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Optimization of a Rewritable Narrowband Filter in a SBN:75 Crystal
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Abstract—We propose a rewritable optical frequency filter based on a volume Bragg grating recorded
by holography on an SBN:75 photorefractive crystal. The theoretical results show the possibility of
implementing a narrow-band filter whose reflectance is total for the characteristic wavelength of the third
harmonic of the infrared for both TE and TM polarizations by optimizing the size of the interference
fringes and the angle of incidence of the beam to be filtered, which must be close to 80 degrees.

1. INTRODUCTION

Stratified media, alternating periodic layers of material with different dielectric constants, have several
applications in optics [1]. These periodic structures are classified according to the refractive index
contrast, the size over which the periodicity is extended, the ratio of the spatial period to the wavelength
of the light, etc.

The reflectivity achieved is determined by the number of layer pairs and by the refractive index
contrast between the layer materials. The reflection bandwidth is determined mainly by the index
contrast [2]. The required reflectivity and bandwidth are defined by the optical application. Mostly,
high reflectivity is desirable. Bandwidth is not always as broad as possible. In notch filters, for example,
very small bandwidth is required [3, 4].

Although Bragg reflectors are not a novel concept, different applications currently demand
conventional Bragg gratings as in [5–8], to cite some. In the literature several works exist where
bandwidth thickness is changed, and side-lobes are reduced by the use of complicated structures like
nonuniform or modulated refractive index profiles [4, 9, 10]; however, this is difficult to achieve.

Holographic gratings recorded in photorefractive materials can be considered theoretically as
dielectric Bragg gratings, because they alternate layers with different refractive indexes [11, 12].
Although holographic gratings have a sinusoidal profile of the index of refraction (rugate filters), we can
assume it as a discrete multilayer stack, since they exhibit properties similar to a multilayer constructed
from a series of discrete layers of alternate high and low indexes (index profile discrete), but without the
higher-order reflection stopbands [13]. Thereby, the filter will retain only the beams at the fundamental
reflection peak, namely, when light frequency is exactly the grating frequency (defined in Section 3),
but not next reflection peaks corresponding to higher multiples. In certain applications where those
other peaks are a problem, suppressing them will be quite satisfactory.

Holographic gratings have been recorded or fixed on photorefractive crystals such as LiNbO3 or
InP [14–16], which worked as optical filters. They could even be reconfigurable as in [15, 16]; however,
the changes in the configuration depend on variables difficult to control such as temperature or external
electric field, often possible only in the laboratory. More recently, more complex configurations of
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fixed grids in photorefractive materials have been proposed, such as waveguides designed for optical
communications [17] in LiNbO3 too, or superimposed several gratings recorded in photo-thermo-
refractive materials designed for Ramman spectroscopy applications [18]. Liquid crystals are the most
reconfigurable versions, and they are studied more [19].

On the other hand, highly efficient phase holograms can be recorded in SBN crystals, both in the
external DC field [20, 21] and through the diffusion recording mechanism [22]. Undoped samples of SBN
are transparent in the visible spectral region [23–25]. Furthermore, it allows multiple optical erasure
of previously recorded holograms [26]. These characteristics make SBN a material suitable to assay a
Bragg reflector based on holographic grating, which works like a frequency optical filter.

Unlike some Bragg reflectors made with other materials and techniques, in Bragg gratings of
dielectric materials, obtaining high reflectivity as well as wide bandwidths is more complicated. The
low contrast of the index of refraction presented by this type of gratings makes obtaining certain levels
of performance rather a challenge. Features like layer thickness as thin as 266 nm [27] and refractive
index modulation as small as 120 × 10−6 [28] are common in dielectric Bragg gratings recorded in
photosensitive materials like photorefractive crystals. If the gratings are made of a few layers only, it is
not easy to achieve 100% reflectance peaks, and the bandwidths will be rather narrow.

