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Abstract—Microwave radiometer is a high-sensitivity “camera”, which realizes high-resolution imaging
by receiving the natural radiation signal in microwave band from the observation scene. Due to the
imperfection of the system hardware, the measured data include not only the radiated signal of interest
but also the noise generated by the system hardware itself. These unexpected noises will affect the
imaging performance of the system, especially for the synthetic aperture interferometric radiometer
(SAIR). In this paper, the noise behavior of the SAIR system is analyzed and modeled for the first
time. Based on the noise behavior model, a method is proposed to pick the optimal averaging time
for imaging with high fidelity in the SAIR system. Some experiments are carried out to verify the
correctness of the noise behavior model and the optimal averaging time picking method for SAIR. With
the noise behavior model and the optimal averaging time picking method, it can provide an effective
guide for the SAIR system design, error correction, and reconstruction.

1. INTRODUCTION

Anything above absolute zero radiates energy outward in the form of electromagnetic waves. The
microwave radiometric realizes high resolution imaging by receiving the thermal radiation signal
generated by the observed scene itself [1]. Since it does not actively transmit signals, the microwave
radiometric is widely used in various domains such as security check and remote sensing [2–9].

Due to the non-ideality of the system devices, the measured data contain not only the thermal
radiation signal of the observation scene, but also the thermal noise produced by the system hardware
itself. These noise components will seriously affect the imaging reconstruction of the microwave
radiometric system, especially for the synthetic aperture interference radiometric (SAIR) system [7, 8].
Therefore, it is necessary to analyze the noise components in the microwave radiometric system and
reduce the impact of these noises on the imaging performance of the microwave radiometric system.

At present, the noise behavior of the microwave radiometric has been discussed for the total power
radiometer. Land et al. modeled and analyzed the noise behavior of the total power radiometer, and
utilized the Allen deviation to distinguish different noise components [10]. Different to the total power
radiometer, the SAIR realizes the imaging by using the cross-correlation processing between multiple
receiving channels [6–8]. Fig. 1 shows the schematic of the SAIR system. Compared with the total power
radiometer, the SAIR has more receiving elements and higher system complexity. So, the noise behavior
of the SAIR system is more complex than that of the total power radiometer. To our knowledge, there are
few reports on the noise behavior analysis of the SAIR system. The main contribution of this paper is to
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Figure 1. Schematic of the SAIR system.

research the noise behavior of the SAIR system and propose a method for picking the optimal averaging
time for imaging in the SAIR system. With the noise behavior model and the optimal averaging time
picking method developed in this paper, it provides guidance for the SAIR system design, noise error
correction and imaging reconstruction in practical application.

This paper is organized as follows. In Section 2, the noise behavior in SAIR system is analyzed and
modeled. Based on the noise behavior model, the method is presented to pick the optimal averaging
time of the SAIR system for imaging. In Section 3, the experiments are carried out to validate the
accuracy of the presented model and the method. Conclusions are drawn in Section 4.

2. THEORY

2.1. Noise Behavior Model in SAIR System

Based on the principle of the interferometry, the SAIR system measures the data (namely visibility
samples) by using the cross-correlation between multiple receiving channels and then recovers the image
of the observation scene with the measured visibility samples [1, 2, 11, 12].

Since the basic unit of the SAIR system is a binary interferometer, the measurement diagram of a
two-channel binary interferometer is presented in Fig. 2 to model the noise behavior of the SAIR.
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Figure 2. Interference measurement schematic.

As shown in Fig. 1, the RF receiver of the SAIR system consists of the microwave amplifiers, filters,
mixers, etc. According to the researches in [10, 16], the Gaussian thermal noise is generated in all the
component parts of the microwave amplification and detection circuits. Flicker noise is generated in
the active amplifying, detecting and temperature sensing components of the radiometer. Random-walk
noise is generated usually due to the short-term changes in the temperature of microwave circuit losses
and in amplifier gains. The data measured by each receiver includes not only the thermal signals of



Progress In Electromagnetics Research M, Vol. 96, 2020 141

interest, but also other noise components such as the Gaussian noise, flicker or 1/f noise and random-
walk drift [10, 13–15]. These three types of noise components are commonly met in the microwave
radiometry measurements [10]. Therefore, the data measured by SAIR is assumed as follows:

ri(t) = nsi(t) + ni(t) + nfi(t) + nri(t)
rj(t) = nsj(t) + nj(t) + nfj(t) + nrj(t) (1)

where nsi(t) denotes the thermal signal of interest measured by receiver i, and ni(t), nfi(t), and nri(t)
are the Gaussian thermal noise, flicker noise, and random-walk noise generated by the microwave
amplification and detection circuits of receiver i, respectively.

By performing cross-correlation between two receivers, the measured visibility samples are expressed
as follows

Vij = 〈ri(t)r∗j (t)〉
= 〈nsi(t)n∗

sj(t)〉 + 〈nsi(t)n∗
j (t)〉 + 〈nsi(t)n∗

fj(t)〉 + 〈nsi(t)n∗
rj(t)〉

+ 〈ni(t)n∗
sj(t)〉 + 〈ni(t)n∗

j (t)〉 + 〈ni(t)n∗
fj(t)〉 + 〈ni(t)n∗

rj(t)〉
+ 〈nfi(t)n∗

sj(t)〉 + 〈nfi(t)n∗
j (t)〉 + 〈nfi(t)n∗

fj(t)〉 + 〈nfi(t)n∗
rj(t)〉

+ 〈nri(t)n∗
sj(t)〉 + 〈nri(t)n∗

j(t)〉 + 〈nri(t)n∗
fj(t)〉 + 〈nri(t)n∗

rj(t)〉 (2)

Since different noise components are uncorrelated, