number of mobile phone users, new services, and mobile applications,
the proliferation of radio antennas has raised concerns about human exposure to electromagnetic waves.
This is now a challenging topic to many stakeholders such as local authorities, mobile phone operators,
citizen, and consumer groups. Thus, the prediction of exposure map at urban scale is a very important
requirement to find a relevant indicator of the real exposure. In this paper, we propose a monitoring
solution for electromagnetic field (EMF) exposure based on a numerical modeling of the radio wave
propagation radiated by mobile telephony base stations. The accuracy of this tool directly depends on
the input data precision, such as location of base station antennas or their radiation pattern, which
are often poorly known. These data are therefore refined by an optimization algorithm fed by a lot
of information, such as the indication of the received signal strength (RSSI) measured directly from
users’ smartphones, which are used as probes. Results show that this method significantly improves
the precision of unknown data concerning mobile base stations and the accuracy of exposure maps at
urban scale.

1. INTRODUCTION

Since the emergence of the first cellular networks in the 1990s, the mobile communications market has
grown steadily to reach today almost 5 billion users worldwide (see Figure 1).

To meet this demand, the infrastructures of mobile phone operators are constantly evolving. In
particular, new transmitters are regularly installed, on the one hand to cope with increasing traffic,
and on the other hand depending on the evolution of the technologies or frequency bands used. The
exponential increase in radio frequency transmitters naturally causes concern among citizens about the
potential harm of the generated waves on their health, although to date no studies have proven any
health effects. Thus, monitoring of peoples exposure to electromagnetic waves from mobile telephone
base stations is increasingly of interest to local communities, in order to communicate with residents or
enforce local exposure regulations. This can be achieved from intense measurement campaigns [1–3], but
the corresponding data quickly become outdated due to the constantly evolving network. Furthermore,
this would be very expensive for a large number of measurements spots and for the numerous technologies
and frequencies.

On the other hand, numerical simulation gives accurate results at large scale and in every
location [4, 5]. Nevertheless, it needs a precise antenna description (location, power, radiation pattern
. . .). This information is sometimes accessible in the public domain, as in [6] managed by the ANFR
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Figure 1. Evolution of the number of mobile phones users in the world.

(FRequency Nationnal Agency) in France. Unfortunately, it is very partial and inaccurate, and all the
needed parameters for a numerical modeling are not furnished.

In this paper, the proposed idea consists in using smartphones as cheap but ubiquitous power
sensors, in order to enhance the accessible data concerning BTS’ (Base Transceiver Station) emitters
from georeferenced information such as received power levels provided by the smartphones deployed
in the environment. The simultaneous and complementary use of smartphone data and numerical
modeling tool should give, via optimization and statistical process, the real and full characteristics of
the antennas. Thus, it would become possible to produce continuous updated exposure maps at urban
scale.

This article is structured as follows. Section 2 presents the general principle of the proposed
monitoring system. Then Section 3 deals with the definition of several criteria used in the literature
to compare measured and simulated data, and concludes on the proposed ones in this study. Section 4
is dedicated to the presentation of the optimization algorithm, used to determine the unknown input
data (antenna location, . . .) in order to optimize the criteria presented in Section 3. The theoretical
validation of the monitoring system will be demonstrated in Section 5 on degraded pure numerical
cases. Then, real data measured on smartphones are used in Section 6 to test the performance and
the robustness of the proposed system in realistic conditions. Finally, conclusions and perspectives are
provided in Section 7.

2. PRINCIPLE

As shown in Figure 2, the proposed monitoring system is based on three tools:

• Vigiphone: a smartphone application developed on Android by the CSTB (Scientific and Technical
Center for Building) to get and store georeferenced information of received power level;

• an optimization algorithm to estimate the real characteristics of the antennas;
• MithraREM: a software to predict radiowave propagation in realistic environment, based on

Geometric Optic and Uniform Theory of Diffraction.

The inputs of the system are the 3D geometrical data of the propagation environment and the
partially known antenna parameters, such as the location, height, electric and mechanic tilts, radiation
pattern, and emitted power. At the same time, a set of measurements are realized from the smartphones
present in the environment. Then the measured and simulated data feed the optimization algorithm
which tries to determine the unknown antenna parameters in a way that simulated data fit the measured
ones as well as , whereas new measured data from smartphones are continuously injected. By this way,
the objective is to compensate the relatively bad quality of each node (smartphone) with their large
number.
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Figure 2. Principle of the monitoring system.

As a proof of concept [7], Figure 3 shows the comparison between measured RSSI from a 2G
antenna and the corresponding simulated result, obtained in the case of a perfect knowledge of the
antenna characteristics. A very good agreement can be observed.

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

 0  200  400  600  800  1000  1200  1400  1600

le
ve

l (
dB

m
)

distance (m)

RSSI on smartphone
simulation

RSSI saturation level due to Android API

(a) (b)

Figure 3. Proof of concept: (a) Measurement route with transmitter in red, (b) RSSI versus simulated
power.