The optical frequencies that obey Bragg’s law will be weakly reflected due to the small differences
in the refractive indices between the layers of the holographic grid recorded in the SBN, so the total
reflectance will be low. A simple idea has been studied by Yeh et al. [29] and Popov et al. [30] to improve
bandwidth and reflectance in a dielectric Bragg grating with very low refractive index contrast. Fresnel
theory says that the reflection intensity on an interface between two mediums increases with greater
incidence angles. For example, incidence as grazing as 87.5◦ has been analysed and tested before on
Bragg reflectors [31].

In this work, we put together different physical concepts to propose a filter. This filter is rewritable,
in the sense that it can be tuned for blocking a wavelength. Our idea is that we take a photorefractive
crystal as rewritable media, using holographic techniques, in particular the SBN:75 crystal. The
assumption here is that after a period the charge distribution is stabilized, and it is possible to describe
the material as a one-dimensional photonic crystal.

Then, this paper discusses, in the first section, our approach to photorefractivity, the distribution
of charge, and how this changes the refraction index for making a grating. The second section is the
photonic crystal description of the filter, using transfer matrix method. After that, in Section 3, the
results are presented and discussed, where an additional formalism is used to compare the stop-gaps in
the reflectivity, and this is coupled mode theory. Additionally, in this section, we present diffraction
efficiency and phase diagrams. Finally, a summary and the conclusions are given.

2. PHOTOREFRACTIVE CRYSTAL DESCRIPTION

2.1. Photorefractivity and Photo-Induced Dynamic Gratings

The photorefractive effect is the change in refractive index of an optical material that results from the
optically induced redistribution of electrons and holes. Under a wide range of conditions, the change
in refractive index in steady state is independent of the intensity of the light that induces the change.
Experiments are routinely performed using lasers of milliwatts of power. However, the effect tends to
be rather slow, with the typical time of response of 0.1 seconds [32].

The origin of the photorefractive effect is illustrated schematically in Fig. 1. We imagine that a
photorefractive crystal is illuminated by two intersecting beams of light of the same frequency. These
beams interfere to produce the spatially modulated intensity distribution I(x) shown in the upper graph.
Free charge carriers, which we assume to be electrons, are generated through photoionization at a rate
proportional to the local value of the optical intensity. These carriers can diffuse through the crystal or
can drift in response to a static electric field [32].

In drawing the figure, we have assumed that diffusion is the dominant process, and in that case
the electron density is minimum in the regions of maximum optical intensity, because electrons have
preferentially diffused away from these regions. The spatially varying charge distribution ρ(x) gives rise
to a spatially varying electric field distribution or space-charge field, whose form is shown in the third
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Figure 1. Origin of the photorefractive effect. (Adapted from Ref. [32]).

graph. The maxima of the field E(x) are shifted by 90 degrees with respect to those of the charge
density distribution ρ(x).

The last graph in the figure shows the refractive index variation Δn(x) that is produced through the
linear electrooptic effect (Pockels effect) by the field E(x). Δn(x) is shifted by 90 degrees with respect
to the intensity distribution I(x) that produces it. This phase shift has the important consequence that
it can lead to the transfer of energy between the two incident beams [32]. However, it is not important
for this work where the maximum electric field magnitude will be employed to compute the maximum
change of the index of refraction.

The width of the grating recorded in the photorefractive material (crystal SBN) is much larger
than its spatial period. Therefore, a “thick” or “volume” hologram is generated. The diffraction within
it plays a dominant role. In this case, the effect of diffraction of the light in the medium is called Bragg
diffraction [33].

2.2. Space Charge Electric Field Estimation

The mechanisms of light-induced changes of optical materials properties are often described as having
two steps. First, the light produces some material excitation, which then leads to a change of the optical
properties. In the simplest case, the absorption and refraction of the material are changed depending on
the stretch of the electric field, resulting in amplitude and phase gratings [34]. Absorption contribution
is negligible, because the magnitude of the refractive index change (via the Pockels effect) is much
greater than the absorption modulation. Therefore, formation of phase gratings or volume holographic
gratings theory is briefly discussed below.

