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A Computationally Efficient Modified MUSIC Spectrum for
Resolving DOAs of Multiple Closely Spaced Non-Gaussian Sources

Chandrasekaran Ashok1, * and Narasimhan Venkateswaran2

Abstract—The objective of this work is to estimate the Direction of Arrival (DOA) of signals from
multiple closely spaced non-Gaussian sources corrupted by additive Gaussian noise. Generally, this
is achieved by using higher order statistics (HoS) based MUSIC spectrum. In HoS, the fourth-order
cumulant is utilized because of its property of insensitivity to Gaussian process. But in the case
of resolving closely spaced sources, a large number of sensor elements are required; otherwise, the
resolution gets deteriorated. The large number of sensor elements leads to high computational burden.
We propose a computationally efficient modified spectrum that combines fourth-order cumulant based
MUSIC spectrum and its second-order differential counterparts. The proposed spectrum for DOA
estimation offers good statistical performance and better accuracy the existing methods even in the
case of extremely closely spaced signal sources. The improvement in the aspects of resolution and
accuracy is substantiated by means of various simulation results such as Monte Carlo simulations,
spectral width, resolution with respect to angular separation, and comparison of RMSE with respect to
number of array elements, number of snapshots, and SNR. The computational complexity analysis of
the proposed method is also presented.

1. INTRODUCTION

In the field of array signal processing, DOA estimation is utilized in various applications like military,
mine fields, and other areas where there is no ease of access. The method of DOA estimation can also be
used in underwater applications in order to locate and track the sources of various signals. Nowadays,
wireless technology is growing fast, and 5G technology will soon occupy a place of prime importance [1–
3]. This can be achieved only with a new design of antennas such as Smart Antenna systems [4], in which
DOA estimation plays an important role in localizing the required entities in order to direct the beam
towards the source and a null in the other directions. Audio Zooming is one application wherein DOA
estimations are used [5]. The source of the sound is located, and the particular sound can be amplified
or zoomed in order to get a clearer and louder sound. So the algorithm used in DOA estimation should
be highly precise in locating the signal sources and also insensitive to the noise.

The most widely used DOA estimation method in wide range of applications is MUSIC (Multiple
Signal Classification) spectrum [6] over other methods [7–10]. This method involves the formulation
of auto-correlation matrix from the noise corrupted received signal upon which eigen decomposition is
carried out to bifurcate the obtained eigenvectors into the signal and noise subspaces. In the case of
second order statistics auto-correlation matrices, there is a disadvantage of impossibility to completely
eliminate the effect of additive Gaussian noise, if the noise varies from sensor to sensor in an unknown
way. This can be battled by the use of higher order statistics — fourth-order cumulants to compute
received signal correlation [11–13], whereas the cumulant based MUSIC spectrum makes it possible
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to exploit the sensor-to-sensor independence of noise which results in better resolution for the case of
non-Gaussian sources signal getting corrupted with additive Gaussian noise [14–16]. However, in many
practical situations, the sources are found to be spaced very close to each other, which makes it more
difficult to localize individual sources [18–20]. To resolve the DOAs of closely spaced sources, a large
number of sensor elements and snapshots are required in the existing methods, which leads to high
computational burden. This problem of estimating the DOAs of multiple closely spaced sources with
low computational complexity needs to be solved, to make it applicable to hardware implementation to
various practical applications.

In this work, a computationally efficient modified spectrum is proposed which combines fourth-
order cumulant based MUSIC spectrum and its second-order differential counterparts. The proposed
spectrum for DOA estimation offers good statistical performance and better accuracy the existing
methods even in the case of extremely closely spaced signal sources.

The remainder of the paper is organized as follows. Section 2, furnishes the mathematical
formulation of the signal model, cumulant based MUSIC spectrum, and the proposed spectrum.
Section 3 presents several simulation results with relevant discussions. Section 4 gives the conclusion
and future directions of the presented work.

