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Design of a Directional Antenna Based on a Resonance Based
Reflector and Its Applications on Bio-Electromagnetics
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Abstract—A wideband resonance-based reflector (RBR) is proposed in this paper. It has an in-
phase reflection band from 2.61 GHz to 5.59 GHz (72.68%), while high reflection magnitude is also
obtained in the band. The proposed RBR was applied to an elliptical monopole antenna, and then, the
omnidirectional radiation patterns are transformed to be unidirectional ones. The antenna profile is
only 0.12λ. The proposed antenna has a measured impedance band of 2.12 GHz to 6 GHz (95.57%) and
a measured front-to-back ratio band (FBR > 10 dB) of 2.2 GHz to 4.68 GHz (72.09%). The maximum
FBR is up to 27.21 dB, and the antenna has good radiation performances. In addition, the proposed
antenna is applied to investigate the electromagnetic characteristics of a human head. The transmission
characteristics of electromagnetic wave in human head and the interactions between the human head
and the electromagnetic wave were studied. The field distribution and specific absorption rate (SAR)
are also discussed. Research found that the antenna matched well with the human head as good field
distribution and propagation characteristics were obtained, and the antenna meets the safety standards.

1. INTRODUCTION

Broadband directional antennas have the advantages of high security, high efficiency, and strong anti-
interference. They are widely used in many fields, such as ground penetrating radar [1], communication
satellites, and bio-electromagnetic fields. In the field of bio-electromagnetics, they are used for the
detection and imaging of human diseased tissues (such as strokes, brain tumors, and breast cancers [2]).
Wideband and unidirectional radiations are required for many applications. At present, there are
two main methods for obtaining directional radiation. One is that the antenna itself is an end-fire
radiation antenna such as a horn antenna and a Vivaldi antenna [3]. Although horn antennas have good
directivity and high gains, they have large size and heavy weight, which make them not suitable for
applications where miniaturization is required. Although a Vivaldi antenna has a wide bandwidth and
good directivity, it belongs to an end-fire antenna, and its profile is generally large. Another method is
to load a reflector plate, such as loading a metal reflector plate, an artificial magnetic conductor (AMC),
and a frequency selective surface (FSS). A metal reflector loaded directional antenna can achieve better
directional performance. However, the distance between the antenna and the reflector requires λ/4 to
achieve the in-phase superposition of electromagnetic waves (λ free space wavelength). Therefore, this
type of antenna has a large profile and a narrow bandwidth. In recent years, with the development and
application of metamaterials, the performance of antennas has been greatly improved. For example,
electromagnetic bandgap (EBG) [4, 5] and AMC [6–8] can effectively reduce the cross-sectional size of
the antenna and improve the radiation performance of the antenna. In addition, loading FSS [9] can
also improve the directional performance and bandwidth of the antenna. However, these metasurfaces
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are periodic repeating structures, and multiple repeating unit structures are required to show good
reflection performance, which will inevitably increase the antenna size. For example, in [9], the lateral
dimension of the antenna is 1.19λ× 1.19λ. In addition, AMC-loaded antennas have a narrow operating
frequency band.

The concept of Resonance-Based Reflector (RBR) was first proposed in [10]. The working principle
of a ring-shaped resonant reflector was analyzed and studied in detail. This type of antenna has the
advantages of wide frequency band, small size, and directional radiation. However, the design of a ring-
shaped resonant reflector has the disadvantages of low reflection amplitude and narrow front-to-back
ratio (FBR) bandwidth. The RBR antennas in the literature [11, 12] use a vertically balun feed method,
which increases the profile of the antennas and limits their application in low profiles.

In this paper, a broadband resonant reflector is designed in order to solve the problems of low
reflection amplitude and narrow front-to-back specific bandwidth. The in-phase reflection band of the
proposed RBR is 2.6 GHz to 5.59 GHz (72.68%). The reflector is loaded into an elliptical monopole
antenna to form a good directional radiation. The front-to-back ratio bandwidth (10 dB) of the
antenna is 2.2 GHz to 4.68 GHz (72.09%); the highest front-to-back ratio is 27.21 dB; and the impedance
bandwidth is 2.12 GHz to 6 GHz (95.57%). The height of the antenna is only 0.12λ. The antenna can
be applied to a small-scale or space-constrained electromagnetic wave application environment. In this
paper, the antenna is applied to the electromagnetic detection of the human head model, and the field
distribution and specific absorption rate (SAR) under the human head tissue are analyzed.

