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Perturbative Approach for Fast and Accurate Evaluation of Quasi
Axially-Symmetric Cavity Resonance Frequency in Drift Tube Linacs
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Abstract—In this paper, we present an analytical method, employable with commercial full-wave
electromagnetic CADs, which allows full-wave simulations of large electromagnetic (EM) structures (i.e.,
in terms of wavelength), such as linear accelerator cavities (LINACs) and a very accurate estimation of
their operating frequency. The proposed technique is based on the exploitation of rotational symmetry
through the definition of equivalent axially-symmetric volumes which replace the non axially-symmetric
ones inside the structure being analyzed. After a theoretical study, we show the successful application
of the method in the real case study of a Drift Tube Linac (DTL) cell.

1. INTRODUCTION

Large EM problems in terms of operating wavelength, which often occur when dealing with the design
of linear particle accelerators [1], or characterized by very small geometrical details [2, 3], result in
rapidly growing mesh size and memory demand, hence simulation times may discourage or make
prohibitory any automated optimization procedure. Undoubtedly, the simplest idea to reduce the
required computational effort consists in making a coarse mesh to discretize EM models, in order to find
an approximate solution that, at least for very regular and highly symmetric shapes or for conventional
applications, can be considered satisfactory. However, such a solution cannot be applied to the case
of accelerating stages of charged particles, since relative errors of a few thousands of percent in the
estimation of the cavity lowest characteristic frequency result in an incorrect cavity tuning and thus in
an inefficient particle acceleration. In a typical DTL cavity such as the ESS DTL, for which the quality
factor Q is usually about 4 × 104 [4], a frequency error well below 0.2% is required, which corresponds
to the absolute frequency of ≈ 0.7 MHz for the nominal operating frequency f0 = 351.20 MHz, a typical
value adopted in standard LINAC DTL cavities [5]. For this reason, any geometric detail that would
produce a larger frequency detuning needs to be correctly included into the model.

To overcome such issues, analytical and numerical considerations can be made a priori before
simulating the entire model by a brute-force approach, to efficiently control the size of the problem to
be faced [6]. To this aim, the techniques usually adopted to reduce computational burden can be grouped
into two families: 1) exact methods able to scale-down problem size, such as domain decomposition [7, 8]
and reduced models that exploit geometrical symmetries [9–11] and 2) approximate methods based on
the elimination of small geometric details that break model symmetries. Exact methods lead to a
substantial reduction of the computational cost, so that reduced models are widely adopted in several
practical applications. Instead, the use of approximate methods provides only qualitative results and
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is limited to ideal scenarios, since they rely on a simplified geometric description of the problem. A
more appropriate approach is based on the replacement of some geometric details with properly chosen
equivalent volumes, with a more convenient geometry in terms of employed computational resources [12].

In this work, we describe a quantitative approach to deal with large quasi axially-symmetric EM
problems: firstly, suitable approximations are made to simplify the cavity model without considering
unnecessary geometric details, thus reducing problem size. Moreover, by using a general result of
perturbation theory [13, §6.7, pag. 306], a non axially-symmetric problem is transformed in an equivalent
axially-symmetric one, in which suitable fictitious equivalent volumes are introduced to predict and
correct any deviation from the accelerating cavity operating frequency. Such a hybrid method is able
to dramatically reduce the computational effort and to ensure a priori the required accuracy for the
design of accelerating stages of linear accelerators.

The paper is divided as follows. In Section 2, the problem formulation is presented. In Section 3,
the proposed method is tested numerically, and finally, in Section 4 conclusions are drawn.

2. PROBLEM FORMULATION

Exact methods that exploit mirror symmetries, translational invariance, periodicity, or even roto-
translational symmetries [9–11] can be applied only in special cases. Often the object symmetry is
broken, thus requiring the full geometry to be simulated: this is the case of a DTL cavity, where the
internal drift tubes are connected to the tank outer wall through metallic cylinders called stems, as
shown in Fig. 1.

Figure 1. Internal view of a DTL cold model for RF tests. The drift tubes (central elements) are
connected to the tank outer wall through physical metallic supports called stems.