2. MATHEMATICAL FORMULATION

2.1. Signal Model

In this work, it is assumed that there are R narrowband non-Gaussian signals impinging on an N
element antenna array. The inter-element spacing of the array elements is taken to be half-a-wavelength.
The non-Gaussian signals are considered to be QPSK signals. The narrow band approximation of the
received signal is represented as given,

xk [n] =
R−1∑
i=0

si [n] ak (θi) + vk [n] , k = 0, 1, 2, . . . , N − 1 (1)

where ak(θi) = e−jπk sin θi is the response of the kth array element with respect to the ith signal; θi is
the DOA of the ith signal si[n]; and vk[n] is the additive noise at the kth element. In the vector form,
the above Equation (1) can be represented as

X [n] = AS [n] + V[n] (2)
where A is the array steering matrix of incoming signal. V[n] is the vector having random variables
which has Gaussian distribution, i.e., additive white Gaussian noise with zero mean and variance σ2.
The matrix form of Equation (1) can be written as given below.⎡

⎢⎢⎢⎣
x0[n]
x1[n]
·
·

xN−1[n]

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a0(θ0) a0(θ1) · · a0(θr−1)
a1(θ0) · · · ·

· · · · ·
· · · · ·

aN−1(θ0) · · · aN−1(θr−1)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

s0[n]
s1[n]
·
·

sr−1[n]

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

v0[n]
v1[n]
·
·

vN−1[n]

⎤
⎥⎥⎥⎦ (3)

2.2. Fourth Order Cumulant Based MUSIC Spectrum

Due to inability to separate non-Gaussian signals from Gaussian additive noise posed by the second
order statisticsbased method, the use of higher order statistical computations is preferred, in order to
obtain a more accurate estimation of DOA of the signals from various sources.

The fourth-order cumulant of the received array element output can be expressed in matrix notation
as given below,

C = E
[
(x ⊗ x∗) (x ⊗ x∗)H

]
− E [(x ⊗ x∗)]E

[
(x ⊗ x∗)H

]
− E

[
xxH

] ⊗ E
[(

xxH
)∗]

(4)

where ⊗ denotes the Kronecker product, and the dimension of the cumulant matrix C is N2×N2. Since
the fourth-order cumulant of Gaussian process is zero, Eq. (4) can be written as

C = (A⊗A∗)Cs (A⊗A∗)H (5)
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where
CsΔE

[
(s ⊗ s∗) (s ⊗ s∗)H

]
− E [(s ⊗ s∗)] E

[
(s ⊗ s∗)H

]
− E

[
ssH

] ⊗ E
[(

ssH
)∗]

(6)

The above Equation (6) represents the fourth-order cumulant of sources S. Since the sources are
statistically independent, the fourth-order cumulant of the signal vector S is a diagonal matrix, so
Eq. (5) can be written as follows,

C =
R−1∑
i=0

(a(θi))⊗a∗ (θi))μi(a(θi))⊗a∗ (θi))
H (7)

where μi is the fourth-order cumulant of si for i = 0, 1, 2, . . . , R − 1, then Eq. (7) can be written as

C = BDBH (8)

where

D = diag{μ0, μ2, . . . , μR−1}
B = [b(θ0), b(θ1), . . . , b(θR−1)]

since B is composed of b(θi) = a(θi)⊗ a∗(θi), i = 0, 1, . . . , R− 1, which are linearly independent, it has
full column rank, and since the sources are independent, D is non-singular. The range of C, which is a
N2 dimensional space, can be decomposed into two orthogonal subspaces:

i. An R dimensional subspace, called signal subspace, which is spanned by the eigenvectors
corresponding to the R largest eigenvalues.

ii. The complementary N2-R dimensional subspace called noise subspace. The signal subspace and
then noise subspace can be found by eigen decomposition of the cumulant matrix C.

Let λ1λ2, . . . , λN2 denote the eigen values of C and v1, v2, . . . , vN2 the corresponding eigen vectors.
Then, the eigen vectors satisfy the equations

Cvk = λkvk for k = 1, 2, . . . , N2 for k = 1, 2, . . . , N2 (9)

From elementary linear algebra, it can be shown that N2(−R) eigenvalues of C will be equal to zero.
Without loss of generality, the eigenvalues can be arranged in non-decreasing order as

λ1 ≥ λ2 ≥ . . . ≥ λR > λR+1 = λR+2 = . . . = λN2 = 0

Let signal subspace QΔ[v1, v2, . . . , vR] be a N2 ×R matrix and noise subspace VΔ[vR+1vR+2, . . . , vN2 ]
be a N2 × (N2 − R) matrix, then

