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Multipole-Based Cable Braid Electromagnetic Penetration Model:
Magnetic Penetration Case
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Abstract—The goal of this paper is to present, for the first time, calculations of the magnetic
penetration case of a first principles multipole-based cable braid electromagnetic penetration model. As
a first test case, a one-dimensional array of perfect electrically conducting wires, for which an analytical
solution is known, is investigated: we compare both the self-inductance and the transfer inductance
results from our first principles cable braid electromagnetic penetration model to those obtained using
the analytical solution. These results are found in good agreement up to a radius to half spacing ratio
of about 0.78, demonstrating a robustness needed for many commercial and non-commercial cables.
We then analyze a second set of test cases of a square array of wires whose solution is the same as the
one-dimensional array result and of a rhomboidal array whose solution can be estimated from Kley’s
model. As a final test case, we consider two layers of one-dimensional arrays of wires to investigate
porpoising effects analytically. We find good agreement with analytical and Kley’s results for these
geometries, verifying our proposed multipole model. Note that only our multipole model accounts for
the full dependence on the actual cable geometry which enables us to model more complicated cable
geometries.

1. INTRODUCTION

The topic of electric and magnetic penetrations through shielded cables is of great importance and has
a long history, including solid shields [1], cable braids and shielding [2–5], porpoising effects [6], and
low-frequency diffusion [7].

This paper focuses on reporting for the first time calculations of the magnetic penetration case of
the rigorous cable braid penetration model discussed in [8–10] for perfect electrically conducting wires.
Transmission line models are often used to model shielded cables. Sample per-unit-length cells for
shield and inner conductor transmission lines of a single-shield cable are provided in Fig. 1. The shield
properties are modeled via the per-unit-length impedance and admittance parameters Zsh and Ysh as
in Fig. 1(a). Because of electric and magnetic field penetrations, currents and voltages are induced on
the inner conductor, modeled via the per-unit-length self-impedance Zc and the self-admittance Yc in
Fig. 1(b), which are formed by the inner conductor and the shield. The penetration mechanisms are
modeled via the per-unit-length transfer impedance ZT (proportional to the transfer inductance LT )
and the per-unit-length transfer admittance YT (proportional to the transfer capacitance CT ) in the
form of distributed voltage and current generators as in Fig. 1(b). All these transmission line parameters
take into account the braid weave characteristics and material of the shielded cable [2–5, 8, 9, 11].

In [12], we have reported a multipole model for the electric penetration to evaluate the per-unit-
length transfer capacitance CT and the per-unit-length self-capacitance Cc. In general, however, it is
common for the magnetic penetration to dominate the response of a cable, and is an important topic
of investigation. Note that in this paper we limit our investigation to perfect electric conductor wires
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(a) Shield transmission line (b) Inner conductor transmission line

Figure 1. Per-unit-length cells for the (a) shield and (b) inner conductor transmission lines of a
single-shield cable.

as a step toward the final braid description including losses arising from finite conductors, which will
be included in future work.

Generally, the complete semi-empirical model assembled by Kley [13] based on canonical models
augmented by measurements of typical commercial cables is used to estimate CT and LT . This model
is quite useful and identifies the fundamental penetration mechanisms. However, our goal here is to
apply our first principles model [8, 9] that delivers results for LT and the per-unit-length self-inductance
Lc that are dependent on the detailed geometry of the cable in question. In turn, this would allow the
modeling of cables that deviate from typical geometries employed in commercial cables.

The paper is structured as follows. We summarize in Sec. 2 the first principles model based on
multipoles for magnetic penetration, discussing both co-location and Galerkin approaches. We then
apply in Sec. 3 our first principles model to a canonical structure, namely a one-dimensional array of
wires, which can be modeled analytically. Then, in Sec. 4, we devise a square array test case whose
solution can be constructed through the one-dimensional array result. We further analyze a rhomboidal
array test case whose solution is estimated via Kley’s model. We also investigate porpoising effects in
Sec. 5 through the analysis of a structure made of two layers of one-dimensional arrays of wires. All the
results here reported verify the correctness of the proposed first principles multipole model for magnetic
effects.