The optimization algorithm needs a criterion in order to estimate the level of similarity between
measured and simulated signals. In the next section we present a quick state of the art of the different
criteria used in the literature for comparing measured and simulated signal strength. Then we present
those used for the proposed monitoring system of the EMF exposure.

3. COMPARISON CRITERIA

To establish a pertinent criterion of comparison between simulation and measurement, in any exposition
configuration, is not a trivial thing. Indeed, the evolution of a single parameter can impact on different
criteria in a contradictory way, an objective conclusion being difficult to take in this case.

In literature, the different criteria of similarity measurement are divided into two families, i.e., error
type criteria and link type criteria.
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3.1. Error Type Criteria

These criteria are based on the distance between two signals, i.e., in the concerned application simulation
and measurement. From here we denote X and Y as two data vectors (measured and simulated) of N
length. Table 1 presents the three main error type criteria used in the literature.

Table 1. Main error type criteria.

ME SDE RMSE

1
N

∑N
i=1 Xi − Yi

σX − σY

where σX =
√

1
N

∑N
i=1(Xi − X)2

and X is the mean value of X

√
1
N

∑N
i=1(Xi − Yi)2

First, the mean error criterion ME is the mean of the difference between X and Y . Second, the
standard deviation error criterion SDE measures the difference between the standard deviations of the
two signals. Finally, the root mean square error criterion RMSE is the root square of the square error
between X and Y .

3.2. Link Type Criteria

These criteria, contrary to the precedents, are not interested in the absolute values of the signals but in
the shape relation between them. They are usually based on a correlation measurement. Table 2 shows
the two main ones.

Table 2. Main link type criteria.

Pearson correlation Spearman correlation

P =
Cov(X, Y )

σXσY

with Cov(X, Y ) =
1

N

N∑
i=1

(Xi − X)(Yi − Y )

S = 1 − 6
∑N

i=1 (r(Xi) − r(Yi))
2

N3 − N

where r(Xi) is the rank of the ith value of signal X

in its sorted distribution

The Pearson’s correlation coefficient P between two signals X and Y corresponds to the ratio of
their covariance and the product of their standard deviation. It is a measure of the linear relation
between X and Y . However, depending on the variability of the data, the use of this criterion can
lead to wrong conclusions, because it is more dedicated to normal distributed data with no outliers.
This criterion is not adapted to every exposure configurations, because of the strong variability of the
electric field. Indeed, the multipath phenomena can lead to observe very strong and weak values at a
few distance between two observation points.

The Spearman’s correlation is an alternative to this problem. The Spearman’s coefficient S is the
Pearson’s correlation applied to the samples’ rank. It analyses the relation between the samples rank,
allowing to detect the existence of monotonic relations whatever their shape. Unlike Pearson coefficient,
it is not interested in the value of the sample but in its rank, which avoids errors due to outliers. Thus,
it can also be used with signals presenting nonlinear relations.

3.3. Proposed Criteria

It is risky to only trust a single quality indicator to estimate a model. It is the reason why, in the
literature, most of the methods to compare measurements and simulations are based at least on two
criteria.

In [8], authors used ME and RMSE to compare measurements and simulation in 2G signals context.
In [9], authors used SD and P in addition of ME and RMSE to study the potential interference between



Progress In Electromagnetics Research B, Vol. 87, 2020 115

LTE and WiFi signals. In [10], the SD and S are used to evaluate simulations according to measurements
in the context of exposure to telephony base stations.

For this set of applications, at least two criteria have been used to evaluate performances of
simulated results. However, in some cases concluding on a comparison may become difficult, because
the two criteria may give opposite indications. For instance the standard deviation error may decrease
while the correlation decreases. This highlights the importance of well choosing the used criteria, and
have driven us to consider, in addition to classical criteria previously presented, new ones combining
their respective avantages.

In this study, we consider the following criteria:

• Standard deviation error SDE : as a reference one because of its classical use in existing studies.
This criteria has to be minimized by the optimization algorithm;

• Pearson’s correlation coefficient P : it avoids the impact of a change in the power radiated by the
base station. This last one can be found in post-treatment by minimizing the standard deviation
between mesurements and simulations. This criteria has to be maximized;

• Spearman’s correlation coefficient S: it avoids the problem of outliers. This criteria has to be
maximized;

• Hybrid criterion PH defined as:
PH = (1 − P )RMSE (1)

The idea is to add the respective advantages of the error type and link type criteria. But as it was
previously shown, the evolution of a parameter set can drive, at the same time, to both correlation
and error increase. So this particular criterion consists in jointly optimizing the two indicators. It
has to be minimized;

• Hybrid criterion SH defined as:
SH = (1 − S)RMSE (2)

This is the same approach as PH but with the Spearman correlation. This criterion has to be
minimized;

The next section presents the proposed optimization algorithm used to optimize the previous
criteria.