Stretch of the electric field E(x) is required to compute the maximum Δn(x) formed in the volume
grating. Thus, it is possible to compute the electric field E(x) analyzing the charge transport and
associated equations for the case of an interference pattern of light, when it is projected onto the
sample as schematically illustrated in Fig. 2.

The interference of two plane waves of complex amplitudes S(0) and R(0) that intersect at an angle
2θ produces a pattern of light (with spatial period Λ) onto the sample that is represented in Fig. 2.

The electric field depending on x is generated by the redistribution of photo-exited carriers, where
diffusion is the only process of transport, is given by the expression

E(x) = mED
sin Kx

1 + m cos Kx
(1)

where the quantity m is called light fringes modulation or contrast; K is the spatial wave vector of the
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Figure 2. Recording of an interference volume hologram. The light pattern is displaced by φ with
respect to the resulting pattern (Adapted from Ref. [35]).

grating K ≡ 2π/Λ = 2k sin θ; and ED is the diffusion space-charge field

ED ≡ KD

μ
= K

kBT

e
(2)

where μ and D are the mobility and diffusion constant for electrons ,respectively; e is the elemental
charge; kB is the Boltzmann constant; and T is the absolute temperature [35].

In accordance with Eq. (1), mED is the maximum value for E(x). This parameter will be employed
to compute maximum Δn in the holographic grating recorded in photorefractive material (SBN:75).
Eq. (1) implies too that electric field profile is not sinusoidal. However, for the particular case which
modulation is small (|m| � 1), behaviour is almost sinusoidal.

2.3. Modulation of the Refraction Index in Electro-Optic Crystals

Electric field E(x) changes the dielectric permeability tensor εr of the material, and the modulation of
the refraction index Δn(x) appears (electro-optic effect) [34]. In some materials, the change in refractive
index depends linearly on the strength of the applied electric field. This change is known as the linear
electro-optic effect or Pockels effect [32].

The linear electro-optic effect can be described by a second-order nonlinear susceptibility. Therefore,
the effect can occur only for materials that are non-centrosymmetric [32]. However, a very different
formalism has historically been used to describe it. The complete development is extensive, and its
study is not an objective of this work. The detailed development can be found in Refs. [32, 35, 36], to
cite some sources.

To estimate the change of refraction index between the fringes of a holographic grating, it is
enough to define that the Pockels effect for an anisotropic material is described by the change in the
impermeability tensor [36]

Δηij = ηij (E) − ηij(0) =
∑

k

rijkEk (3)

which represents a nonlinear effect of second order. Here, ηij(E) is the impermeability tensor after the
growth of the electric field; ηij(0) is the impermeability tensor before the illumination; rijk is a third
rank tensor with 33 = 27 elements called electro-optics coefficients; Ek represents the k component of
space-charge field (k = x, y, z) and in general ηij = ε0(ε)

−1
ij where εij is the dielectric tensor and ε0 the

permittivity of vacuum [32].
Most photorefractive media are electro-optical anisotropic crystals. In these media, the dielectric

tensor εij is represented by a tensor of rank 2 and can be written in its main coordinate system as

εij =

(
εx 0 0
0 εy 0
0 0 εz

)
= ε0

⎛
⎝ n2

x 0 0
0 n2

y 0
0 0 n2

z

⎞
⎠ (4)
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where εx, εy, and εz are the main dielectric constants, and nx, ny, and nz represent the main refraction
indexes [37]. According to these relations, Eq. (3) can be rewritten as

Δηij = Δ
(

1
n2

)
ij

=
∑

k

rijkEk (5)

The geometric representation of the tensor ηij is a quadratic symmetric surface (ellipsoid) that is
invariant to the coordinate system chosen [38]. After diagonalizing the tensor, it is possible to find the
lengths that go from the centre to each end of the main axes of the ellipsoid. They are the magnitudes
of the indexes of refraction nx, ny, and nz.

Many crystals, such as SBN or BaTiO3 for example, are uniaxial media, namely, nx = ny = no

(ordinary refractive index) and nz = ne (extraordinary refractive index). This reduces the number of
independent coefficients of the permeability tensor from 27 to 18, and the electro-optical coefficients are
often written in terms of a 6×3 matrix, using a contracted notation. In fact, the number of independent
coefficients decreases even more because many of them are zero.

