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Bi-Anisotropic Particles and Chiral Inclusions for Highly-Efficient
Electromagnetic Energy Harvesting

Hemn Younesiraad* and Mohammad Bemani

Abstract—We present an analytical analysis of a metasurface-based ambient electromagnetic energy
harvesting system in which the bi-anisotropic particles loaded with a resistor are used. The proposed
metasurface composed of an array of bi-anisotropic particles referred to as an electromagnetic energy
harvester that can capture the ambient incident electromagnetic wave energy with a radiative to AC
conversation efficiency of around 100%. The captured energy by metasurface is delivered to the load.
The load acts as the input impedance of a rectification circuit in a rectenna system. The derived
optimal polarizable inclusions can be applied to design bi-anisotropic metasurfaces which can be used
for electromagnetic energy harvesting. Finally, the optimal dimensions of a typical chiral structure have
been calculated to achieve maximum efficiency for circularly polarized propagating waves.

1. INTRODUCTION

One of the fundamental challenges in today’s daily life is the supply of energy to electronic devices
that are expanding significantly. The wireless power supply of electronic devices to overcome the
problems caused by constant battery replacement and wired charging, especially for industrial sensors
and implantable medical devices, has been a topic of recent research. The idea of wireless power
transfer (WPT) goes back to the early 20th century when Tesla invented the first WPT system [1].
Research continues to this day with the development of microwave technology, so that methods for
harvesting energy from radio-frequency electromagnetic radiation have received much-renewed interest,
and the first wireless radiative power transmission system was introduced by Brown [2]. One of the
applications of radiative WPT is the ambient electromagnetic energy harvesting, in which, by using a
device called rectenna, the energy of incident radiation fields is captured and delivered to the load [3, 4].
The main element in energy harvesting systems is rectenna. Glasser introduced the idea of utilizing
rectennas to harness energy from space known as Space Solar Power (SSP) [5]. In general, a rectenna
contains various parts including an antenna, a diode, an RF filter, and a DC rectifier [6]. Interestingly,
the reported work in the literature focused on the use of conventional antennas (single antenna or
array one) as the primary energy collector, but are challenging to miniaturize because the total
footprint of the array is constrained by the physical area of the device and must be comparable to the
wavelength [7–10]. Recently, several studies have been done on utilizing metasurface instead of using the
antenna in rectenna. Metasurface can be referred to as a two-dimensional counterpart of metamaterial
state that exhibits attractive electromagnetic responses that are not found in natural materials [11].
Unlike metasurface-based electromagnetic absorbers [12], in which the power of the captured incident
electromagnetic waves is dissipated within the structure as either ohmic or dielectric loss in metasurface
energy harvesters, the very low-lossy substrate is used, and the radiation energy is captured through
the metasurface-forming resonators and delivered through the optimally positioned vias to the feeding
network, and the AC power is transmitted through the feeding network to the final load. The first
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metasurface energy harvester was proposed in 2012 in which the split-ring resonator (SRR) formed
the metasurface [13]. Subsequently, there were many papers on metasurface energy harvester that
showed various capabilities, including polarization-sensitivity [14], multi-band [15], and wideband [16]
availability in which ELC resonators were used as metasurface constitutive cells forming the harvester.
Recently, a single engineered subwavelength chiral helix has been proposed that can uniformly collect
power from all orientations of a polarization state and enables relative robust radiative powering of
moving devices [17]. In this paper, the ambient electromagnetic energy harvesting is investigated
in which optimal bi-anisotropic particles as energy collectors are found to achieve maximum energy
harvesting efficiency. In previous literature, metasurface constitutive resonators located on the ground
plane are used where the captured energy is terminated to the grounded load by the vias, but in this
paper, bi-anisotropic particles are used as an energy harvester.

2. OPTIMAL BI-ANISOTROPIC PARTICLES AND HUYGENS’ METASURFACE
FOR ELECTROMAGNETIC ENERGY HARVESTING

Figure 1 shows a microscopically structured sheet usually periodic as a metasurface formed by a single
two-dimensional periodic array of identical subwavelength electrically and magnetically polarizable
inclusions. Assuming electrically small thickness and the period of the structure smaller than the
wavelength corresponding to the resonant frequency, we can demonstrate the electromagnetic interaction
of the metasurface using the electric and magnetic dipole moments induced in the constituent inclusions.
A normally incident plane wave propagating along the z-direction illuminates the metasurface as
illustrated in Fig. 1 [18]. The relevance of each inclusion with the incident fields for a thin sheet
composite or homogeneous sheet can be described as(
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m

)
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α̂ee α̂em
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where p and m are the induced electric and magnetic dipole moments, respectively, and α̂ij are the
collective polarizability dyadic. The polarizability dyadic of uniaxial bi-anisotropic inclusions can be
written as [12]