4. OPTIMIZATION ALGORITHM

An optimization method aims at minimizing/maximizing an objective function, as those presented
in Subsection 3.3. In our case it consists in finding, from the badly known public data, the real
characteristics of a base station antenna, namely:

• its 2D horizontal location (longitude, latitude);
• its height;
• its mechanical tilt;
• its radiation pattern (including electric tilt);

In the literature, there are a lot of optimization methods. A first family is based on the knowledge
of an analytical formulation of the objective function. The idea is then to found the local optimum
with a gradient descend method, as for conjugate gradient method such as Marquadt, by choosing the
descent successive directions and an optimal step in each direction. These methods are iterative and
need the numerical value of the objective function at a given point, but also of the gradient, or even
the hessian matrix. This information is computed independently of the algorithm. To converge these
methods need to be well initialized, i.e., not too far from the global optimum, otherwise it presents the
drawback to converge to a local optimum.

In our application, we do not have any analytical model which provides the objective function
value from a set of input parameters. Furthermore, the purpose is not to find a local optimum, but the
global one. The satisfactory resolution of an optimization problem which contains a large number of
sub-optimal solutions, often justifies the use of the second family of methods, the meta-heuristic.
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A meta-heuristic is an optimization algorithm to solve complex problems for which there is no
efficient conventional solution. It is usually at least partially stochastic, allowing to explore all the
solution’ space, and doesn’t need the derivative of the objective function. The three main meta-
heuristics methods are the simulated annealing, the swarm of particles and the genetic algorithms.
The simulated annealing is efficient to solve complex problem when there is no local optimum. In our
case with numerous local optima it is too dependent on the initial parameter set. The main drawback
of the swarm particles is its premature convergence, which also potentially leads to a stagnation around
local optimum.

So the retained method is based on a genetic algorithm, able to converge to the global solution.
Genetic algorithms are stochastic optimization methods reproducing natural selective mechanisms which
have already shown their efficiency in similar application contexts as in [11]. Figure 4 shows the synoptic
of the proposed genetic algorithm.

Crossing/Mutation

Best parameters

Selection

Evaluation of the
objective function

Start

Stop ?

Initial population

No

Yes

Fusion

of the antenna

Figure 4. Synoptic of the proposed genetic algorithm.

The algorithm is randomly initialized with a population of potential solutions. The performances
of these solutions are then evaluated by the objective function, and on this basis, a new population is
generated by using evolutional operators: selection, crossing, mutation and fusion. This cycle is iterated
until an acceptable solution is found or the maximum iterations number is achieved.

4.1. Parameter Coding and Search Domain

4.1.1. 3D Location and Orientation of the Antenna

The three first parameters to optimize (2D location, height, and mechanical tilt) are coded as numerical
variables, either continuous (2D location and height) or discrete (mechanic tilt, with a one degree
sampling). Their search intervals are directly derived from the uncertainty of their corresponding
public data provided by [6], which are the following:

• location of the base station : 30m;
• base station height: 2m;
• mechanical tilt: ranging from 0 to 12◦.

The azimuth of the antenna is considered as a known input, as it is available in the public databases.

4.1.2. Radiation Pattern (Including Electric Tilt)

Concerning the radiation pattern, a database of the different antennas (and their occurrence) used by
the French telecom operators has been built from previous global exposure simulations in large areas.
From this (anonymized) input, statistical parameters of antennas are extracted: horizontal aperture,
vertical aperture, and electrical tilt. Table 3 shows the 2G & 3G antennas data in the Paris area:
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Table 3. Statistical characteristics of 2G-3G antennas in Paris, France.

Variable Average RMS
Electrical tilt −5.6 3.1

Vertical aperture 11.0 11.0
Horizontal aperture 64.2 22.5

Gaussian laws are created from these statistical parameters. In order to randomly select a radiation
pattern, electrical tilt, horizontal and vertical apertures are randomly drawn using these normal laws.
Then the diagram with the closest parameters to the drawn ones is selected. If the selected diagram
parameters are too diverging from the drawn parameters, it is rejected and another draw is done.

The “distance” between the horizontal Δϕ and vertical Δθ drawn aperture parameters and those
of diagram in the database Δϕi and Δθi is given by the formula:

2 |Δθ − Δθi| + 1
2
|Δϕ − Δϕi| (3)

The error on the vertical aperture is amplified compared to the error on the horizontal aperture to
account for more directional main beam in the vertical plane for outdoor BTS. If this distance exceeds
5 (in degrees) or if the electrical tilt does not exist in the database, the sample is rejected. This diagram
selection is done in order to have real diagrams (with secondary lobes) from existing real antennas. It
could not be achieved by creating numerical diagrams with the given parameters.