2. MULTIPOLE MODEL FOR MAGNETIC PENETRATION

The cable penetration model is based on finite-length magnetic line multipoles. In general, increasing
the number of multipoles provides more means to model the magnetic charge distribution in each of the
wire segments, and leads to more accuracy at the cost of more complicated multipole moment formulas.

We set up the magnetic braid problem in a manner similar to the electric problem reported in [12]
through a combination of the filament magnetic vector potential Af (used to represent the net current
carried by each braid wire) and magnetic scalar potential φm (used to match the boundary conditions
on the wire surface). The magnetic induction B and magnetic field H are given by

B = μ0H = −μ0∇φm + ∇× Af , (1)

where μ0 is the absolute permeability of free space. We consider the situation where the region above
the wires represents the inner region of the cable.

The magnetic flux Φ through a surface S, bounded by contour C, from this representation is given
by

Φ =
∮
C

Af · dl − μ0

∫
S

∇φm · ndS. (2)

which then is used to define the transfer inductance as LT = Φ/H0 [14], where Φ is the magnetic flux
per unit length passing between the wires and the point y → +∞ and the drive uniform magnetic field
in the planar problem below the wires is H inc = H0x (y = 0 is at the center of the structure; note that
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x is a unit vector in the x direction, and n is a unit vector normal to the surface S). A similar definition
can be introduced for the self-inductance Lc exciting the cable from above.

The magnetic scalar potential is here represented by a magnetic multipole summation similar to
the electric problem [12] and by a magnetic current filament (and the field given by the magnetic vector
potential). The solution for a varying magnetic line charge qm(z) is

φscatt =
1

4πμ0

∫
qm

(
z′

) dz′

|r − r′| . (3)

It is efficient to represent the magnetic scalar potential φm by a magnetic multipole summation to
capture the transverse field behavior. The potential for an axially varying line charge q(s) discretized
as pulses of strength qn is (where s is the axial coordinate along segment n and ρ is the transverse
coordinate [8, 9])

φscatt = −
N∑

n=1

qn

4πμ0
ln

⎡
⎣(s − sn/2) +

√
ρ2 + (s − sn/2)2

(s + sn/2) +
√

ρ2 + (s + sn/2)2

⎤
⎦. (4)

Following the steps in [8, 12], we include a series of line multipole moments in the potential, which
for a given position n, is written as

φn
scatt =

−1
4πμ0

M∑
m=0

p(0)p(1) . . . p(m) · ∇m
t ln

⎡
⎣(s − sn/2) +

√
ρ2 + (s − sn/2)2

(s + sn/2) +
√

ρ2 + (s + sn/2)2

⎤
⎦ , (5)

and the total potential is φtot
scatt =

N∑
n=1

∞∑
j=−∞

∞∑
k=−∞

φn
scatt, with ∇t the “del” operator transverse to the

particular wire segment. The final matching equation to determine the 2M multipole moments (which
are transverse vector components: M +1 even moments and M − 1 odd moments in the azimuth about
the wire segment) on each of the N segments of the braid wires imposes one of the following conditions:

n · H = 0 = n · (−μ0∇φm + ∇× Af

)
, (Co-location)

0 =
∫ 2π

0
n · (−μ0∇φm + ∇× Af

)(
εm cos (mφ)
−2 sin (mφ)

)
dφ, (Galerkin)

(6)

with n the radial vector to the wires, and

Af =
μ0

4π

N∑
n=1

∞∑
j=−∞

∞∑
k=−∞

Inesn ln

⎡
⎣ (s − sn/2 − jusn − kvsn) +

√∣∣ρ − juρn − kvρn

∣∣2 + (s − sn/2 − jusn − kvsn)2

(s + sn/2 − jusn − kvsn) +
√∣∣ρ − juρn − kvρn

∣∣2 + (s + sn/2 − jusn − kvsn)2

⎤
⎦ . (7)