α̂ee = α̂co
eeIt + α̂cr

eeJ t (2)
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Figure 1. A schematic illustration of a generic, electrically thin metasurface.
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α̂em = α̂co
emIt + α̂cr

emJ t (3)

α̂me = α̂co
meIt + α̂cr

meJ t (4)

α̂mm = α̂co
mmIt + α̂cr

mmJ t (5)

where It = I − z0z0 is the two-dimensional unit dyadic, J t = z0 × It, and indices “co” and “cr” specify
the symmetric and antisymmetric parts of the dyadic, respectively. For more convenient calculations,
the coupling coefficients can be investigated aside for reciprocal and nonreciprocal cases in the form

α̂em = (χ̂ + jκ̂) It +
(
V̂ + jΩ̂

)
J t (6)

α̂me = (χ̂ − jκ̂) It +
(
−V̂ + jΩ̂

)
J t (7)

The magnetoelectric coupling interactions can be classified into two different types using reciprocity
and the symmetry of their magnetoelectric coupling dyadic. The first type is reciprocal classes (the
parameters κ̂ and Ω̂ refer to “chiral” and “omega” particles, respectively), and the other is nonreciprocal
classes (the parameters V̂ and χ̂ refer to “moving” and “Tellegen” particles, respectively). It should be
noted that for reciprocal types the electric and magnetic polarizabilities α̂ee and α̂mm are symmetric
dyadic [19].

2.1. Optimal Particles for Uniaxial Arrays of Reciprocal Bi-Anisotropic Particles for
Maximum Electromagnetic Energy Harvesting

Let consider a uniaxial infinite array that all polarizability dyadic are symmetric. The parameters
α̂cr

ee, α̂cr
mm, and κ̂ equal zero for a case of reciprocal and polarization-insensitive inclusions as non-chiral

metasurface energy harvester. By engineered designing random composite or regular arrays of chiral
inclusions over a perfectly conducting ground plane one can form the overall non-chiral structure. The
direction of the two-dimensional array in space is defined by the unit vector orthogonal to its plane
(z-direction). The electromagnetic fields in the presence of the infinite array can be calculated as [12]

Er = − jω

2S

(
η0α̂

co
ee ± 2jΩ̂ − 1

η0
α̂co

mm

)
·Einc (8)

Et =
(

1 − jω

2S

(
η0α̂

co
ee +

1
η0

α̂co
mm

))
·Einc (9)

where S is the area of a unit cell, and the ± signs refer to illuminations from the two sides of the
metasurface. When the reflection coefficient is the same for illumination from both sides, magnetoelectric
coupling in the metasurface is equal to zero (Ω̂ = 0). The incident plane wave field defined as

Einc = x̂E0e
jkz (10)

In fact, metasurface-based energy harvester which captures incident fields energy on both sides of
the metasurface is simple electrically and magnetically polarizable particles (no bianisotropy). Thin
metasurface-based energy harvester which captures incident fields energy only on one side of the
metasurface is a bianisotropic metasurface with the antisymmetric coupling dyadic (Omega structures),
meaning that only one side of the metasurface is perfectly energy harvesting, while the other side is
covered by a surface with an unknown reflection coefficient Rv and reads

− jω

2S

(
η0α̂

co
ee − 2jΩ̂ − 1

η0
α̂co

mm

)
= Rv (11)

Since the infinite array fields are periodically uniform, to calculate the real power dissipated in the
unit cell of the array, we can integrate the real part of the Poynting vector dotted with the inward-
pointing unit normal vector of a surface that encloses the unit cell. This leads to calculating the power
flow into the top side of the enclosing surface owing to the incident field and subtracting the power flow
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out of the top and bottom sides of the surface owing to the total field incident plus re-radiation. Thus,
we can calculate the real power dissipated in the load of the particle in the form [20]

PL =
1
2
Re
{

ET × H
∗
T

}
· ds (12)

PL =
S

2η0
|E0|2

(
1 − |R|2 − |T |2) (13)
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(14)

Let us recall that at resonant frequency, electric and magnetic polarizabilities are purely imaginary
whereas the magnetoelectric coupling is real. To achieve the maximum load power by differentiating
concerning the collective polarizabilities α̂co

ee and α̂co
mm and equal to zero, two linear equations can be

obtained as

1 −
(ωη0

S

)
Im (α̂co

ee) +
(ω

S

)
Ω̂ = 0 (15)

1 −
(

ω

η0S

)
Im (α̂co

mm) −
(ω

S

)
Ω̂ = 0 (16)

Substituting Eq. (6) in Eqs. (8) and (9), we find

−3
(ωη0

2S

)
Im (α̂co

ee) +
(ωη0

2S

)
Im (α̂co

mm) = Rv − 1 (17)
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(

ω

2η0S

)
Im (α̂co

ee) = −Rv − 1 (18)