4.2. Initialization

An iso-surface stratified sampling is used to draw the 2D location of the antenna. This is better than
choosing purely random locations in the full search domain around the theoretical one (the one provided
by ANFR) because it ensures a quasi homogenous distribution of the potential locations within this
search domain. This is illustrated in Figure 5.

Theoretical location (public data)
Real location
Initial population

30 m

Research area

Figure 5. Iso-surface stratified initialization.

The radius of the search domain is first divided in several sub-radii. Each sub-radius is then divided
in several angular sectors of equal area inside of which the initial population of potential locations is
randomly chosen.

Then height and tilt are uniformly initialized in their respective ranges of uncertainties around
their theoretical values, i.e., [−1m, 1m] and [0, +12◦].

Finally, radiation patterns are initialized with the method presented in Subsection 4.1.
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4.3. Evaluation of the Objective Function

In our application, the objective function evaluation corresponds to the simulation of the different
links between the current population (a set of potential base station antennas) and the set of
receivers corresponding to the smartphone measurements. Its evaluation leads to the computation
of a scalar value, called score in the following, corresponding to one criterion among those presented in
Subsection 3.3. Each simulation is performed using Mithra-REM tool which is a ray-based simulator
relying on Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD). It takes into account
all diffractions on top of the buildings from the emitter to the receiver and a given number of reflections
on building walls (typically 1 to 2) to ensure good path loss estimation.

4.4. Selection

The selection step consists in choosing some elements in the current population which will be used to
generate the new population at the next iteration. There are mainly four selection techniques:

• elitist selection: it consists in selecting the best elements, i.e., the ones which provides the best
score values, so the best values of the objective function. Having a lot of local optimums, this
method is not a good one because it quickly leads to a stalled algorithm around a local optimum;

• Russian roulette: each element of the population has a probability to be selected, proportional to
its score value. Thus the best elements are always privileged. As for the elitist selection, this leads
to quickly converge to a local optimum without exploring all the search domain;

• uniform selection: all the elements have the same probability to be selected. As a consequence
there is a non-null probability at each iteration to select only bad (low score value) or good (high
score value) elements. Both cases would mislead the algorithm since an heterogenous population
is a mandatory condition to ensure a good exploration of the search domain.

• simulated annealing: this technique gives a significant probability of selecting bad elements,
specifically in the first iterations, to ensure good exploration and avoid quick convergence to a local
minimum. But as the number of iterations increases, the probability of selecting bad elements lowers
(the name is an analogy to annealing in metallurgy, when the cooling of a material progressively
reduces the possibility to change its internal structure).
Be Sni the normalized score of the ith element, defined by:

Sni =
score(i)

Npop∑
j=1

score(j)

(4)

with Npop is the number of elements in the population. The ith element will be selected if e−δ/T > ξi,
with ξi an uniformly distributed value between 0 and 1, and δ = 1 − Sni . The lower the T (the
“temperature”) value, the less likely the bad elements are to be selected, as it is illustrated in
Figure 6(a).
The principle of simulated annealing is to decrease the T parameter according to the iterations to
start from a quasi uniform selection (T � 1) to a quasi elitist one (T � 1). From iteration i to
iteration i + 1, T decreases with the following law: Ti+1 = rate × Ti with 0 < rate < 1. If rate is
close to 1, there is a slow decrease in the panning of the solution space, i.e., bad elements keep a
significant probability to be chosen. In this case the algorithm behavior remains close to the one of
a uniform selection for a long time. If rate is close to 0, the exploration capacity decreases rapidly
and the algorithm behavior quickly becomes close to the elitist selection one. Initial T and rate
values are key parameters which have to be adjusted according to the specific configuration under
consideration.

In the proposed algorithm, we consider a total population of 150 elements from which 66% (i.e., 100)
are selected at each iteration by considering the simulated annealing approach with an initial T (Tinit)
and rate values experimentally fixed to 1 and 0.99 respectively. Furthermore, the relatively high rate
value is compensated by the fact that at each iteration, 5% of the selected elements are automatically
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Figure 6. Probability to choose element with Sni score according to (a) T , (b) Npop for Tinit = 1 and
rate = 0.99.

chosen and corresponds to the best elements of the population. In this way a good variety of the
population is ensured by mixing best elements with bad ones.

4.5. Crossing/Mutation strategies

The diversity of the population must be maintained over the generations in order to explore as widely as
possible the space of the solutions. This role is mainly that of crossing and mutation operators [12, 13],
which are used to generate new elements (children) from randomly chosen couple of elements into the
selected ones (parents). The proposed algorithm has three crossing/mutation options that alternate
over iterations. The probability to cross/mutate a specific parameter of a couple of candidate base
station antennas, following a uniform distribution between 0 and 1, differs according to each option as:

• Option 1:
– 2D location (longitude, latitude): 50%;
– Height: 16.66%;
– Radiation pattern: 16.66%;
– Vertical tilt: 16.66%.