The co-location method assumes a number of matching points equal to the number of multipole
coefficients (1 for the filament, 3 for the dipole, 5 for the quadrupole, and 7 for the octopole). The
Galerkin method has instead NG integration points around each wire for each multipole order, and
εm = 1 if m = 0 and εm = 2 otherwise. We implemented a trapezoidal rule to perform the Galerkin
integral in Eq. (6), but higher order integration algorithms (e.g., Gauss or Newton-Cotes) could be
employed to reduce the number of required points.

The actual solution technique decomposes the problem of an Hx = H0 magnetic field below the
braid and zero magnetic field above the braid as in Fig. 2(a) and the problem of an Hx = H0 magnetic
field above the braid and zero magnetic field below the braid as in Fig. 2(b) into the superposition of
two problems. The first problem (referred to as Problem A) is setup with an x-directed uniform incident
field Hx = H0/2 and zero current on the braid wires as in Fig. 2(c). The second problem (referred to as
Problem B) is setup with a zero incident field and a total current I flowing on the wires composing the
braid as in Fig. 2(d). The solution to the problem in Fig. 2(a) is then reconstructed by summing the
solutions of Problems A and B, while the solution to the problem in Fig. 2(b) is obtained by subtracting
the solution of Problem B from the one of Problem A.
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(c) Problem A (d) Problem B

(a) Excitation from below (b) Excitation from above

Figure 2. The problems of (a) an Hx = H0 magnetic field far below the braid and zero magnetic field
far above the braid and (b) an Hx = H0 magnetic field far above the braid and zero magnetic field far
below the braid are decomposed into (c) a problem with no wire currents but a symmetric uniform-field
H0/2 at large distances, and (d) a problem with distant antisymmetric field ±H0/2 on the two sides
(with the discontinuity supported by the current I).

Through the multipole model, the transfer inductance is computed using

LT =
1

I1Ish�

∫
S0

(
μ0

Afc

B0

)
Hsh,0 · H0dS − 1

I1Ish�

∫
Sw

Afsh · K1dS, (8)

where the subscripts “sh” and “1” indicate excitation from below (as in Fig. 2(a)) and from above (as in
Fig. 2(b)), respectively, I is a unit cell current, S0 is a surface far away above the braid, Sw is the wire
surface, � is the unit cell period, Af is the filament vector potential, K1 = −n × H1, with n pointing
into the wire center, is the wire current accounting for all the multipolar contributions, and the constant
Afc/B0 is computed via

Afsh,z ∼ μ0
Afc

B0
ez ·

[
n × Hsh,0

]
(9)

with ez the segment direction and n pointing toward the inner conductor of the cable.
The self-inductance is in general given by Lc = L0 + ΔL1, where L0 is an auxiliary inductance and

ΔL1 is a correction term. The correction to the self inductance is similarly computed through

ΔL1 =
1

I2
1 �

∫
S0

(
μ0

Afb

B0

)
H0 · H0dS − 1

I2
1 �

∫
Sw

Af1 · K1dS, (10)

and the constant Afb/B0 is computed via

Af1,z ∼ −μ0

[(
ρ − ρ

m
+ n

Afb

B0

)
× H0

]
· ez (11)

where ρ is the observation position far away and ρ
m

denotes the average braid position.
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3. ONE DIMENSIONAL ARRAY OF WIRES

This section considers the effects of line magnetic multipole additions to the simple filament
approximation in representing the elements of a one dimensional wire array, schematically shown in
Fig. 3. The case of a one-dimensional array of wires represents a problem that is interesting on its own.
The analytic solution for this test case for both transfer and self-inductance checks the basic multipole
solution accuracy for shield wires in close proximity but does not include all the characteristics of a
braided shield (for which no analytic solution exists).