According to the crystal symmetry of the SBN, which belongs to the 4 mm point group, the electro-
optic tensor in the contracted notation is reduced to the form [32]

rij =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

r42

0

0
0
0

r42

0
0

r13

r13

r33

0
0
0

⎤
⎥⎥⎥⎥⎥⎦ (6)

Substituting Eq. (6) in Eq. (5) leads to

Δ
(

1
n2

)
ij

=

(
r13Ez 0 r42Ex

0 r13Ez r42Ey

r42Ex r42Ey r33Ez

)
(7)

Depending on the direction in which the electric field is applied, its some components could be zero,
and the modulation of the refractive index could affect either just no or ne. A generalized expression of
the amplitude of the refraction index modulation is

Δn = −1
2
n3reff Eeff (8)

where reff and Eeff are the effective values for these parameters [35]. The intensity of the electro-optical
effect depends on the orientation of the space-charge field E within the crystal and polarization state
of the light [37].

The quantity Δn obtained in Eq. (8) is the amplitude of the modulation of a grating such that if
a beam of light travels through it, it passes through several holographic planes of the same refractive
index several times. This volume grating is also called a Bragg grating.

3. FILTERS BASED ON BRAGG GRATINGS

Filters based on Bragg gratings use stratified structures with many interfaces which generate the required
reflectance. A typical structure is depicted in Fig. 3. In this structure, one period is made of two
alternating dielectric layers of refractive index n1 and n2, with thicknesses d1 and d2, respectively.
Thus, one period is Λ = d1 + d2, which is also called a unit cell. Light beam travels along the axis of
periodicity z with incident angle θ.

For a grating consisting of partially reflective planes, separated by a periodic distance, a round-trip
phase is 2ϕ = 2kΛcos θ, where θ is the angle of incidence. Therefore, maximum reflection occurs when
2kΛcos θ = 2qπ, i.e., when the Bragg condition is accomplished.

Considering the collaborative effects of all reflections then the obtained total reflectivity is
considerably enhanced as illustrated in Fig. 4. This is the phenomenon whereby total reflection occurs
not only at single frequencies that are multiples of νB/ cos θ, (where νB = c/2Λ is the Bragg frequency),
but also over extended spectral bands surrounding these frequencies forming stopbands [38].
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Figure 3. Bragg grating made with N identical
segments.

Figure 4. Collaborative reflections of an oblique
optical wave on interfaces of stratified medium.

To develop an exact computation of the Bragg reflection, two arbitrary planes within a given optical
system are considered, denoted by plane 1 and plane 2. The amplitudes of the forward and backward
collected waves through plane 1 are represented by E

(+)
1 and E

(−)
1 . Something similar happens with the

plane 2. The process is illustrated in Fig. 5.

Figure 5. Forward and backward collected waves at plane 1 and plane 2, which depend on the medium
properties represented by M.

In the figure, E
(+/−)
1 and E

(+/−)
2 are represented by a column matrix of dimension two. These two

column matrices are related by the matrix equation[
E

(+)
2

E
(−)
2

]
=
[

A B
C D

][
E

(+)
1

E
(−)
1

]
(9)

where matrix M , whose elements are A, B, C, and D, is called the wave-transfer matrix (transfer matrix
method). It depends on the optical properties of the layered medium between the two planes.

Wave-transfer matrix is a fast and accurate analysis technique used for calculating the input and
output fields for each identical segment. The output of the first matrix M1 is used as the input to the
second matrix M2, not necessarily identical to M1. The process is repeated until the entire complex
profile grating is modelled. This method is capable of accurately simulating both strong and weak
gratings, with or without chirp and apodization [39].

In our case, where each unit cell contains a periodic succession of two lossless dielectric layers,
a reciprocal system satisfying the conservation relations for a lossless medium is formed, and it is
represented by a generic unimodular wave-transfer matrix

M0 =
[

1/t∗ r/t
r∗/t∗ 1/t

]
=
[

A B
C D

]
(10)

where t and r are complex amplitude transmitivity and reflectivity, respectively, and T = |t|2 and
R = |r|2 are the corresponding intensity transmittance and reflectance [38], respectively.