• Option 2:
– 2D location (longitude, latitude): 50%;
– Height: 25%;
– Radiation pattern: 25%.

• Option 3:
– 2D location (longitude, latitude): 100%.

In all cases, the probability to cross/mutate the 2D location is the highest one, firstly because of
the high sensitivity of the objective function to this parameter [4], and secondly of its search domain
which is the highest one. Whatever the option, the treatments applied according to chosen parameters
are:

• 2D location: be loci a uniformly distributed random value between 0 and 1.
– if loci < 0.5, the latitude parameters of the two parents are crossed;
– if loci ≥ 0.5, the longitude parameters of the two parents are mutated.

• height: be hi a uniformly distributed value between 0 and 1.
– if hi < 0.5, the heights of the two parents are crossed;
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– if hi ≥ 0.5, the heights of the two parents are mutated.
• vertical tilt: be ti a uniformly distributed value between 0 and 1.

– if ti < 0.5, the tilts of both parents are permuted;
– if ti ≥ 0.5, new tilts are chosen for both parents, from a Gaussian law with mean and standard

values corresponding to the known antenna data bases (cf. Section 4.1.2).
• radiation pattern: be rpi a uniformly distributed value between 0 and 1.

– if rpi < 0.5, the radiation patterns of both parents are permutated;
– if rpi ≥ 0.5, new radiation patterns are chosen for both parents, as presented in Section 4.1.2.

4.5.1. Crossing of 2D Location and Height

An example of crossing between two parents is illustrated in Figure 7, in the case of a chosen longitude
parameter. The child is built by incorporating the selected parameter (longitude in this example) of
the first parent into the second parent set of parameters instead of its initial value. It is important to
note that for the crossing step, the 2D search domain is divided into several circular cells of 1 meter
radius. Then each crossing between two parent elements is achieved into the same cell, in order to avoid
a quick convergence to a local extremum and so to ensure a good exploration of the search domain.

Parent 2Parent 1

Child

Crossing

Latitude 1 Tilt 1 Latitude 2 Height 2 Tilt 2

Tilt 2

Longitude 1 pattern 1
Radiation Longitude 2 pattern 2

Radiation

pattern 2
RadiationHeight 2Longitude 1Latitude 2

Height 1

Figure 7. Example of 2D location crossing.

4.5.2. Mutation of 2D Location and Height

Mutation operator gives to genetic algorithms the ergodicity property of space travel [14, 15]. Following
the strategy proposed by Michalewiz [16], it consists in perturbing the value of the selected parameter
(latitude, longitude or height), not with a simple Gaussian noise, but by decreasing the level of
perturbation along the iterations, still in order to well explore the search domain in the beginning
of the algorithm and then to focus only on the best elements. Let x be the initial value of the parameter
to mutate and η be a uniformly distributed value between 0 and 1. The mutated value x′ of x is defined
as follows:

x′ =
{

x + Δ(max(x) − x) si η < 0.5
x − Δ(x − min(x)) si η ≥ 0.5 (5)

where max(x) and min(x) are given in Subsection 4.1, and

Δ(y) = r.y.

(
1 − t

NMaxIter

)b

with

⎧⎪⎨
⎪⎩

r : random value uniformely distributed between 0 and 1.
t : current iteration number.

NMaxIter : maximal number of iterations.
b : exposant empirically fixed to 5.

(6)
Figure 8 illustrates the mutation step in the case where height parameter was selected.

4.6. Fusion

This step consists in choosing, among the child elements generated by the selection and
crossing/mutation steps, the ones which will be introduced into the population at the next iteration of
the algorithm, instead of their parents. Two approaches are followed along the iterations:
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Parent

Mutation

Child

Height 1Longitude 1 pattern 1
Radiation

Longitude 1Latitude 1 Tilt 1 pattern 1
RadiationHeight 2

Latitude 1 Tilt 1

Figure 8. Example of height mutation.

• During the first one-third of the iterations, the child parameter set replaces the parent one if the
two following conditions are fulfilled:

– the value of the objective function (Sni) is better than the one of the parent;
– the euclidian 2D distance between the parent’s and child’s locations is less than 50 cm.

• During the last third of the iterations, the parent which has an Sni value less than its child one
is automatically replaced by its child, whatever the distance between them is. Thus the algorithm
ends by focusing on the most interesting regions of the search domain.

4.7. Stop Criterion

Genetic algorithms have usually three stop criteria. The first one is based on an accuracy threshold, i.e.,
the algorithm stops when an element reaches a target score value. The second is to stop the algorithm
when the population does not move from one generation to the next, whereas the last one is to stop the
algorithm when a fixed maximum number of iterations is reached.

In this article, the last criterion is used, and the maximum number of iterations NMaxIter is fixed
to 229 in order to have a final T value of 0.1.

