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The Diffraction by Two Half-Planes and Wedge with the Fractional
Boundary Condition
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Abstract—In this article, the diffraction of plane electromagnetic waves by double half-planes with
fractional boundary conditions is considered. As particular cases, the diffractions by wedges and corners
are considered for different values of fractional orders. The results are compared to the analytical ones.
The interesting properties of wedge diffraction are outlined for intermediate fractional orders.

1. INTRODUCTION

Fractional calculus goes back to the 17th century, but its usage in applications or physical problems
started in the 19th century. First, in the literature, the application of the fractional calculus
in electromagnetic and diffraction problems was developed by Engheta [1–3], and then, together
with Veliyev, mathematical development for the solution of scattering and diffraction problems was
prepared [4–6]. Veliyev et al. proposed fractional boundary condition which is the expansion of
the well-known boundary conditions, namely, Dirichlet and Neumann. The fractional boundary
condition represents the intermediate states between the perfect electric conductor (corresponds to
Dirichlet Boundary Condition) and the perfect magnetic conductor (corresponds to Neumann Boundary
Condition) [7–9]. In general, fractional boundary condition describes the boundary with the imaginary
impedance [5–7]. After that, several works concerning the diffraction of the plane wave by the one strip,
two strips, and one half-plane were published [8–11].

In this study, two half-planes are investigated for different configurations explained in the following
sections. In the literature, there are many studies about the wedge with different configurations and
materials. In [12], a different type of electromagnetic wave diffraction by the perfect electric conductor
wedges is considered. In [13], the authors investigate the canonical problem of plane wave diffraction
by a wedge in the context of the spectral domain approach which exploits the relationship between the
induced current on a scatterer and its far-field. In another study, for the wedge diffraction problem, there
exists a new potential function. Here, the line integration which gives edge diffracted fields is constructed
for wedge diffraction by using the method of the modified theory of physical optics [14]. In [15], TE and
TM polarized electromagnetic wave diffraction on a perfectly conductive wedge with arbitrary apex angle
is numerically studied. Besides the numerical analysis, the author in [16] considers analytical techniques
for the wedge diffraction problems. Currently, in the studies, authors are considering boundary value
problems for the Helmholtz equation, with complex wavenumber, admitting combinations of Dirichlet
and Neumann boundary conditions related to the diffraction by the wedge [17]. Also, there exists a
review of the articles related to the diffraction by the wedge, and the review is to showcase the disparate
mathematical techniques that have been proposed [18].

The proposed method uses fractional calculus and its apparatus for the boundary conditions and
orthogonal polynomials and spectral representation for the current densities on half-planes and field
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expression, respectively. The solution of the diffraction problem is obtained by the use of the method of
orthogonal polynomials (O. P.) which is quite straightforward and simpler with respect to Wiener-Hopf
Technique for similar problems. This alternative method was introduced by Veliyev [19]. In this method,
the scattered fields were obtained using the Fourier transform of the corresponding induced fractional
surface current densities. This analytical-numerical method, using a spectral approach, reduces the
problem to a system of linear algebraic equations (SLAE) for the unknown Fourier coefficients of the
current density function. The convenient and appropriate truncation of SLAE can lead to the solution
with any required accuracy. The advantage of the method by using the analytical and numerical methods
together is to give accurate results for wide frequency range including resonance, high-frequency and
low-frequency ranges. With this method, the advantages of analytical approach for high-frequency
regime and the advantages of numerical approach for the high and low regimes are gathered [20].

2. FORMULATION OF THE PROBLEM

In this section, the formulation of the problem and its theoretical explanation are investigated in detail.
Here, the study consists of two half-planes. The first half-plane (lower) is located at y = 0 starting
from x = 0 to x = ∞. The second half-plane (upper) is rotated with the angle α and translates the
amount of a and l in the directions of x and y, respectively. The half-planes have an infinite length in
the z-direction and infinitesimal height. The incidence electric field is a uniform plane and denoted as
�Ei

z. The incidence electric field can be expressed as �Ei
z (x, y) = e−ik(x cos θ+y sin θ)êz. Note that êz is the

unit vector pointing the z-direction; θ is the angle of incidence; and k = 2π/λ is the wavenumber (λ is
the wavelength in free-space). Keep in mind that the time-dependency throughout the study is taken
as e−iωt. In Fig. 1(a), the geometry of the problem is given. In the figure, there are a global (x, y, z)
and a local (x1, y1, z) coordinate systems. If the values of l and a are small compared to the wavelength,
we get the wedge (Fig. 1(b)).
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Figure 1. The geometries of the problem.