2.1. DTL Operation Principles

To qualitatively recall the operation principles of a DTL, we consider a rotationally-invariant circular
cylindrical cavity (i.e., the so-called “pill-box” cavity) of radius a and length l, operating in the TMz

npq

cavity mode, labeled as usual by the integer numbers (n, p, q). For simplicity, in the following a standard
cylindrical reference frame (ρ, φ, z) will be assumed, in which ρ, φ, and z denote the radial, azimuthal
and axial field components, respectively. The electric field E(ρ, φ, z) = Eρρ̂ + Eφφ̂ + Ezẑ, being
ρ̂ = cos φx̂ + sin φŷ and φ̂ = − sinφx̂ + cos φŷ, can be expressed as
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in which for simplicity field proportionality constants have been omitted, together with the usual time-
harmonic convention e+jω0t, where ω0 = 2πf0 and f0 the frequency. Moreover, Jn(·) is the n-th order
Bessel function, and xnp is referred to the position of the p-th zeros of Jn. To accelerate charged
particles along the axial z-direction only, the electric field inside the cavity is required to be oriented
along the z-direction. Moreover, it does not have to exhibit azimuthal field dependence (n = 0) to avoid
the generation of an undesired transverse kick on charged particles. All these requirements are met by
exciting the TMz

010 cavity mode, so that E = Ez(ρ)ẑ, in which

Ez(ρ) ∝ J0

(x01

a
ρ
)

. (2)

The z-directed accelerating electric field is maximum on the cavity axis, which is the path of charged
particles. However, to obtain net acceleration the cavity has to be modified by introducing the so called
drift tubes, which are placed along the path of charged particles in the positions in which the electric
field is reversed and would produce a deceleration [4]. To obtain a net energy gain, drift tubes are placed
along the cavity divided in cells of increasing lengths βλ0 = (v/c)λ0, with λ0 = c/f0 being the operating
wavelength and β the particle relativistic velocity, which increases as it moves along the cavity axis. In
Fig. 2, the detail of the DTL cavity is shown.

z
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Drift tubes

z = 0z = - l
2 z = l

2

Figure 2. The DTL can be considered as a chain of accelerating cells, in which the separation between
adjacent cells has been removed. The so-called drift tubes shield particles when the electric field
decelerates them and concentrate the field in the gap between adjacent cells (in the figure, at z = 0).

Drift tubes modify the EM mode along the charged particle path without breaking the circular
symmetry. The presence of drift tubes perturbs the z-uniform field distribution in Eq. (2), by introducing
a new field distribution Ez(ρ, z), which depends on both ρ and z, but again it does not depend on φ
(see Fig. 3). Thus, the EM problem is azimuthally-invariant and can be solved as a 2D problem [14].
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Figure 3. Multi-cell view of a DTL cavity, in which electric field lines are highlighted.

In Fig. 4(a), a perfectly rotationally-symmetric DTL half-cell, simulated with the software
Superfish [15, 16], is shown. As it is apparent, the field depends on ρ and z coordinates but not on
φ: the line of force of the electric field, E = Eρρ̂ + Ez ẑ, is shown oi the same Fig. 4(a), while the
accelerating electric field Ez along the cavity axis is shown in Fig. 4(b).
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Figure 4. (a) Electric field lines of force in the Superfish DTL half-cell representation (due to the z
reflection symmetry only half is actually simulated). Thanks to the rotational symmetry, a 2D problem
is solved and accordingly an extremely fine mesh can be used. (b) Axial electric field, |Ez(ρ = 0, z)|,
versus z.

However, as pointed before, in a real DTL cavity drift tubes must have physical supports called
stems. The stems break the circular symmetry.

2.2. Real DTL Cell

The typical DTL cell geometry is shown in Fig. 5; it is apparent that a reduced model employing
rotational symmetry cannot be applied, since it is broken by the presence of the stem. Only if we
neglect the presence of stem, both the geometry and the EM field are perfectly rotationally-symmetric.
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x z

(a) (b)

Figure 5. (a) 3D and (b) side view of a DTL cell model. The presence of stem breaks the rotational
symmetry.