2. DESIGN OF RESONANT REFLECTOR ANTENNA

The resonance based reflector can be analyzed by transmission line theory and can be equivalent to an
RLC series resonant circuit [10]. Its impedance is

ZL = R + jωL +
1
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In the above, ω represents the angular frequency. R, L, and C represent the equivalent resistance,
equivalent inductance, and equivalent capacitance of the resonant reflector, respectively. Z0 represents
the characteristic impedance.

If a plane wave is incident perpendicularly to the surface of the resonant reflector, Zs represents
the surface impedance of the reflector, and ϕs represents the surface phase of the reflector, then the
surface phase of the resonant reflector can be expressed as

fs = Im
[
ln

(
Zs − η

Zs + η

)]
(4)

where η is the wave impedance in free space.
According to Equation (4) [10], when Zs = 0, ϕs = π, the reflecting surface is equivalent to a

perfect electric conductor (PEC). When Zs = ∞, ϕs = 0, the reflecting surface is equivalent to an
ideal magnetic conductor ( Perfect Magnetic Conductor, PMC). It can be known from Equation (1)
that when the angular frequency ω is not 0, the surface impedance of the resonant reflector is a finite
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value, so the reflection phase ϕs ∈ (0, π) of the resonant reflection. The reflection phase of the resonant
reflector is 0 < ϕs < π [10]. When it is used as an antenna reflector, the distance between the radiating
unit and the reflector will be less than λ/4.

The proposed RBR in this paper is mainly composed of a large metal ring and four small metal
rings whose center is located within ±45◦ of the large ring. The relative dielectric constant F4B of the
dielectric substrate is εr = 2.65, as shown in Fig. 1(a). We model and simulate the resonant reflector
in the electromagnetic simulation software CST.
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Figure 1. RBR structure diagram and simulation results. (a) structure, (b) reflection amplitude and
reflection phase, (c) surface current distribution at the resonance (r = 10, Ws = 1, Ls = 28, Rs = 24,
all dimensions are in millimeters).

From Fig. 1(b), the resonant frequency of the reflector is about 2.73 GHz (the frequency point where
the value of |S11| is 0 dB). Compared with the reflector in [13], the resonance frequency is reduced by
18.51% with the same structure size. This phenomenon is because the current path of the ring resonator
is longer as indicated in Fig. 1(c). In addition, the resonant reflector has a wide in-phase frequency
band, and its in-phase reflection band is 2.61 GHz to 5.59 GHz (72.68%).

3. ANALYSIS OF RBR ANTENNA

The proposed RBR is applied to a monopole antenna as shown in Fig. 2. The reflector is supported
by a nylon cylinder with a length h = 18 mm. The other parameters of the antenna are shown in the
caption of Fig. 2.

(a) (b)

Figure 2. RBR directional antenna diagram. (a) Elliptical monopole radiation antenna Structure,
(b) RBR directional antenna model diagram. (c = 15, d = 14, g = 18.4, I = 5, j = 8, L = 56, Lt = 44,
m = 19, all dimensions are in millimeters).

Pictures of the fabricated antenna and measurement environment are shown in Fig. 3. The overall
size of the antenna is 56×56×16 mm3 (0.43λL×0.43λL×0.12λL; λL is the wavelength corresponding to
the lowest working frequency of the antenna; and the instrument used for S11 measuring is the AV3656B
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Figure 3. The fabricated antenna and the measurement environment antenna.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-35

-30

-25

-20

-15

-10

-5

0

|S
11
| (

dB
)

Frequency (GHz)

Only monopole
Simulation
Measurement

2 3 4 5 6
0

5

10

15

20

25

30

FB
R

 (d
B

)

Frequency (GHz)

Measurement
 Simulation

2 3 4 5 6
2

3

4

5

6

7

8

Pe
ak

 G
ai

n 
(d

B
i)

Frequency (GHz)

Simulation
 Measurement

2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

T
ot

al
 e

ff
ic

ie
nc

y

Frequency (GHz)

Total efficiency

(b)(a)

(d)(c)

Figure 4. Results of the RBR directional antenna. (a) reflection coefficient S11, (b) Front-to-back
ratio FBR, (c) Gain, (d) Radiation efficiency.

vector network analyzer, pattern, etc. The radiation patterns are measured in a microwave darkroom
using the NSI2000 spherical system.