As it is known, due to having half-planes in the space and incidence electromagnetic field, the
scattered fields are formed. In the space, the total electric field Ez (x, y) can be expressed as Eq. (1).

Ez (x, y) = Es1
z (x, y) + Es2

z (x, y) + Ei
z (x, y) (1)

Here, Es1
z (x, y) corresponds to the scattered electric field due to the horizontal half-plane located at

y = 0, and Es2
z (x, y) stands for the scattered electric field due to the translated and rotated half-plane

as given in Fig. 1.
In order to find the total electric field distribution, the total field is subjected to the fractional

boundary condition [4–6] as given in Eq. (2) on each surface of the half-plane.

Dν
kyEz|y=±0 = 0, x ∈ [0,∞)

Dν
ky1

Ez|y1=±0 = 0, x1 ∈ [0,∞)
(2)



Progress In Electromagnetics Research M, Vol. 91, 2020 3

Here, Dν
ky and Dν

ky1
stand for the fractional derivative with respect to dimensionless parameters ky and

ky1, respectively. The derivative is in the order of ν which is called the fractional order (FO) and can
have the value between (0, 1) [5–7]. Note that the derivative is taken with respect to the normal direction
for each half-plane. Keep in mind that the derivative is taken by the integral of Riemann-Liouville which
has the next form [21].

−∞Dν
xf (x) =

1
Γ(1 − ν)

d

dx

∫ x

−∞

f(t)dt

(x − t)ν
, 0 < ν < 1 (3)

Here, Γ(1 − ν) is the Gamma function. From Eq. (3), a very useful property is obtained as
Dν

kye
iky = (i)νeiky. After having this property, the main aim is to express all field components in

terms of the exponentials. Then, the fractional boundary condition given in Eq. (2) can be taken easily.
In order to apply the boundary condition on each half-plane, the scattered electric fields need to

be expressed as the convolution of the induced fractional current density with the fractional Green’s
function [4, 6] as given in Eq. (4).

Es1
z (x, y) =

∞∫
0

f ν
1

(
x′)Gν(x − x′y)dx′

Es2
z (x1, y1) =

∞∫
a

f ν
2

(
x′

1

)
Gν(x1 − x′

1y1)dx′
1

(4)

where, respectively:

Gν
(
x − x′, y

)
= − i

4
Dν

kyH
(1)
0

(
k

√
(x − x′)2 + (y)2

)

Gν
(
x1 − x′

1, y1

)
= − i

4
Dν

ky1
H

(1)
0

(
k

√
(x1 − x′

1)
2 + (y1)

2

)

Here, note that H
(1)
0 is the Hankel function of the first kind and zero-order. Its spectral representation

is given as follows [22]. Besides, having two-dimensional and flat geometry (half-plane), y′ and y′1 are
constant and equal to zero.

H
(1)
0

(
k

√
(x − x′)2 + (y − y′)2

)
=

1
π

∞∫
−∞

eik[(x−x′)q+|y−y′|
√

1−q2] dq√
1 − q2

In order to apply the fractional boundary condition, the coordinate transform is needed, and it can be
achieved as Eq. (5).

x1 = Ax − By + a, y1 = Bx + Ay + l (5)

where A = cos α, B = sin α.
The scattered field for the lower and upper half-planes can be obtained as Eq. (6) by using Eq. (4)

and the spectral representation of the Hankel function [10, 11].

Es1
z (xy) = − i

4π
e±

iπν
2

∞∫
−∞

F ν
1 (q)eik(xq+|y|

√
1−q2)(1 − q2)

ν−1
2 dq (+for y > 0 − for y < 0)

Es2
z (x1y1) = − i

4π
e±

iπν
2

∞∫
−∞

F ν
2 (q) e

ik
(
x1q+|y1|

√
1−q2

) (
1 − q2

) ν−1
2 dq (+for y1 > 0 − for y1 < 0)

(6)

where,

F ν
1 (q) =

∞∫
0

f ν
1

(
x′) e−ikqx′

dx′, F ν
2 (q) =

∞∫
0

f ν
2

(
x′

1

)
e−ikqx′

1dx′
1
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Here, F ν
1 (q) and F ν

2 (q) are the Fourier transform of the induced fractional current densities on
each half-plane, respectively.