As a first approximation, we may leave out the stem and get through the approximate model shown
in Fig. 6(a). Such a structure can be conveniently simulated either considering an angular slice like the
one shown in Fig. 6(b) (i.e., a quasi-2D model [11]) or considering an exact 2D model (see Fig. 4(a)) that
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Figure 6. 3D representation of a DTL cell: (a) full structure without stem and (b) cell slice that can
be conveniently simulated forcing periodic boundary condition on the two radial faces (cross sections).

considers an analytical 2π rotation (due to φ-invariance) in the differential equation to be solved [14].
This approximate and oversimplified lower-dimensionality approach provides only qualitative results.
Nevertheless, it is often adopted for reasoning in all the study cases in which precise quantitative results
are not required.

However, in the case at hand, this approximate model can be affected by a large frequency error,
providing only qualitative information that cannot be used for DTL fine tuning. Indeed, although
stems are located in a region of the cavity in which they introduce almost no perturbation on the
accelerating axial electric field, their presence affects the EM field in the volume in which they are
inserted. Consequently, the presence of stems results in a “large” shift of cavity resonant frequency,
thus they cannot be safely neglected and removed from the cavity model.

2.3. Numerical Error Compensation

As outlined previously, the stem breaks the rotational symmetry of the DTL cell. As a first
approximation, one could try to remove this component in the simulated model, in such a way to
restore the lost symmetry. However, a noticeable frequency error arises, since the cavity resonant
frequency increases if a volume ΔV is subtracted (by inserting a metal object) in a region in which
strong magnetic and weak electric fields are present. This is the case of stems, which are located in
such regions. Vice versa by neglecting them, a volume is added to the cavity, and the simulated cavity
resonance frequency decreases.

To overcome such an issue, here we propose a numerical method able to take into account the
presence of symmetry-breaking stems. According to basic EM theory, in a resonant cavity stored
magnetic and electric energies are balanced. When the cavity is perturbed (in our case the perturbation
is due to virtual stem presence/removal), the “perturbation” produces a displacement of electric and
magnetic energies and in turn a frequency shift to restore it [4]. Such a frequency error can be predicted
and corrected. Let us consider an ideal unperturbed cavity (#1) with no stems, resonance frequency
f1, and volume V1, and a perturbed cavity (#2) with resonance frequency f2 = f1 + Δf and volume
V2 = V1 − ΔV , in which ΔV accounts for the volume subtracted from the cavity by the presence of
stems. For simplicity, in the unperturbed cavity #1 the EM field is labeled by {E1,H1}, whereas in
the perturbed cavity #2 the EM field is labeled by {E2,H2}. The stem is placed in a region of the
cavity in which it does not significantly alter the EM field distribution, hence we can safely assume
{E2,H2} ≈ {E1,H1} = {E,H}.

According to [13, Eq. (6.107)], the approximate relative variation of the resonant frequency can be
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written as
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are the time-averaged stored magnetic and electric energies removed by the perturbing volume/object
ΔV , respectively, whereas
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1
4
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V

(μ0|H|2 + ε0|E|2)dV (6)

is the total stored energy inside the cavity with volume V = V1. We will use Eq. (3) to first predict
and then correct the frequency error introduced by the presence of the stem or by any geometric
approximations. The prediction is based on the application of Eq. (3) with ΔV = Vreal-stem. The
correction is based on a model representing the DTL cell with a “virtual stem volume” ΔV = Vvirtual-stem,
which correctly accounts for the frequency shift introduced by the real stem, without breaking the
rotational symmetry, thus allowing 2D or quasi-2D simulation.

The virtual stem volume can be calculated by relating the magnetic field in the region that the
“virtual stem” is placed and the average magnetic field along the real stem, since both real and virtual
stems lay in a region of low electric energy density, which is 1

2ε0|E|2. Hence, we can consider only the
displacement in magnetic field energy density, 1

2μ0|H|2. To compensate the frequency shift we require
that the total “removed” magnetic energy, ΔUm, is left unchanged in both scenarios. We enforce the
same ΔUm when we consider the real stem (ΔV = Vreal stem), and then a virtual rotationally-symmetric
stem (ΔV = Vvirtual stem), so that∫∫∫