5. THEORETICAL VALIDATION

5.1. Overview

In order to validate the whole concept, there is a need for a reference solution to compare results. The
first step is to perform a pure virtual validation. There are many advantages in performing such a
validation:

• the reference solution (both as exposure maps of electric field and as antenna parameters),
• there is no uncertainty in the geometrical model of the environment (ground and buildings) and in

the propagation modelling,
• this allows the optimization algorithm parameters to be adjusted,
• this allows to quantify the number, distribution, and quality of RSSI data needed for convergence.

The process is illustrated in Figure 9.
The reference electric field map is first computed from an “Ar” (reference state of antennas). Virtual

RSSI level and GPS locations are then randomly extracted from this map (outdoor environment only,
1.5 m above the ground). Finally, both the reference state of antennas and these “perfect” virtual
measurements are degraded.

As far as antennas are concerned, positions are randomly moved using search parameters of the
optimization algorithm (i.e., 30 m radius in the horizontal plane, and 2 m in the vertical dimension), and
diagrams are replaced by randomly chosen ones from the database. For virtual measurements, locations
are perturbed using horizontal GPS error (10 m radius, points moved inside buildings are removed).
The RSSI measurement is degraded so as to fit real RSSI information (1 or 2 dB step, clamped to lower
and upper limits).
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Figure 9. Theoretical validation of the monitoring system.

Once this degradation is done, a “real life” equivalence of the reference state is obtained, called the
initial state. Then the optimization algorithm is performed, to get the final antenna state “Ao”. This
final state is compared to the reference state to assert that the original parameters are found.

5.2. Results

The theoretical validation has been conducted in an urban area in the city of Grenoble (France) with
the following characteristics:

• a 2 km × 2 km area (cf. Figure 10(a)),
• 34 GSM emitters,
• 9000 receivers (ground and facade map).

The electric field is simulated using MithraREM with 1 reflection on building (vertical) frontages,
and as much as needed reflections on the ground and diffractions on the buildings tops.
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Figure 10. (a) Area of Grenoble used for numerical validation of the monitoring system: receiver maps
(green) and BTS locations (red points), (b) electric field to RSSI transformation.

First, degradation of reference state of antennas (from Ar to Ai) is performed:



Progress In Electromagnetics Research B, Vol. 87, 2020 123

• the position of each emitter is randomly moved within a 5 m × 5m square horizontally and ±1m
vertically,

• the mechanic tilt is set to a random value (between 1◦ and 9◦), whatever the real value is,
• the radiation diagrams are left untouched.

The CellID information of each antenna is kept unchanged. The downgrading of the receivers data
is then performed (from Ei to R):

• the position of each receiver is randomy moved within a 5m x 5 m square horizontally only (receivers
inside buildings are removed), to account for GNSS inaccuracy,

• the simulated electric field at each receiver (contributions from all antennas at full power) is
transformed into an RSSI (BCCH† power only), keeping for each receiver the most contributing
antenna only, then discretized and clamped to the 32 possible dBm values (ignoring saturated
values), as illustrated in Figure 10(b).

Using the optimization algorithm and the Pearson correlation criteria (between pseudo-measured
RSSI and simulated one), antenna parameters are modified until they converge to stable values. Results
show that the degraded antenna parameters (Ai) always converge toward the original ones (Ar). That is
to say the mechanic tilt is the original one, and the 3D position of the antenna is within 50 cm from the
original one. These results are very good but were expected. Since numerical simulation for the virtual
RSSI measurements on the same “perfect” geometrical model are used, all uncertainties related to local
variation of the electric field (moving cars, . . .) and errors between the real environment (heterogenous
and detailed buildings) were not taken into account in the simulation.

6. REAL TEST CASE

A real test case was conducted in Nantes (France), using a dedicated measurement trolley and controlled
drive tests. The selected area (cf. Figure 11(a)) is a 1.6 km × 1.1 km area with four base stations, with
different characteristics (on a mast, on a tall building, on a lower building, some in open environment
and some in dense urban area), with all four French operators and all technologies (2G, 3G, 4G).

6.1. Measurements

In order to cover all the selected area, routes corresponding to a total length of about 13 km have been
planned prior to the measurements (cf. Figure 11(a)).

(b)(a)

Figure 11. (a) Measurement area with BTS locations and trolley walks as colored lines,
(b) measurement setup.
† Broadcast Control CHannel
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A trolley dedicated to the measurements was developed (cf. Figure 11(b)). This trolley carries:
• two smartphones (four others were handheld by two researchers/students following the trolley),
• a Narda SRM3006 Spectrum analyzer, mesuring the electric field in each downlink band of each

band of each operator,
• a fisheye camera, taking pictures (1 Hz frequency) at the front,
• a differential GPS (DGPS) chipset,
• a laptop to control both DGPS and camera.