Considering a grating comprising a stack of N identical generic segments, each described by a wave-
transfer matrix M0, the wave-transfer matrix M for the N segments is simply the product M = MN

0 .
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The Nth power of the matrix M0, with determinant AD − BC = 1, can be estimated by Sylvester’s
theorem [40]. In general, each of the ABCD matrix elements in Sylvester’s theorem may be complex. If
in the relation sin θ = (A + D)/2 the right side of the equality is bigger than unity in magnitude (total-
reflection regime, as will be seen later), θ is purely imaginary, and in that case, Sylvester’s theorem may
be written as [40]

MN
0 =

1
sinhΦ

[
Asinh (NΦ) − sinh [(N − 1)Φ] B sinh (NΦ)

C sinh (NΦ) D sinh (NΦ) − sinh [(N − 1)Φ]

]
(11)

where Φ = cosh−1[(A + D)/2].
Substituting by the given values at Eq. (10), Φ = cosh−1[(A + D)/2] becomes

Φ = cosh−1

∣∣∣∣Re
{

1
t

}∣∣∣∣ (12)

Additionally, if we make

ΨN =
sinh [NΦ]
sinh [Φ]

(13)

it is possible to rewrite Eq. (11) as
MN

0 = ΨNM0 − ΨN−1I (14)

Since the N-segment system is also lossless and reciprocal, its matrix may be written in the form

MN
0 =

[
1/t∗N rN/tN
r∗N/t∗N 1/tN

]
= ΨNM0 − ΨN−1I (15)

where tN and rN are the N-segment amplitude transmitivity and reflectivity, respectively.
Substituting and comparing the diagonal and off-diagonal elements of the matrices on both sides

of the equation leads to
1
tN

= ΨN
1
t
− ΨN−1 (16)

rN
tN

= ΨN
r
t

(17)

Eqs. (16) and (17) define tN and rN in terms of t and r. Combining the two previous equations, the
intensity transmittance TN = |tN|2 is obtained. Using the relation RN = 1 − TN, it follows that the
intensity reflectance of a multilayer reflector is given by

RN =
Ψ2

N R

1 − R + Ψ2
N R

(18)

where the factor ΨN is associated with the interference effects from collective reflections of the N
segments, and R is the reflectance of a single segment [38].

This approach is used for both normal and oblique incident waves. The difference is that in the
last case, Fresnel transmittances and reflectances at a boundary, t and r, are angle-dependent as well
as polarization-dependent.

After transmission through a distance Λ (in this case a unit cell), the magnitudes of the forward
and backward waves remain unchanged, and the phases are altered by a common shift Φ, called the
Bloch phase. The interference factor ΨN depends on Φ = arccosh |Re {1/t}| for total reflection regime,
i.e., regime where |Re {1/t}| = |cos Φ| > 1, so that Φ is a complex variable, and the grating acts as a
total reflector [38], when the material has no absorption.

The value of the argument Re {1/t} is derived from m11 element equal to 1/t∗ of the matrix M0 for
light traveling at any angle trough a periodic system made for identical bilayers with refractive indexes
n1 and n2, such that

Re
{

1
t

}
=

(ñ1 + ñ2)
2

4ñ1ñ2
cos (ϕ̃1 + ϕ̃2) − (ñ1 − ñ2)

2

4ñ1ñ2
cos (ϕ̃1 − ϕ̃2) (19)
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where ϕ̃1 = n1k0d1 cos θ1 and ϕ̃2 = n2k0d2 cos θ2 are the phases introduced by the two layers of a
segment for waves with a generalized angle of incidence θ1 in medium 1 and corresponding angle θ2 in
medium 2, so that n1 sin θ1 = n2 sin θ2; ñ1 = n1 cos θ1 and ñ2 = n2 cos θ2 are effective refractive indexes
for TE polarization, and ñ1 = n1 sec θ1 and ñ2 = n2 sec θ2 for TM polarization [38].