Vreal stem

μ0|H|2dV =
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μ0|H|2dV (7)
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where S = πr2
stem is the real stem cross-section. It should be noticed that since rstem � λ0, the volume

integral in Eq. (7) can be reduced to a line integral; in Eq. (8) the line-averaged (volume-averaged)
magnetic field HL-avg (HV-avg) is also implicitly defined, so that Eq. (8) can be written as

1
2
SLstemH2

L-avg ≈ Vvirtual stemH2
V-avg, (9)

Equation (9) can be used to derive the required Vvirtual stem from the real stem geometric parameters, S
and Lstem (stem length), once knowing the ratio (HL-avg/HV-avg)2. The factor 1/2 in Eq. (9) has been
inserted to take into account that only half-cell (half stem) is considered in the calculation.

3. NUMERICAL VALIDATION

Let us consider the 3D scenario in Fig. 5 and the 2D cross section in Fig. 7, in which the relevant
geometrical parameters are reported in Table 1. By assuming a total stored energy inside the cavity
equal to U = 0.81 J, the average magnetic field has been evaluated along the stem height, so that
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Figure 7. Half DTL cell. Blue highlighted areas are (a) real and (b) virtual stem.

Table 1. Relevant geometrical parameters.

Parameter Value (m) Value (λ0) Description
rcell 0.2605 0.305 cell radius
l 0.2890 0.338 cell length

Lstem = rcell − rdrift 0.2155 0.252 stem length
rstem 0.014 0.016 stem radius

HL-avg =
(

1
Lstem

∫ rcell

rdrift
|H(ρ, z = l

2)|2dr
) 1

2 � 5758 A/m. If the stem volume is neglected, it would lead to

a relative frequency error of Δf
f0

≈ ΔUm
U ≈

µ0
4

SLstemH2
L-avg

U ≈ 0.3%, where f0 = 351.20 MHz.
The rotationally-symmetric volume that has to replace the real stem can be arbitrary shaped,

but it is useful to choose a canonical one to make calculations simpler. Hence, let us consider a
triangular surface and the volume obtained by rotating it around the cell symmetry axis, so that
Vvirtual stem = 2πrdrift

(
1
2hb

)
, in which rdrift is the external radius of the drift tube, and h, b are the

triangle height and base, as shown in Fig. 7(b).
By considering that the magnetic field in a DTL cell is dominantly concentrated in the neighborhood

on its outer wall, i.e., close to (ρ, z) = (rdrift, l/2) (Fig. 7(b)), the magnetic energy associated with the
virtual stem can be approximated as ΔUm in Eq. (4), with ΔUm ∝ H2

V-avgVvirtual stem = H2
V-avgπrdrifthb.

The magnetic field is calculated as HV-avg ≈ |H(ρ = rdrift, z = l/2)| ≈ 10264 A/m, in which the reference
value of U = 0.81 J for the total stored energy inside the cavity is assumed. From Eq. (9), the virtual
stem volume is

Vvirtual stem ≈ H2
L-avg

H2
V-avg

1
2

SLstem =
H2

L-avg

H2
V-avg

1
2

πr2
stem Lstem, (10)

where rstem is the stem radius. By substituting appropriate numerical values, one finds Vvirtual stem �
20879 mm3. By arbitrarily fixing the triangle height to h = 25 mm, the triangle base b can be easily
evaluated as b = Vvirtual stem

πrdrifth
. The determined triangle base is b � 6 mm.

The cell has been simulated in CST by considering the calculated volume (quasi-2D model) as
shown in Fig. 8, i.e., a cell angular sector of 90◦. An operating frequency of f1 � 350.95 MHz has
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Figure 8. Application of the equivalent volume method to a DTL cell using CST commercial simulator,
where only an angular sector of 90◦ has been simulated. A normal deviation angle [17] of α = 5◦ is also
used to ensure accurate results [6].

been found, which is in good agreement with that found by considering a full 3D simulation of the cell
comprising the real stem (f0 = 351.20 MHz).