The phones were configured so as to receive only one technology (2G, 3G, or 4G) so as to handle
all emitters available in the area. The SRM3006 was used to identify the frequency band associated
with a given CellID and to check that the measured RSSI on the phone was correctly correlated to
the electric field, with just an offset, as illustrated in Figure 12(a). The fisheye camera was used in
a post-processing stage, in areas where measured and simulated signals diverge. This helped identify
missing buildings in the numerical model, as well as the fact that vegetation, such as trees, is needed to
be taken into account. The DGPS chipset gives a more accurate location (around 2 m precision) than
basic GPS smartphone chipset. As a consequence, measurements were located using DGPS instead of
GPS (this should not be a problem in the future when GNSS with Galileo is widely available, with a
higher precision). The laptop is here to control both the DGPS and the camera and to synchronize
everything. The results of the measurements are DGPS located RSSI (or equivalent) values, for several
CellIDs.
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Figure 12. (a) Comparison of smartphone and spectrum analyzer measurements, for a given CellId,
(b) numerical model of Nantes.

6.2. Numerical Model

The numerical model (illustrated in Figure 12(b)) was derived from GIS information of the IGN (Institut
Géographique National), but was improved to account for slanted roofs and large trees. We noticed
that using slanted roofs (instead of flat roofs at the top of the roof) improved correlation between
measurements and simulation. Adding trees (modeled with International Telecommunication Union
(ITU) attenuation models [17]) also largely improved correlation in open areas with no buildings.

6.3. Results

Results are presented here for two of the three BTSs in the experimental area (Orange and Bouygues
Telecom, see Figure 11(a)). A unique antenna has been singled out for each BTS, the one with the
azimuth heading towards the measurement area.

Concerning the Bouygues Telecom BTS, the antenna of interest corresponds to the LTE 1800
technology. It is deployed on the roof of a medium height building, and its precise location is referenced
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Figure 13. Results for a LTE 1800 emitter on a medium height building: (a) optimized BTS locations,
(b) comparison between smartphone measurements and numerical simulations from optimized (SH)
BTS parameters.

as “Real antenna” in Figure 13(a). Its location given by public data is referenced as “Public data” in
the same figure. From this theoretical location, the initial population is first stochastically initialized,
and the proposed iterative algorithm is then processed through the different steps described from
Subsections 4.3 to 4.7.

Table 4 presents the results for the different antenna parameters according to each considered
criterion. One can note the very bad location of the BTS stored in public data, with a horizontal (δl)
and a vertical (δz) errors of about 28 and 2 m, respectively. The classical error type criterion SDE gives
bad results with a horizontal location error of about 26 m, whereas overall the four other considered
criteria all give good results, allowing us to identify the BTS with a maximum horizontal error of about
5m. A more detailed analysis of these results shows that the link type criteria based on correlation (S
and P ) are more effective, which is explained by the fact that the correlation criteria are less sensitive
to exceptional values than error type ones. Among the correlation criteria, the Spearman correlation
S gives the best results with a location error less than 2 m in the horizontal plane. Finally, using the
two hybrid criteria SH and PH increases the accuracy of the unknown parameters. As S is better
than P , SH is better than PH and locates the BTS with an horizontal error of 1.03 m and a vertical
error of 0.46 m. The final obtained locations according to each criterion are illustrated in Figure 13(a).
Figure 13(b) shows the simulated RSSI obtained from the SH optimized BTS parameters. It is very
close to the RSSI measured on the smartphone, reinforcing the behavior of the genetic algorithm.

Figure 14 illustrates the second scenario concerning the Orange BTS (see Figure 11(a)) located on
a tall building and corresponding to the UMTS 2100 technology. Table 5 presents the optimized BTS

Table 4. Optimized BTS parameters according to considered criteria: medium height building scenario.

Latitude (◦) Longitude (◦) x (m) y (m) z (m) δl (m) δz (m)

Real antenna 47.250786 −1.55428 −167.2 97.5 44.19 0 0
Public data 47.250556 −1.554444 −181 73 42 28.12 −2.19

SDE parameters 47.250652 −1.554565 −189.58 83.86 43.20 26.21 −0.99
P parameters 47.250769 −1.554213 −162.22 95.34 45 5.43 0.81
S parameters 47.250771 −1.554282 −167.45 95.78 44.71 1.74 0.52

PH parameters 47.250778 −1.554232 −163.65 96.43 45.18 3.71 0.99
SH parameters 47.259780 −1.554269 −166.45 96.8 44.65 1.03 0.46
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Figure 14. Results for a UMTS 2100 emitter on a tall building: (a) optimized BTS locations,
(b) comparison between smartphone measurements and numerical simulations from optimized (SH)
BTS parameters.

Table 5. Optimized BTS parameters according to considered criteria: tall building scenario.