In accordance with Fresnel theory, the larger the angle of incidence is, the larger the reflectance is.
We are going to explore this to improve reflectance and bandwidth of a dielectric Bragg grating with
very low index contrast, which shows a narrow band and low reflectance at normal incidence.

In order to plot the spectral total reflectance as a function of light frequency, taking into account
the sum of the phases in Eq. (19) ϕ̃1 + ϕ̃2 = n1k0d1 cos θ1 + n2k0d2 cos θ2, we suppose that θ1 is almost
equal to θ2 for very large angles of incidence and low difference between n1 and n2. In virtue of Snell
law, the propagation angle θ2 will be very little different from θ1 when an optical wave passes into
layer 2 from layer 1 in a unit cell. Hence, the sum ϕ̃1 + ϕ̃2 = πν cos θ̃

/
νB with θ̃ = (θ1 + θ2)/2, where

νB = c/2Λ is the Bragg frequency.

4. RESULTS AND DISCUSSION

The theoretically proposed filter should work on a range of optical frequencies, whose spectral width
depends greatly on the magnitude of the difference between the refractive indexes of the bilayers δn
and the angle of incidence of the wave in the first layer θi. The greater the δn is, the wider width
the stopband is according to Eqs. (12) to (19). The reflectance of a wave with a polarization state
Transversal Electric (TE) or Transversal Magnetic (TM) is bigger if the angle of incidence is increased,
according to the Fresnel theory.

As a result of projecting interference fringes with a spatial period Λ = 390 nm on an SBN:75
crystal (no = 2.3117, ne = 2.2987 [36]) at normal orientation to the z-axis, a phase grating is generated.
In areas with more intense lighting, there is a local change of the index of refraction generated via
the linear electrooptic effect. This analysis shows changes whose values are Δno

∼= −0.00011348 and
Δne

∼= −0.00223337, according to Eq. (8).
The electrooptic effect generates a modulation of the refractive indexes no and ne as seen in Fig. 1.

The amplitude of the modulation is the absolute value of Δn. Therefore, the maximum and minimum
values of the ordinary and extraordinary indexes will be no ± |Δno| and ne ± |Δne|, respectively.

An optical perturbation with TE polarization, which propagates coplanar to the optical axis through
the multilayer anisotropic optical medium, will undergo a phase change due only to the ordinary
refractive index no, independent of the propagation angle θi. In contrast, a TM polarization wave
will undergo a phase change due to gradually changing refractive index from ne (if wave propagates
completely perpendicular to z axis) to no (when the wave is collinear to the optical axis). In addition,
as the propagation angle approaches zero degree, the only refractive index that governs the propagation
is no, regardless of the polarization state of the light.

Thus, when the wave passing through the proposed filter is TE polarized, which will undergo
changes due to the modulation of no, whose maxima and minima will be the refractive indexes of the
periodic layers, designated as n1 and n2 in Figs. 3 and 4. According to the conditions of this work, the
values resulting from these parameters are presented and summarized in Table 1.

In the case of the wave component with polarization TM, additional analysis is required. As
mentioned above, the phase changes are due to the modulation of ne, which depend on θi. Therefore,
before estimating the values of n1 and n2, the propagation angle must be determined.

Table 1. Refractive indexes of the periodic layers corresponding to a specific propagation angle and
polarization state of the light, resulting from the modulation of n via the electro-optical effect on the
anisotropic material SBN:75 crystal. The last column shows the contrast of indexes between the layers.

Wave polarization θi [◦] n1 n2 δn

TE 78.66 2.30989 2.31011 0.00022
TM 78.85 2.29697 2.30127 0.0043
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To increase the width of the resulting stopband of reflectance, it is convenient that the propagation
is an angle greater than zero degrees, due to the small value of the amplitude of the modulation |Δn|
of both indexes (which makes the δn very small). Then, the angle should cause that the reflectance at
each interface increases and should be large enough to exceed the Brewster angle (where the reflectance
drops to zero) in the case of TM polarization.