BHV = 0 (10)

This means that the eigenvectors, associated with the eigenvalue zero of multiplicity (N2 − R), are
orthogonal to the B vector, which is given below

B = [b(θ0), b(θ1), . . . , b(θR−1)]
b(θi) = a (θi)⊗a∗ (θi) , i = 0, 1, . . . , R − 1

(11)

This implies that the vectors, b(θi), i = 0, 1, 2, . . . , R − 1, are orthogonal to the eigenvectors
corresponding to the zero eigenvalues, and the true DOA parameters θi, i = 0, 1, 2, . . . , R − 1, of
the sources are the unique solutions of the equation

bH (θ)VVHb (θ)= 0 (12)

Practically, the actual eigenvalues and eigenvectors of fourth-order cumulant are not known, and they
ought to be estimated from the received signal snapshots, given by

Ĉ =
1
K

K∑
t=1

y (t) yH (t) − 1
K2

K∑
t=1

y (t)
K∑

t=1

yH (t) − (R̂⊗R̂∗) (13)

where y(t)Δx(t)⊗x(t)∗, R̂Δ 1
K

K∑
t=1

x(t)xH(t) and K refers to the number of snapshots utilized.
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Thus, one can estimate the vectors b(θi), i = 0, 1, 2, . . . , R − 1 by finding the vectors which are
most nearly orthogonal to the eigenvectors corresponding to the (N2 − R) eigenvalues of Ĉ which are
approximately zero. Let V̂ denote the matrix defined similarly to V, but made from the eigenvectors
of Ĉ. Then, the DOA of the multiple source signals can be estimated by locating the R largest peaks
of the spatial spectrum given by

F (θ) =
1

bH (θ)VVHb (θ)
, θ ∈

[−π

2
,
π

2

]
(14)

Even though fourth-order statistics based MUSIC algorithm provides improved estimation of signal
parameters and has the ability to separate statistically independent sources, it is found to be inefficient
in distinguishing signal sources which are very close to each other. This is provided with a simple
illustration given below.

When the signals coming from multiple sources with an angle of θ = 1◦, 5◦, 41◦ and 45◦ are received
by an N = 14 element antenna array with K = 10 snapshots and noise variance of 0.1, the resulting
fourth-order cumulant based MUSIC spectrum is given in Figure 1.

Figure 1. Fourth-order cumulant based MUSIC spectrum.

From Figure 1, It is clearly evident that the fourth-order cumulant based MUSIC spectrum fails to
resolve the sources. In this work, this problem is overcome by modifying the existing method.

2.3. Proposed Method

The main drawback of the existing method is that it is unable to resolve sources as individual distinct
ones when they are very close to each other. This problem is overcome by modifying the existing method
by a sequence of procedures.

Firstly, the fourth-order cumulant based MUSIC spectrum is obtained, which is given by
PC-MUSIC(θ)

PC-MUSIC (θ) =
1

bH (θ)VVHb (θ)
, θ ∈

[−π

2
,
π

2

]
(15)

Then, the second-order differentiation is applied on the fourth-order cumulants based MUSIC spectrum.
This is given by

P ′′ (θ) =
(

(−PC-MUSIC (θ − Δθ)+2PC-MUSIC (θ)−PC-MUSIC (θ + Δθ))
(Δθ)2

)
(16)

where Δθ is discrete angle interval, and applying the values of PC-MUSIC in Eq. (16), the resultant
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(a) (b) (c)

Figure 2. (a) PC-MUSIC(θ): Fourth order Cumulant based MUSIC spectrum; (b) P ′′(θ): Second order
differentiation of PC-MUSIC(θ); (c) PMC-MUSIC(θ): Modified spectrum.

equation is given by

P ′′ (θ) =

⎛
⎜⎜⎝

(
− 1

bH (θ − Δθ)V V Hb (θ − Δθ)
+ 2

1
bH (θ)V V Hb (θ)

− 1
bH (θ + Δθ)V V Hb (θ + Δθ)

)

(Δθ)2

⎞
⎟⎟⎠
(17)