In Eq. (7), the boundary condition is applied to the total electric field on the lower half-plane

Dν
ky

⎛
⎝ ∞∫

0

f ν
1

(
x′)Gν

(
x − x′, y

)
dx′ +

∞∫
0

f ν
2

(
x′

1

)
Gν
(
x1 − x′

1, y1

)
dx′

1 + e−ik(x cos θ+y sin θ)

⎞
⎠

y=±0

= 0 (7)

Then, the final form of Eq. (7) is obtained as Eq. (8) by using Eqs. (4) and (6).

− i

4π
e±iπν

⎛
⎝ ∞∫
−∞

F1 (q) eikxq
(
1 − q2

)ν− 1
2 dq

+

∞∫
−∞

F2 (q) (−iBq ± iA
√

1 − q2)
ν
e
ik
(
Aq+B

√
1−q2

)
x
eik(aq+l

√
1−q2)(1 − q2)

ν−1
2 dq

⎞
⎠

= −(−i sin θ)νe−ikx cos θ (8)
Here, Bx + l > 0.
In Eq. (9), the boundary condition is applied to the total electric field on the upper half-plane

Dν
ky1

⎛
⎝∞∫

0

f ν
1

(
x′)Gν

(
x − x′, y

)
dx′+

∞∫
0

f ν
2

(
x′

1

)
Gν
(
x1 − x′

1, y1

)
dx′

1 + e−ik(x cos θ+y sin θ)

⎞
⎠

y1=±0

= 0 (9)

Then, the final form of Eq. (9) is obtained as Eq. (10) by using Eqs. (4) and (6).

− i

4π
e±iπν

⎛
⎝ ∞∫
−∞

F1 (q) eikxq
(
1 − q2

)ν− 1
2 dq

+

∞∫
−∞

F2 (q) (−iBq ± iA
√

1 − q2)
ν
e
ik
(
Aq+B

√
1−q2

)
x
eik(aq+l

√
1−q2)(1 − q2)

ν−1
2 dq

⎞
⎠

= −(−i sin θ)νe−ikx cos θ (10)
Here, −Bx1 − Al + Ba < 0 and in order to apply the boundary condition on the half-planes, the
coordinate transform is required. The following transformations are employed for the scattered field
and the incidence field, respectively as Eq. (11).

For the scattered electric field,
x = Ax1 + By1 − Aa − Bl
y = −Bx1 + Ay1 + Ba− Al

For the incidence wave,
x = Ax1 − By1 + a
y = Bx1 + Ay1 + l

(11)

where A = cos α, B = sin α.
After having coupled integral equations (IE) given in Eqs. (8) and (10), the solution methodology

is introduced. Here, by taking into account the geometry of the problem and the edge condition [6, 23],
the fractional current density is expressed as the summation of Laguerre polynomials with the unknown
coefficients f1

n as given in Eq. (12). Note that the factor e−ςςν− 1
2 forces to satisfy the edge and radiation

conditions.

f ν
1

( ς

k

)
= e−ς ςν− 1

2

∞∑
n=0

f1
nL

ν− 1
2

n (2ς) , ς = kx

f ν
2

( ς

k

)
= e−ςςν− 1

2

∞∑
n=0

f2
nL

ν− 1
2

n (2ς) , ς = kx1

(12)
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Then, the Fourier transform of Eq. (12) is found as Eq. (13), respectively [6, 19].

F ν
1 (q) =

∞∫
0

f ν
1

(
x′) e−ikqx′

dx′ =
1
k

∞∑
n=0

f1
nγν

n

(iq − 1)n

(iq + 1)ν+n+ 1
2

F ν
2 (q) =

∞∫
0

f ν
2

(
x′

1

)
e−ikqx′

1dx′
1 =

1
k

∞∑
n=0

f2
nγν

n

(iq − 1)n

(iq + 1)ν+n+ 1
2

(13)

where γν
n = Γ(n+ν+ 1

2
)

Γ(n+1) . Here, the following property is utilized [19, 22].∫ ∞

0
e−ς(1+iq)ςν− 1

2 L
ν− 1

2
n (2ς) dς =γν

n

(iq − 1)n

(iq + 1)ν+n+ 1
2

After obtaining Eq. (13), F ν
1 (q) and F ν

2 (q) are inserted into Eqs. (8) and (10). Then, both sides of IE

in Eqs. (8) and (10) are multiplied by e−ςςν− 1
2 L

ν− 1
2

n (2ς) and take an integral from 0 to ∞ with respect
to the variable, ς. Again, the same property given above is used. Then, IE in Eqs. (14) and (15) are
obtained for the lower and upper half-planes, respectively.