After optimizing the width d of the grating layers to maximize the δn between them, some incidence
angles were tested for each polarization state (greater than the Brewster angle). Because the resulting
frequency range within the stopbands corresponded to the near infrared, angles were adjusted such
that the central wavelengths of the stopbands formed were approximately those corresponding to the
third harmonic of the infrared (1064 nm). The resulting angles, as well as the refraction indexes of the
periodic layers for the modulation of ne, are also shown in Table 1.

Figures 6 to 8 show dependencies resulting from TE polarization analysis. Fig. 6 shows the
theoretical results of the reflectance, according to Eq. (18). As mentioned above, the graph was generated
assuming a spatial period of the holographic grating of 390 nm — that is, the thickness of each filter
layer is 195 nm —, and the angle of incidence in the first layer of 78.66◦. The figure corresponds to
fundamental reflection peak (first stop-band), and the central wavelength is approximately 354.7 nm.

Results in Figs. 6, 8, 9, and 11 are expressed normalizing the light frequency to the spatial grating
frequency, which is ν/νB. It makes possible match to any wavelength or grating period. For example,
in Fig. 6, central wavelength of the stopband is 5.08, which means that light frequency would be five

Figure 6. Spectral dependence of reflectance for
TE polarization at incidence angle 78.66◦.

Figure 7. Dependence of diffraction efficiency on
Δλ0 for TE polarization.

Figure 8. Estimated phase of the filter based on
volume hologram for TE polarization.

Figure 9. Spectral dependence of reflectance for
TM polarization at incidence angle 78.85◦.
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point zero eight times of the Bragg frequency in order to achieve the performance of the grating.
In all the dependencies generated for TE polarization, the number of bilayers equal to 1500 was

assumed, and an amount like that is easy to reach through holography, which is the proposal of this
work.

An additional analysis to the formalism corresponding to the matrix theory of multilayer media
is presented in Fig. 7. This result is obtained using coupled wave theory for a fixed grating, which is
characteristic for holographic volume gratings.

The curve corresponds to the diffraction efficiency (rate between the intensity of the diffracted
frequencies and the total intensity of a beam that propagates through a hologram) for an optical wave
that propagates perpendicularly to the reflecting planes (reflection holograms [41]) and with an oblique
angle of incidence, as a function of the change of the wavelength that satisfies the Bragg condition λ0

(central wavelength of the stop-band), for the spatial period of the grating and the angle of incidence
under study.

As observed, the spectral width of the formed stopband (≈ 1 nm) corresponds to the estimate
obtained from the curve of Fig. 6. In addition, frequencies of the stopband are also diffracted to one
hundred percent, at least theoretically. These results support the previous results shown in the curve
of Fig. 6.

Figure 8 shows an analysis of the phase just on the range of the first reflection stopband for TE
polarization shown in Fig. 6. It is notorious that even when the curve decreases as the frequencies
increase in the central part of the stopband, in fact, the values of the phase change millionths of π.

Figs. 9 to 11 show the dependencies resulting from the analysis with TM polarization. In particular,
Fig. 9 shows the spectral dependence of the reflectance, according to Eq. (18). Once again, this graph was
generated assuming a spatial period of the 390 nm of holographic grating. However, θi was adjusted to
78.85◦ so that the central wavelength retained the condition of being approximately the third harmonic
of the infrared. As a result, the figure corresponds to the first stopband with λ0 = 354.9 nm.

From Table 1, it is easy to identify that the difference of refractive indexes between layers δn,
for the case of magnetic transversal polarization, is an order of magnitude larger than the case of the
analysis with electric transversal polarization. This is due to the anisotropic nature of the photorefractive
materials. Because of this fact, although Fresnel’s theory says that a wave reflected in a TE polarization
interface increases its reflectance more rapidly by increasing the angle of incidence than a wave with
polarization TM, in our study, 100 bilayers are enough so that the reflectance stopband of a wave with
TM polarization is well defined, as shown in Fig. 9.