Solving the above equations, the optimal polarizabilities can be written as

α̂co
ee =

(
1 − Rv

2

)
S

jωη0
(19)

α̂co
mm =

(
1 +

Rv

2

)
η0S

jω
(20)

Ω̂ = −SRv

2ω
(21)

When a planar uniaxial bianisotropic layer covers a perfectly conducting surface, the reflection
coefficient due to waves propagating along z0 equals −1. In this case, due to the omega coupling, the
induced electric and magnetic surface-current densities are balanced. Realizing the symmetric energy
harvesting from both sides of a metasurface, the optimal polarizabilities read

α̂co
ee =

1
η2
0

α̂co
mm =

S

jωη0
(22)

In this case, the metasurface should be non-bianisotropic, and there is no magnetoelectric coupling
(Ω̂ = 0). Under these conditions, the maximum value of load power can be found as

Pmax
L =

S

2η0
|E0|2 (23)

So the maximum effective aperture area of a unit cell of the uniaxial infinite array reads

Amax
e =

Pmax
L

Sinc
= S (24)

where

Sinc =
|E0|2
2η0

(25)



Progress In Electromagnetics Research M, Vol. 93, 2020 71

On the other hand, one can define the ratio of load power to incident power (energy harvesting
efficiency) over a unit cell as

ηeff =
Pmax

L

SSinc
= 1 (26)

where S is the area of a unit cell. For the convenient design of particle configuration, we can use the
relation between individual polarizabilities of the inclusions in free space and the effective ones as [21]

Im
(

1
αee

)
= Im

(
1

α̂co
ee

)
+ Im(βe) (27)

where βe is the so-called interaction constant which can be calculated analytically for ka ≤ 1.5 as [22]

Im(βe) =
k

2ε0a2
− k3

6πε0
(28)

where a is the lattice constant. According to the mentioned expressions, the optimal individual
polarizabilities of the unit cells of a metasurface energy harvester using the known expression for the
interaction constant can be obtained. So at the resonant frequency, the individual polarizability of the
particles reads

Im
(

1
αee

)
=

ωη0

S
+

k

2ε0a2
− k3

6πε0
(29)

2.2. Optimal Particles for an Infinite Receiving Huygens’ Metasurface over a Ground
Plane

In this section, we consider an infinite receiving Huygens’ metasurface in the z = d plane loaded over a
perfect ground plane in the z = 0 plane. Consider the incident field as

Einc = x̂E0(ejkz − e−jkz) (30)

In this case, the real power dissipated in a load of a particle can be found as

PL =
S

2η0
|E0|2

(
1 −

∣∣∣−e−jkd + R
(
e−jkd − e−j3kd

)∣∣∣2) (31)

PL = 2
S

2η0
|E0|2 (1 − cos(2kd)) (R − R2) (32)

The optimal amplitude coefficient for the scattering field can be found by maximizing the load
power as

R =
1
2

(33)

The maximum effective aperture area of a unit cell of the infinite receiving array of induced electric
dipole moments is

Amax
e =

Pmax
L

Sinc
(34)

where

Sinc =
|E0|2
2η0

(35)

In this case, the energy harvesting efficiency over a single unit cell can be written as

ηeff =
Pmax

L

SSinc
=

1
2

(1 − cos(2kd)) (36)

The above equation shows that for the Salisbury absorber (d = λ/4) [23] the receive aperture
efficiency is 100%. To achieve maximum energy harvesting, the collective polarizabilities can be found
as

α̂co
ee =

1
η2
0

α̂co
mm =

jS

ωη0
(37)
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where S is the area of a unit cell. In this case, the individual polarizabilities of the inclusions read

Im
(

1
αee

)
= −ωη0

S
+

k

2ε0a2
− k3

6πε0
(38)

3. OPTIMAL CHIRAL PARTICLE ILLUMINATED BY A CIRCULARLY
POLARIZED PROPAGATING WAVE

Let consider a metasurface formed by identical subwavelength electrically and magnetically polarizable
inclusions which are illuminated by a circularly polarized incident field where Ey = ±jEx. For the
axially incident waves, both chiral and moving inclusion coupling terms are required, and the extracted
power by the particle follows as [24]

Pext =
ω

2
|Einc|2Im
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where
jκ̂It = α̂em = −α̂me (40)

Assuming that the particles are reciprocal which means that parameter V̂ equals zero. Thus the
real power dissipated in the dipole load of a particle can be written as
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So the energy harvesting efficiency over a single unit cell is
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For the most general linear particle we can use the inverse polarizability in the form
1