IE for the lower half-plane:

i

4πk
e±iπν

∞∑
n=0

f1
nγν

nC11
nm (−1)n+m +

i

4πk
e

±iπν
2

∞∑
n=0

f2
nγν

nC12
nm (−1)m = (−i sin θ)ν

(i cos θ − 1)m

(1 + i cos θ)ν+m+ 1
2

(14)

where,

C11
nm =

∞∫
−∞

(
1 − q2

)ν− 1
2

(1 − iq)n−m−ν− 1
2

(1 + iq)n−m+ν+ 1
2

dq

C12
nm =

∞∫
−∞

Π(q)
(iq − 1)n

(iq + 1)n+m+ 1
2

(
−iBq ± iA

√
1 − q2

)ν
e
ik
(
aq+l

√
1−q2

)
(1 − q2)

ν−1
2 dq

Π(q) =

(
1 + i(Aq + B

√
1 − q2)

)m

(
1 − i

(
Aq + B

√
1 − q2

))m+ν+ 1
2

IE for the upper half-plane:

i

4πk
e

±iπν
2

( ∞∑
n=0

f1
nγν

nC21
nm (−1)m +

∞∑
n=0

f2
nγν

nC22
nm (−1)n+m

)

= (−iB cos θ + iA sin θ)νe−ik(a cos θ+l sin θ) (i (A cos θ + B sin θ)− 1)m

(i (A cos θ + B sin θ) + 1)ν+m+ 1
2

(15)

where,

C21
nm =

∞∫
−∞

Π(q)
(iq − 1)n

(iq + 1)n+m+ 1
2

(
iBq ± iA

√
1 − q2

)ν
eik(−aAq−lBq−Ba

√
1−q2+Al

√
1−q2)(1 − q2)

ν−1
2 dq

C22
nm =

∞∫
−∞

(
1 − q2

)ν− 1
2

(1 − iq)n−m−ν− 1
2

(1 + iq)n−m+ν+ 1
2

dq
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3. NUMERICAL RESULTS

Based on the described mathematical algorithm, the program package was created in MatLab, and the
near electric field distribution was evaluated for different parameters of the half-planes.

Figure 2 shows the total near electric field distribution for the wedge diffraction from inside. Inside
the wedge structure, the standing wave is observed. Fig. 3 shows a similar case. The only difference is
that the upper half-plane is shifted. Again we have standing wave inside the wedge. However, in this
case, some part of the energy can go through the gap and is radiated to outer space. The fractional
order in two cases corresponds to the perfect electric conductor (ν = 0.01).

Figure 4 corresponds to the diffraction by the right angle corner from inside. The standing wave
is observed inside. If we shift the upper half-plane and make a gap between half-planes as shown in
Fig. 5, the standing wave is still preserved. Again, some part of the energy is radiated outside through
the gap like in case of the wedge.

If we shift the lower half-plane, we will get the horizontal gap, and the energy will be radiated below
through the gap (Fig. 6). Again, the fractional order corresponds to the perfect electric conductor. After
we consider diffraction by the wedge from outside. We consider a different angle of the wedge. Fig. 7
shows the near electric field distribution for the wedge diffraction with angle α = π

6 . As we see, the

Figure 2. The total near electric field
distribution (for animation see [24]) α = π

3 , ν =
0.01, θ = π

6 , l = 0.1, a = 0.

Figure 3. The total near electric field
distribution (for animation see [24]) α = π

3 , ν =
0.01, θ = π

6 , l = π, a = 0.

Figure 4. The total near electric field
distribution (for animation see [24]) α = π

2 , ν =
0.01, θ = π

4 , l = 0.1, a = 0.

Figure 5. The total near electric field
distribution (for animation see [24]) α = π

2 , ν =
0.01, θ = π

4 , l = π, a = 0.
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Figure 6. The total near electric field
distribution (for animation see [24]) α = π

2 , ν =
0.01, θ = π

4 , l = 0.1, a = 10.

Figure 7. The total near electric field
distribution (for animation see [24]) α = π

6 , ν =
0.01, θ = π + π

12 , l = 0.1, a = 0.