The analysis of the diffraction efficiency shown in Fig. 10 corresponds to the reflection hologram
with an oblique angle of incidence [41]. In this case, for TM polarization, the spatial period of the
grating remains; however, the angle of incidence and the number of bilayers are adjusted to the values
given in the previous paragraphs for this case.

According to the curve, the spectral width of the formed stopband (≈ 20 nm) contrasts with

Figure 10. Dependence of diffraction efficiency
on Δλ0 for TM polarization.

Figure 11. Estimated phase of filter based on
volume hologram for TM polarization.
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approximately 1 nm obtained in the TE polarization analysis. However, this amount also corresponds
to the estimate obtained from Fig. 9, if the normalized frequencies are converted into wavelengths. Once
again, these results support the dependence obtained through the matrix theory discussed previously.

Finally, Fig. 11 shows an analysis of the phase just in the range of the first stopband formed with the
modulation of ne for the angle of incidence of 78.85◦. As in Fig. 8, it is remarkable as the phase remains
almost constant. Since the phase function of the Bragg filter is almost constant, a laser pulse with
the corresponding spectral bandwidth can pass through the Bragg filter without phase modulation.
It means that the pulse is practically unmodified and therefore maintains its pulse duration almost
perfectly.

In the best case, the contrast δn of the proposed grating is a few thousandths. If the propagation
of the beam were normal to the reflecting planes, the reflectance achieved would be very low. Therefore,
oblique propagation is decisive in the efficiency of Bragg reflection achieved in the previous graphs.

Another advantage of using grazing angles of incidence is that the total reflectance is achieved with
indistinct TE and TM polarizations, as shown by Figs. 7 and 9. This ensures — at least theoretically
— that the reflection of certain frequencies will be total, since the spectral range of reflection of the TE
component is within the broadest spectral range of the TM component.

Spectral bandwidth is narrower in Figs. 6 and 7. However, notch filters or minus filters employ
ranges very short too. Hence it is useful for some applications.

The grating proposed in this work supposes equal layer thicknesses. This makes it impossible
to adjust thicknesses of alternating two layers to λ/4, namely, the wavelength region with higher
reflectivity [8]. However, our theoretical results show that total reflectance is achievable.

5. CONCLUSIONS

We proposed and described a device that can be used as an optical filter by reflection, which can change
the central wavelength by changing the angle of incidence of the beam and/or the thickness of the
bilayers (spatial period of the holographic grating). The filter is based on volume holograms recorded
on the SBN:75 photorefractive crystal. Theoretically, it could reach values close to 100% reflectance
complying with the conditions described here.

In our dielectric grating, the refractive index contrast is small. However, it works perfectly as a
Bragg grating. Our results show that the proposed filter achieves its best performance if a beam of light
propagates with an angle of incidence between 78 and 79 degrees, which could be considered as grazing
incidence. However, in [31] this type of incidence has been demonstrated.

If the angle of incidence decreases, the ability of the filter to fully reflect Bragg frequencies will
still be possible by increasing the number of segments or bilayers of the reflector. However, holographic
techniques in photosensitive materials make this feasible.

The performance of the filter was verified considering two different theories: “wave matrix theory”
for multilayer media and “two beam coupling” for holographic gratings. A multilayer optical medium,
with the physical characteristics presented in this work, should work experimentally as a filter of optical
frequencies, for both TE and TM polarizations.

Therefore, we show theoretically that it is possible to build a rewritable filter by means of a Bragg
grating recorded in a photorefractive crystal SBN, which can work in a range of propagation angles,
filtering different wavelengths according to the Bragg law. However, the propagation angles must be
large, almost grazing, with both TE and TM polarizations.

6. FUNDING STATEMENT

Consejo Nacional de Ciencia y Tecnoloǵıa (CONACYT) [CB-2015-01/254617]. Millennium Institute for
Research in Optics (MIRO).

ACKNOWLEDGMENT

L. A. R. S. gratefully acknowledged to “Consejo Nacional de Ciencia y Tecnoloǵıa” (CONACyT-México)
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