Latitude (◦) Longitude (◦) x (m) y (m) z (m) δl (m) δz (m)

Real antenna 47.254554 −1.567739 −1159.26 574.12 67.7 0 0
Public data 47.254444 −1.567778 −1162.91 562.06 67.7 12.60 0

SDE parameters 47.254658 −1.567543 −1143.80 584.77 68.08 18.73 0.38
P parameters 47.254607 −1.567730 −1158.21 579.9 67.36 5.87 −0.34
S parameters 47.254541 −1.567744 −1159.74 572.65 67.35 1.55 −0.35

PH parameters 47.254615 −1.567775 −1161.56 580.98 67.56 7.24 −0.14
SH parameters 47.254545 −1.567733 −1158.86 573.03 67.30 1.16 −0.40

parameters according to the different considered criteria. A similar analysis to the first scenario can be
made. The best results are again obtained by considering the hybrid criterion SH , which provides the
location of the BTS with horizontal and vertical errors of respectively 1.16 and −0.40 m. SDE criterion
gives the worst results with a horizontal location error of about 19 m.

Finally, Figure 15(a) shows the exposure map simulated in the whole area with optimized BTS
parameters obtained from the proposed method, whereas Figure 15(b) presents the estimation error
between this map and the one obtained with BTS parameters given in public data. Before the
optimization, the overall level of electric field is clearly under-estimated, particularly in the region
of high electric levels, near the BTS. This is emphasized by the statistical parameters of the exposure
maps corresponding to the two BTS of Figures 13 and 14, given in Table 6. This table shows the
average, median, maximum levels, and 99% levels (i.e., 99% of the levels are lower than this value)
of the exposure maps. We can first note that the differences between the average and median values
obtained from public and optimized BTS data are weak and not very significant. On the contrary, the
differences between the maximal values and the 99% levels obtained from public and optimized BTS
data, which are of great interest for exposure evaluation, are much more important. It is particularly
true in the case of the LTE 1800 BTS for which public data locate the BTS on the middle of the building
roof top, leading to a strong shadowing effect. This highlights the interest of the proposed monitoring
system to evaluate in a realistic way the EMF exposure due to mobile telephony base station.

As far as computation time is concerned, the optimization process for an antenna takes between
5mn and 30 mn depending on the complexity of the environment on a 10 core CPU (Intel Xeon ES-2660,
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Figure 15. (a) Simulated exposure map (in dBV/m) for the LTE 1800 emitter of Figure 13, (b) map
of estimation error (in V/m) between exposure evaluated from public and optimized BTS data.

Table 6. Exposure level indicators for the LTE 1800 and the UMTS 2100 BTS.

Average value Median value Maximum Value 99% level

LTE 1800
Public data < 0.001 V/m 0.005 V/m 0.06 V/m 0.01 V/m

Optimized BTS 0.021 V/m 0.006 V/m 2.67 V/m 0.61 V/m

UMTS 2100
Public data 0.087 V/m 0.009 V/m 2.41 V/m 1.01 V/m

Optimized BTS 0.066 V/m 0.008 V/m 1.92 V/m 0.63 V/m

2.6 GHz). For the Nantes test case, this is 20 mn for a total about 23,000 evaluations of the objective
function.

7. CONCLUSION

This article presents a new numerical monitoring system for estimating the exposure to EMF radiated
by telephony base station. An originality of this work consists in proposing a method combining
measurements and simulations.

Indeed, it is based on the use of smartphones deployed in the environment as poor quality but
numerous probes to measure a partial view of the BTS coverage zones. Furthermore, it uses numerical
simulations of radio wave propagation (Ray-Tracing + UTD tool) to compute the received levels from
each known BTS. Finally, a genetic algorithm is proposed to iteratively adapt unknown BTS parameters
to the real ones by trying to fit simulation to the smartphone measurements.

A set of different criteria has been investigated to compare measurement and simulation results.
Two types of families based on error and correlation have been considered, and two new hybrid criteria
combining their respective advantages were proposed. We have shown that they increase the accuracy
of the estimated BTS parameters compared with conventional criteria.

All steps of the genetic algorithm were precisely described so that the reader can attempt to
reproduce the results presented. A theoretical validation of the overall concept was tested based
on virtual measurements produced from degraded simulated data. Two different real test cases
corresponding to two different technologies and telephony operators were treated in a dense urban
area in the Nantes down town in France.

The proposed method significantly corrected the BTS parameters given in public data, by reducing
the location error to about 1 m. Furthermore, the proposed method is flexible and can dynamically
adapt to changes in telephony networks, such as the modification of an existing antenna (electric tilt. . .)
or the deployment of new antennas/BTS. Thus, it is a useful tool to estimate in real time the EMF
exposure at urban scale.

As far as future generation antennas (Multi Users-Massive MIMO antennas with beamforming in
future 5G networks for instance) the method should be adapted in order to account for fast varying
radiation diagrams.
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