Figure 8. The total near electric field
distribution (for animation see [24]) α = π

12 , ν =
0.01, θ = π + π

24 , l = 0.1, a = 0.

Figure 9. The scattered near electric field
distribution (for animation see [24]) α = π

12 , ν =
0.01, θ = π + π

24 , l = 0.1, a = 0.

field inside the wedge is practically zero. In order to verify our results, we compare it to the results
obtained by the analytical formula given in the work [16]. Figs. 8 and 9 show the total and scattered
near electric field distributions for the diffraction by the wedge with the angle α = π

12 obtained by our
method. Note that the backscattering is very small. Most of the scattered field goes forward.

Figures 10 and 11 show the same results obtained by the analytical formula given in the work [16].
As we see, the results obtained by the analytical formulas are pretty similar to the results obtained by
our method. Analytical results do not give the correct results inside the wedge, that is why we make
zero automatically. In our method there is a very small gap between the half-planes that is why we
have field inside. This gap is required in order to avoid singularity in the solution. If the wavelength
(λ) is much larger than the gap, our structure approximates the perfect wedge very well with no gap.

All results considered above were for perfect electric conductor. Now we will consider different
values of the fractional order.

Figure 12 corresponds to the diffraction by the wedge with a gap from inside when the fractional
order is ν = 1, which corresponds to the perfect magnetic conductor (PMC). As we see, the field
structure is quite different from the case given in Fig. 3. Fig. 13 corresponds to the diffraction by
the perfect magnetic conductor wedge from outside. Again field does not penetrate inside the field
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Figure 10. The total near electric field
distribution, Analytic (for animation see [24])
α = π

12 , ν = 0.01, θ = π + π
24 , l = 0.1, a = 0.

Figure 11. The scattered near electric field
distribution, Analytic (for animation see [24])
α = π

12 , ν = 0.01, θ = π + π
24 , l = 0.1, a = 0.

Figure 12. The total near electric field
distribution (for animation see [24]) α = π

3 , ν =
1, θ = π

6 , l = π, a = 0.

Figure 13. The total near electric field
distribution (for animation see [24]) α = π

6 , ν =
1, θ = π + π

12 , l = 0.1, a = 0.

amplitude and is practically zero inside the wedge.
We also considered the case for fractional order ν = 0.5. Fig. 14 shows the diffraction by the corner

with the right angle from inside. As the figure shows, the high field values are again inside the corner,
but some part of the energy goes outside through the walls. This is the main difference if we compare
it to the PEC and PMC cases. Fig. 15 shows diffraction by the wedge from outside for fractional order
ν = 0.5. As we can see, the field values inside the wedge are no longer minimum in contrast to the PEC
and PMC cases (Fig. 7 and 13). Instead, the field distribution has maximum values inside the wedge.
This property of the material with fractional order was also shown in the work [11]. It corresponds to
the material with impedance η = −i. When the wave falls to this structure, this material amplifies the
field and transmits to another side with a higher amplitude.

We also considered the cases of fractional order ν = 0.25 and ν = 0.75. The results are given in
Fig. 16 and Fig. 17, respectively. Here, the diffraction by the wedge is considered, and the field inside
the wedge again has a non-zero value.

All the field animations related to the results given in this article are uploaded to YouTube and
can be found at the link in [24].
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Figure 14. The total near electric field
distribution (for animation see [24]) α = π

2 , ν =
0.5, θ = π

4 , l = 0.1, a = 0.

Figure 15. The total near electric field
distribution (for animation see [24]) α = π

6 , ν =
0.5, θ = π + π

12 , l = 0.1, a = 0.

Figure 16. The total near electric field
distribution (for animation see [24]) α = π

6 , ν =
0.25, θ = π

12 , l = 0.1, a = 0.

Figure 17. The total near electric field
distribution (for animation see [24]) α = π

6 , ν =
0.75, θ = π + π

12 , l = 0.1, a = 0.

4. CONCLUSION

In this article, the diffraction of the plane electromagnetic waves by the double half-plane is considered.
The lower half-plane is fixed, and the upper one can be shifted and rotated. As particular cases, the
diffraction by the wedge and corners from both sides is considered. The cases of the wedge and corners
with a gap and their electromagnetic properties are also studied. Results are compared to the analytical
ones. For intermediate fractional order values, interesting results are obtained. In particular, for the
wedge diffraction, inside the wedge the field is not zero but has maximum which is different from PEC
and PMC cases.
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