Figure 3. A one dimensional array of wires with period 2w along the x direction and radius a. Note
the wires are infinitely extended along the z direction.

The array is periodic in x with infinitely extended wires oriented along the z axis with wire spacing
2w and wire radius a. We will examine general ratios of wire radius a to wire half spacing w to determine
the accuracy of the proposed multipole model.

The multipole model will be compared to an analytical solution developed in [14]. The self-
inductance is in general given by Lc = L0 + ΔL1, where L0 is an auxiliary inductance and ΔL1 is
a correction term given by an analytical solution up to the quadrupole term as

2π
μ0

ΔL1 = − ln
[
2 sinh

( πa

2w

)]
−

(πa

2w

)
tanh

(πa

2w

)
+

ln
{
sinh

(πa

2w

)
/ sin

(πa

2w

)}

1 + sinh2
( πa

2w

)
/ sin2

(πa

2w

) . (12)

An accurate approximation to the transfer inductance (which holds for all ratios of radius
to spacing) uses the exponential decay from the bipolar system of coordinates (representing two
cylinders) times the conformal mapping filament array result. The distance d = O(a) = ca, with
c = 0.5

√
1 + πa/(2w), is taken to represent the termination point for the bipolar decay in the conformal

mapping multipole results to account for the missing decay in the filament result, leading to

LT,bs ≈ −μ0

2π
ln

(
1 − e−πa/w

)
exp

⎡
⎣−2π

arctan
(
c/

√
w2/a2 − 1

)

ln
(
w/a +

√
w2/a2 − 1

)
⎤
⎦ , (13)

with subscript “bs” denoting bipolar solution.
The self- and transfer-inductances from the first principles multipole model [using both co-location

and Galerkin boundary conditions in Eq. (6)] are reported in Figs. 4 and 5 versus a/w considering up
to order M = 0 (filament), 1 (dipole), 2 (quadrupole), and 3 (octopole). Note the actual values a
and w are not important because the results are shown versus the ratio a/w, the only parameter the
self and transfer inductances depend on as shown in Eqs. (12) and (13). (In our implementation, we
fixed a = 0.0025 inches and varied w, but this choice is arbitrary. Note we also arbitrarily assume the
period along the z-direction to be equal to a.) Solid lines are computed using the co-location boundary
condition, while other results are computed using the Galerkin method with NG = 7 and 20 (for the
self-inductance) and NG = 7, 20, 50, and 100 for the transfer inductance, respectively. Looking at the
co-location results (blue curves), one can see that they provide reasonable but limited accuracy due
to the small number of matching points used (the right-hand blue curves in Fig. 5(a) and Fig. 5(c)
are invalid co-location results for large a/w). Improved results are obtained when using the Galerkin
method, with the number of samples required in the integration depending on the multipole order
considered. The self-inductance generally converges quickly, with NG = 7. However, for the transfer
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(a) Filament (b) Dipole

(c) Quadrupole (d) Octopole

Figure 4. The self-inductance of a one dimensional wire array versus the ratio a/w using the first
principles magnetic multipole penetration model up to order (a) M = 0 (filament), (b) M = 1 (dipole),
(c) M = 2 (quadrupole), and (d) M = 3 (octopole). Both the co-location and the Galerkin method are
used here.

inductance, while NG = 7 is enough for the filament term, NG = 20 is required for the dipole, and
NG = 100 for the quadrupole and the octopole.

We then compare in Fig. 6 the results using the Galerkin boundary condition with the largest NG

considered for each multipole order in Fig. 5 to the analytical solutions in Eqs. (12) and (13) for the
self and transfer inductance, respectively. One can notice that the filament solution works well only
for small values of a/w, and that increasing the multipole order in general increases the dynamic range
where there is agreement with the analytical solution. While the self-inductance term ΔL1 is very well
estimated when considering up to the dipole term in the first principles multipolar solution, a different
situation is observed for the transfer inductance LT , where the agreement with the bipolar solution LT,bs

is best when using up to the octopole moment, covering a dynamic range of up to a/w ≈ 0.78. This
value is larger than what the co-location provides (about a/w ≈ 0.6), and shows the better accuracy of
the Galerkin method. These results give us the confidence that our first principles model works within
the geometric characteristics of many commercial cables.