The second-order differentiation of fourth-order cumulant based MUSIC spectrum P ′′(θ) results
in peaks on the signal directions, which is not identified in the PC-MUSIC(θ) spectrum as shown in
Figure 2(a). In addition, there are also lots of other spurious peaks, shown in Figure 2(b). In order to
extract only the necessary signal peaks, the differentiated MUSIC spectrum P ′′(θ) is multiplied with
the resultant of undifferentiated fourth-order cumulant based MUSIC spectrum as shown in Figure 2(c)
which is given by

PMC-MUSIC(θ) = PC-MUSIC(θ) ·∗ P ′′(θ) (18)

Applying PC-MUSIC(θ) and P ′′(θ) in the equation of PMC-MUSIC(θ) is given by

PMC-MUSIC (θ) =
(

1
bH (θ)V V Hb (θ)

)

·

⎛
⎜⎜⎝

(
− 1

bH (θ − Δθ) V V Hb (θ − Δθ)
+ 2

1
bH (θ)V V Hb (θ)

− 1
bH (θ + Δθ) V V Hb (θ + Δθ)

)

(Δθ)2

⎞
⎟⎟⎠ (19)

3. SIMULATION RESULTS AND DISCUSSION

In this section, the potential of the proposed method is validated with several computer simulations.
The simulation setup used for the validation is described as follows: A uniform linear array (ULA) with
half wavelength spacing for each sensor is used for receiving multiple signals for DOA estimation. The
received signals at the array are narrowband non-Gaussian digitally modulated quadrature phase shift
keying (QPSK) which is considered. The incoming signals are corrupted with uncorrelated additive
complex white Gaussian noise with variance σ2. All the computer simulations are performed on a PC
equipped with a 1.80 GHz processor and RAM of 8 GB. The implementation is performed in MATLAB.
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The performance metric used to measure the accuracy of DOA estimation is given by root mean square
error (RMSE) and is defined by

RMSE =

√√√√ 1
RL

R∑
k=1

L∑
l=1

(
θ̂kl−θk

)2

where L is the number of Monte Carlo runs, θ̂kl the estimated DOA, and θk the actual DOA of the kth
signal in the lth experiment [7].

The proposed method is validated for the case of signal from six sources with equal power ranging
from angles θ = 1◦, 5◦, 21◦, 25◦, 41◦, 45◦ which is received using a ULA with N = 14 with K = 10
snapshots and noise variance of σ2 = 0.1, and the resulting spectrum is shown in Figure 3.

(a) (b) (c)

Figure 3. (a) PC-MUSIC(θ): Fourth-order cumulant based MUSIC spectrum; (b) P ′′(θ): Second-order
differentiation of PC-MUSIC(θ); (c) PMC-MUSIC(θ): Modified spectrum.

To ensure that the performance of proposed method is satisfactory, Monte Carlo trials are carried
out. The number of Monte Carlo trails is taken to be 10 for the case of signal from four sources with
angles of θ = 1◦, 5◦, 41◦, and 45◦ which is received by an N = 14 element antenna array with K = 10
snapshots and noise variance of 0.1. The resulting spatial spectra of both the Cumulant MUSIC and
proposed method are presented in Figure 4.

P'' (θ)P            (θ)C-MUSIC P               (θ)MC-MUSIC

Figure 4. Comparison of 10 Monte Carlo trials of PC-MUSIC(θ) and PMC-MUSIC(θ).

For the same simulation setup, the root means square error (RMSE) performance of the cumulant
based MUSIC spectrum and proposed spectrum for DOA estimation of with respect to number of
elements is obtained. In that, the number of sensor elements is varied from 5 to 14. From Figure 5
it is evident that the proposed method results in good estimation accuracy as the number of elements
increases over the Cumulant MUSIC method.



Progress In Electromagnetics Research C, Vol. 102, 2020 247

Figure 5. Comparison of RMSE performance of cumulant based MUSIC spectrum and proposed
spectrum with respect to number of elements.

In Figure 6, the performance of the proposed spectrum is also evaluated by considering RMSE as
a function of number of snapshots. The snapshots are varied form K = 1 to 10. It is observed that the
proposed spectrum gives a robust performance of estimation accuracy even in the case of low snapshot
considerations.