The quasi-2D method can be easily extended at a multicell cavity with minor calculation effort.
For validation, a DTL tube composed of six cells of the ESS DTL tank 4 with different lengths has
been simulated. For each cell, the numerical method has been applied, and appropriate rotationally
symmetric triangular volumes have been introduced. The approximation error does not accumulate for
a multi-cell cavity as compared to a single cell cavity, provided that the equivalent volumes are correctly
calculated for each cell. For the multi-cell DTL of six cells, the numerical error results Δf

f0
� 0.06%,

almost equal to the single-cell one.
It is worth mentioning that the applicability of the proposed method requires the basic underlying

hypothesis of perturbation method to be satisfied, i.e., it is required that the actual field of the modified
cavity does not differ significantly from the reference one.

In the case of a DLT cell we are interested only in the accelerating on axis electric field, which is
large only between the two drift tube halves. Moreover, the metallic volumes are inserted in a region
with a predominance of magnetic field: so the on-axis electric field is not much affected by the insertion
of the triangular equivalent volume or by the insertion of the real stem. However, this could not be the
case if one considers different geometries.

For completeness, in Table 2 we report the simulation time required for 2D, quasi-2D (angular
sector of 90◦), and full 3D simulations of the DTL cell. For the 2D simulation, Superfish has been
adopted, and it can be noticed that the simulation time is extremely fast with respect to the full 3D
simulation (a factor of 120 for a single cell). It can also be seen that the quasi-2D simulation performed
with the presented method employs about 1/3 of the time required for a full 3D simulation of the same
cell comprising the real stem volume.

It should be emphasized that the time required for the full 3D simulation (approx. six minutes)
refers to a single DTL cell. Actually, a complete DTL is composed of roughly 30 coupled cells (such as
the case of the tanks 2 to 5 of the ESS DTL), resulting in a dramatic increase of computational effort for

Table 2. Comparison between 3D, quasi-2D and 2D simulation times and mesh elements used.

3D quasi-2D 2D
Mesh elements 188190 88363 87360
Simulation time 6m 2 m: 30 s 3 s
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Figure 9. Electric field along the longitudinal z direction for half DTL cell obtained with 3D, quasi-2D
and 2D simulations. The 2D simulation does not take into account stem presence; however, apart from
a frequency shift, this has no impact on the on-axis electric field.

simulating the full 3D structure with real stem volumes. For instance, using Ansys HFSS [17], the full
3D simulation of the DTL tank 4 of the ESS project results in a mesh about 6.3 million of elements and
requires a simulation time about 6 h, by using 192 GB of RAM and a multi-core processor (14 cores).
In the latter case, the full structure simulation results are strongly aided by using the quasi-2D method
here proposed, in terms of both time and saved computational memory.

In Fig. 9, the on-axis accelerating electric field inside the DTL cell, Ez, is compared quantitatively
among the 2D, quasi-2D, and 3D simulations; it can be observed that the approximation introduced
has no impact on the axial field as well as on particle energy gain. By taking the electric field of the
2D simulation as the reference case (due to the extremely fine mesh used), the computed quantitative
errors, intended as the maximum field value difference between the 2D simulation vs. the quasi-2D
and the full 3D simulation, are respectively 1.24% and 1.86%. For our purposes, these differences are
absolutely tolerable, and the three field results can be considered in excellent agreement.

4. CONCLUSIONS

In this work, an analytical relation to predict and compensate the numerical error introduced by a local
geometrical approximation is proposed; the presented variational formula allows to restore rotational
symmetry in large DTL resonant tanks/cavities. The method has been tested through simulations,
returning good results if small non rotationally-symmetric volumes in the model are replaced by
equivalent rotationally-symmetric ones. The procedure has been validated on a DTL cell model and
allowed to compensate the frequency shift Δf relative to the real stem by introducing an analytically
derived equivalent volume. The obtained numerical results show that it is quite accurate. The possibility
to carry out much faster quasi-2D simulations, by enforcing at the same time a very fine mesh and by
considering the stem presence, allowed a very fine tuning of the ESS DTL tanks without being stranded
with computationally expensive 3D simulations. As an example, the application of the presented method
during the numerical tuning of the ESS DTL tank 2 allowed the realization of a cold model for RF tests
with measured resonant frequency of f0 = 351.35 MHz.
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