4. SQUARE AND RHOMBOIDAL ARRAYS

In this section we consider both a square array structure (with braid angle of α = 45◦ and periods of
0.179245 inches) and a rhomboidal array structure (with braid angle of α = 34.2◦) comprised of straight
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(a) Filament (b) Dipole

(c) Quadrupole (d) Octopole

Figure 5. The transfer inductance of a one dimensional wire array versus the ratio a/w using the first
principles magnetic multipole penetration model up to order (a) M = 0 (filament), (b) M = 1 (dipole),
(c) M = 2 (quadrupole), and (d) M = 3 (octopole). Both the co-location and the Galerkin method are
used here.

wires (with no porpoising effects) with radius 0.0025 inches as in Fig. 7. The illuminating magnetic field
induces currents on the wires composing the array (equal currents in the square array case). Note that
because the response of these arrays are mainly dominated by the monopole order, we use the Galerkin
method with NG = 2 (up to the filament) and NG = 3 (up to the dipole).

We investigated the convergence with respect to the discretization of our mesh by using several
discretizations in terms of number of segments per wire in the unit cell. This study is necessary to make
sure we are obtaining consistent results, and a summary is reported in Fig. 8 for the transfer inductance
(very similar values are calculated for the self-inductance). We observe that there is little variation in
the results by increasing the number of segments per wire for a given multipole order, with the filament
solution already providing an acceptable value for the array parameters.

It is instructive to analytically model the square array as the collection of two one-dimensional
arrays for which we know the solutions of self- and transfer inductances, which are the same as the
ones exhibited by the one-dimensional array. Comparing the multipolar results achieved for these
inductances to the values estimated by the results of the one-dimensional array in Fig. 8 (dashed
red line, computed as the thin-wire approximation form of LT = μ0w ln[w/(πa)]/(π2Dm)), we find
them in good agreement, verifying our first principles model. For the rhomboidal array case, a simple
analytical solution is not available; however, we can use Kley’s model (keeping only the contribution
from ML = 0.875πμ0(1 − G)3[2 − cos(α)] exp(−τh)/(6m) due to absence of porpoising effects, with
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(a) (b)

Figure 6. (a) The self and (b) the transfer inductance of a one dimensional wire array versus the ratio
a/w using the first principles magnetic multipole penetration model up to order (a) M = 0 (filament),
(b) M = 1 (dipole), (c) M = 2 (quadrupole), and (d) M = 3 (octopole). The Galerkin boundary
condition in Eq. (6) with the largest NG considered for each multipole order is used here. The black
dashed-dotted curves are the analytical results in Eqs. (12) and (13).

Figure 7. Schematic of a square/rhomboidal array comprised of straight wires.

τh = 0.8τe, τe = 12G(B2d/Dm)1/3, B = G(2 − G), G = G0/ cos(α), G0 = mnd/(2πDm), d = 0.005 inch
is the wire diameter, Dm = 0.1277 inch is the average braid diameter, n = 1 is the number of wires
per m = 4 carriers) to give an estimate of the transfer inductance, also reported in Fig. 8 as a dashed
red line (these formulas give LT = 163.9 nH/m for the square array), in good agreement with the first
principles model estimates for the rhomboidal array.

5. TWO LAYERS OF ONE-DIMENSIONAL ARRAYS OF WIRES

In this section we consider a structure comprising two layers of one-dimensional arrays of wires as in
Fig. 9 in order to estimate porpoising effect. Each one-dimensional array is as in Fig. 3 (radius a and
periodicity 2w), and the distance along the y direction between the two layers is 2h.