The simulation and measurement results of the antennas are presented in Fig. 4. Note that
the FBR and gain were measured using two identical antennas face to face. From Fig. 4(a),
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the simulated impedance bandwidth is 2.20 GHz to 6 GHz (92.68%), and the measured impedance
bandwidth is 2.12 GHz to 6GHz (95.57%). From Fig. 4(b), the measured front-to-back ratio bandwidth
(FBR > 10 dB) is 2.2 GHz to 4.68 GHz (72.09%), and the maximum front-to-back ratio reaches 27.21 dB.
The measured and simulated gains of the antenna roughly agree with each other as shown in Fig. 4(c).
The antenna radiation efficiency is greater than 80% in the entire working frequency band. The antenna
has high radiation efficiency (see Fig. 4(d)).

Figure 5 shows the radiation patterns of 3 GHz, 4GHz, and 5 GHz, which present good
unidirectional radiating. Due to the limitation of the measurement system (only half of the space
can be measured), the actual measurement pattern is formed by measuring the front and back parts
of the antenna separately, and then combining them. However, the measured patterns still verify the
simulated ones.

(b)(a)

(c)

Figure 5. Radiation patterns. (a) 3 GHz, (b) 4GHz, (c) 5 GHz.

4. CHARACTERISTIC ANALYSIS OF THE RBR ANTENNA IN MICROWAVE
DETECTION OF HUMAN HEAD

4.1. Field Distribution in a Human Head with the Antenna

The RBR antenna designed is placed in different parts of the human head for simulation. The
transmission of electromagnetic waves in the human head is studied, and the SAR of the antenna
in the human head is analyzed.
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The electric field distributions at 3 GHz, 4GHz, 5GHz, and 6GHz of the human head with the
antenna are presented in Fig. 6. It can be seen from the figure that the antenna can match the
skull medium to form effective radiation, and the antenna has good directivity. As the frequency of
electromagnetic waves increases, the electric field inside the human head will weaken, and the depth
of electromagnetic waves entering the human head decreases. Therefore, it is better than the antenna
that works at 3 GHz and 4GHz.

(b)

(a)

(d)

(c)

(e)

Figure 6. Electric field distribution of the antenna at different frequencies in the human head.
(a) Simulation model, (b) 3 GHz, (c) 4 GHz, (d) 5GHz, (e) 6 GHz.
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(b)(a)

(d)(c)

Figure 7. Simulation results of the electric field distribution of the antenna at different positions in
the human head. (a) Top, (b) back, (c) forehead, (d) side.

The electric field distribution diagrams with the RBR antenna at different positions on the human
head are presented in Fig. 7. It can be seen from the figure that the range of antenna electromagnetic
waves transmitted from top and in front of the human head is relatively large, while the electromagnetic
waves transmitted from back of the human head are attenuated. In summary, when the human head
is detected, the difference in the electromagnetic characteristics of the human head structure in all
directions results in different propagation characteristics at different positions.

The antenna matching characteristics with human head are studied in Fig. 8, with the S11 curves
of the antenna at different positions of the human head. The reflection of the human head medium
deteriorates the impedance matching of the antenna. However, the antenna still maintains wideband
characteristics.

4.2. SAR Analysis of Resonant Reflector Antenna in Human Head Field Distribution in
a Human Head with a Resonant Reflector Directional Antenna

Figure 9 shows the SAR of the antenna at different positions of the human head with an operating
frequency of 3 GHz and an input power of 10 mW. The graph is the SAR value distribution at a
standard of 10 g/(W/kg). It can be seen from the figure that the maximum SARs of the antenna in
different parts of the human head are 0.539 W/kg, 0.931 W/kg, 1.02 W/kg, and 1.08 W/kg, which are
all less than the safety standard value.
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Figure 8. S11 of the antenna at different positions of the human head.

(b)(a)

(d)(c)

Figure 9. SAR value of the antenna when working at different positions of the human head, (a) back,
(b) side, (c) forehead, (d) top.
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It can be seen from the simulation results that the antenna has good directivity and matching
characteristic with the human head medium. The electromagnetic waves emitted by the antenna can
be effectively transmitted in the human head and meet the safety standards.

5. CONCLUSION

This research designs a new type of RBR with a wide reflection bandwidth, high reflectivity, and
reflection frequency band of 2.61 GHz to 5.59 GHz (72.68%). The reflector is loaded to an elliptical
monopole antenna. The antenna has the advantages of directional radiation, low profile (profile height
of 0.12λ), and wide frequency band. The measured impedance bandwidth is 2.12 GHz to 6 GHz (95.57%).
The front-to-back ratio bandwidth (FBR > 10 dB) is 2.2 GHz to 4.68 GHz (72.09%). The antenna is
also a good choice for bio-electromagnetic applications.
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