Figure 6. Comparison of RMSE of cumulant based MUSIC spectrum and proposed spectrum with
respect to number of snapshots.

In Figure 7, the performance of the proposed spectrum is also evaluated by considering RMSE as
a function of SNR. The SNR is varied form −20 dB to 20 dB, it is observed that the proposed spectrum
gives a robust performance of estimation accuracy even at low SNR regime.

Also, the proposed spectrum is compared with the existing spectra such as MUSIC spectrum,
Cumulant MUSIC spectrum for DOA estimation for the case of signal from six sources with equal
power ranging from angles θ = 1◦, 5◦, 21◦, 25◦, 41◦, 45◦ which is received using a ULA with N = 14
with K = 10 snapshots and noise variance of σ2 = 0.1. It is inferred that the proposed spectrum offers
a better performance than the existing spectrum-based methods, shown in Figure 8.

The resolution of the proposed spectrum is evaluated with respect to the angular separation for
the case of signal from two sources with equal power which is received using a ULA with N = 14
with K = 10 snapshots and noise variance of σ2· = 0.1. The resolution capability of the proposed
spectrum for resolving two sources is enumerated with the detection probability. So here, the angular
separation considered ranges from 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦ to 9◦. From Figure 9, it is very evident that
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Figure 7. Comparison of RMSE of cumulant based MUSIC spectrum and proposed spectrum with
respect to SNR.

Figure 8. Comparison of proposed spectrum with MUSIC and cumulant based MUSIC spectrum.

the proposed spectrum resolves the two sources with two peaks even at the angular separation of 2◦
whereas the Propagator [16] resolves them at the angular separation of 8◦, and cumulant based MUSIC
spectrum [17] and Propagator-Cumulant [21] resolve them at the angular separation of 6◦, respectively.
Also, the resolution performance of the proposed spectrum is evaluated by computing the half-power
spectral width, i.e., 3 dB around the spectral peak of the source, which is tabulated in Table 1.

Table 1. Resolution of the proposed spectrum.

DOAs 1◦ 5◦ 41◦ 45◦

3-dB Spectral width 3.3◦ 3.1◦ 2.9◦ 3.4◦

The computational complexity for constructing the cumulant matrix is given by O((N2)2K). So,
the number of complex multiplications required by the proposed spectrum with respect to angular
separation over the existing method is presented in Figure 10. It is very evident that the proposed
spectrum has the potential to resolve very closely spaced sources with minimum number of complex
multiplications over the Cumulant MUSIC spectrum.
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Figure 9. Comparison of detection probability of proposed spectrum, Cumulant MUSIC, propagator,
propagator-Cumulant with respect to angular separation.

Figure 10. Computational complexity.

4. CONCLUSION

In this work, the problem of resolving multiple closely spaced non-Gaussian sources corrupted with
Gaussian noise in DOA estimation is addressed. It is well known that higher order statistics (HoS)
based MUSIC spectrum would resolve the above stated problem. In HoS, fourth-order cumulant is
utilized, because of its special property of insensitiveness to Gaussian noise as the kurtosis of Gaussian
process is zero. However, it is observed that the fourth-order cumulant based MUSIC spectrum fails to
resolve the sources which are closely spaced to each other. So, in this work a fourth-order cumulant based
modified MUSIC spectrum is proposed which involves in the product of second-order differentiation on
fourth-order Cumulant MUSIC spectrum and fourth-order Cumulant MUSIC spectrum. The detailed
mathematical analysis of the proposed spectrum is presented with illustrations. The proposed work is
validated with several computer simulations such as RMSE with respect to the number of elements,
snapshots, and SNR. From this, the proposed method is observed to be computationally efficient for
hardware implementation applications due to the reduced requirement of number of elements and
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snapshots. The comparison of the proposed spectrum with MUSIC, Cumulant MUSIC is also presented.
Finally, the resolution of the proposed spectrum is evaluated with respect to the angular separation
and 3dB spectral width. From all the simulation studies, it is observed that the proposed spectrum
outperforms the existing Cumulant MUSIC, Propagator, and Propagator-Cumulant methods in terms
of estimation accuracy, resolution, and computational complexity. This approach has the potential to
be extended for addressing the near-field DOA estimation problem.
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