We consider here the two cases of h = 2a and h = 10a, for which we develop analytical solutions
for both the self and transfer inductance. These analytical solutions are based on a two-dimensional
multipole-conformal mapping expansion for the wire currents. Note this multipole-conformal mapping
method is valid only for the case of one-dimensional arrays of wires, while our first principles model is
applicable to general cable structures.

We compare in Fig. 10 and Fig. 11 the results for the self and transfer inductance, respectively,
from the first principles model considering up to the octopole moment using the Galerkin boundary
condition with NG = 100 to the analytical solutions from the multipole-conformal mapping expansion
with M = 1 and M = 7. One can notice that, due to porpoising effects, these results are rather different
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Figure 8. The values of LT in nH/m computed using the first principles model with up to the filament
(circles) and up to the dipole (crosses) for both a square array and a rhomboidal array with straight wires
for several mesh discretizations. The expected results from a one-dimensional array solution (square
array) and Kley’s solution (rhomboidal array) are also provided as dashed red lines.

Figure 9. Schematic of a structure comprising two layers of one-dimensional arrays of wires, and the
distance between the two layers is 2h.

(a) h = 2a (b) h = 10a

Figure 10. The self inductance of a structure comprised of two layers of one dimensional arrays of
wires versus the ratio a/w using the first principles magnetic multipole penetration model up to order
M = 3 (octopole) with NG = 100 (red curve). The purple and black curves are the analytical results
from the multipole-conformal mapping expansion with M = 1 and M = 7. The green solid curve is the
octopole result from the first principles model in Fig. 6 for a single layer.
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(a) h = 2a (b) h = 10a

Figure 11. The transfer inductance of a structure comprised of two layers of one dimensional arrays of
wires versus the ratio a/w using the first principles magnetic multipole penetration model up to order
M = 3 (octopole) with NG = 100 (red curve). The purple and black curves are the analytical results
from the multipole-conformal mapping expansion with M = 1 and M = 7. The green solid curve is the
octopole result from the first principles model in Fig. 6 for a single layer.

from the single layer results, and both self and transfer inductances are dominated by porpoising
effects and become more negative. Good agreement with the analytical model is observed for both
the self-inductance term ΔL1 and the transfer inductance LT of the dual layer structure, confirming
that porpoising effects are well modeled in our first principles model. Because the inductances are
dominated by porpoising effects, less multipoles are required for an accurate estimation (note that the
two conformal mapping solutions with M = 1 and 7 provide almost the same result). Also, one should
keep in mind that porpoising effects in realistic cable structures will be less accentuated than what is
shown in this test case.

6. CONCLUSION

In this paper we have verified the magnetic penetration case of our first principles, multipole-based
cable braid electromagnetic penetration model reported in [8, 9]. We have implemented two methods,
namely the co-location method and the Galerkin method, and showed that the latter provides more
accurate results. We have first compared the results from our model for a one dimensional array of wires
to previously reported analytical solutions. These results were found in good agreement up to a radius
to half spacing ratio of 0.78, within the characteristics of many commercial cables (and consistent with
the validity of our electric penetration case reported in [12]). We then considered three more complex
situations: a square array and a rhomboidal array with straight wires (to purposefully avoid porpoising
effects) as well as a structure comprising two layers of one-dimensional arrays of wires. While for the
square array we compared the results from our first principles model to the results obtained using a
scaled solution of the one dimensional array results, the transfer inductance of the rhomboidal array
was estimated using Kley’s model. Furthermore, the structure comprising two layers of one-dimensional
arrays of wires was compared to a multipole-conformal mapping expansion method. Results were
found in good agreement, verifying our model. The first principles model accounts for the actual cable
geometry, which is particularly useful if perturbations (such as twisting or interweave changes) exist in
the geometry versus nominal commercial braid parameters.
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