α̂co
ee

= ξ̂ (44)

where ξ̂ = ξ̂′+jξ̂′′ depends on the configuration, material, and resonant frequency of the particle. ξ̂′ = 0
is corresponding to the resonant frequency of the particle. So at the resonant frequency, we can write
for the inverse polarizability using

α̂co
ee =

1

jξ̂′′
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1

jIm
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1
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) (45)

Under this condition, the ratio of load power to incident power (energy harvesting efficiency) over
a single unit cell can be calculated as
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and
βm = βe/η

2
0 (49)

To achieve the maximum energy harvesting efficiency, all the collective polarizabilities of optimal
chiral particles should be equal as

η0α̂
co
ee = ±κ̂ =

1
η0

α̂co
mm =

S

2jω
(50)

Using these obtained equations, we can find optimal chiral particles for interactions with
propagating circularly polarized waves. In the following, we consider a specific example of a small
chiral particle as a well-known metal canonical particle illustrated in Fig. 2(a).

This particle is formed by two small wire antennas including a short electric dipole antenna of
length 2l � λ and a small loop antenna with the radius b � λ. The analytical expressions for its
polarizabilities along the x-direction in terms of the parameters of the two electric and magnetic dipoles
forming the particle follows as [25]

αee = −j
l2

ωZt
(51)

αmm = αee

(
η0

kA

l

)2

(52)

αem = jκ = ±jαeeη0
kA

l
(53)

where Zt is the total impedance of the particle so that it is the sum of the input impedance of the
loop and electric dipole antennas and resistive load, A = bπ2 the loop area, and η0 the impedance of
free space. At the resonance of the particle Zt = Rt + jXt is a real number, and its imaginary part
equals zero. Due to the anyway present scattering losses, this value is nonzero even in the absence of
absorption in the particle. For particles without absorption loss and due to the scattering loss, Rt can
be written as [26]

Rt = 2Rrad =
η0

3π
(
k2l2 + k4A2

)
(54)

where Rrad is the radiation resistance of the particle. To deliver the maximum power to the load,
Rload must be equal to Rrad. At the fundamental resonance frequency, the total length of the antenna
constituent wire 2l + 2πb is approximately λ/2, and imaginary part of the impedance of the particle is
zero. Under these conditions and using Eq. (50), we can write

Im
(

1
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)
= η2

0Im
(

1
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mm

)
(55)

Substituting Eqs. (47) and (48) in the above equation
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− Imβe = η2

0

(
Im
(
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)
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η2
0

Im(βe)
)

(56)

Solving Eq. (56) and using Eqs. (51) and (52), we can calculate optimal dimensions as:

lopt =
(
2 −

√
3
) λ

4
(57)

bopt =

(√
3 − 1
π

)
λ

4
(58)

that is consistent with the proven results presented in [24].
In the next step, we obtain the optimal lattice constant using Eqs. (50), (51), and (54). After some

simple algebraic calculations, the following equations can be obtained as
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(59)
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Substituting Eq. (57) in the above equation, the optimal lattice constant leading to maximum
possible efficiency can be found as

a2 =
1

20π
3λ2

− 4
S

(61)

This expression is the trade-off between the cell area and the lattice constant. By defining the
optimum dimensions of the desired sub-wavelength polarizable inclusions, the lattice constant can be
determined using the above expression so that the maximum possible efficiency will be achieved in
bi-anisotropic metasurface design.

In order to validate the proposed theory with full-wave results, a metasurface energy harvester
composed of chiral particles as collectors is designed, and its electromagnetic response is simulated by
CST Microwave Studio using the unit cell boundary condition. Using Equations (59), (60), and (61)
as well as the CST Microwave Studio optimization tool, the dimensions and the lattice constant are
obtained. In fact, the proven analytical expressions can be useful for the initial design of the proposed
energy harvester formed by the chiral particles. The energy harvesting efficiency for this configuration
is shown in Fig. 2(b). As can be seen from the figure, maximum efficiency of 90% is obtained at the
resonant frequency for the proposed array of proposed inclusions.
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Figure 2. (a) A canonical chiral particle along axis x, and (b) energy harvesting efficiency for the
proposed metasurface harvster composing chiral particles with optimized dimension of l = 10.05 mm,
b = 8.74 mm, and lattice constant a = 26.61 mm.

4. CONCLUSION

In this paper, we have obtained optimal bi-anisotropic particles to achieve 100% efficiency of an energy
harvesting system. In this section, we show that the optimum bi-anisotropic particles can capture the
energy of the ambient electromagnetic radiation waves and deliver it to the load. Finally, we investigate
a canonical chiral particle and calculate its optimum dimensions to satisfy the maximum efficiency (ratio
of radiation power to AC power). The proposed system was previously used as a perfect electromagnetic
absorber, which we have introduced in this paper by adding a resistive load to the particle structure as
a metasurface energy harvester.
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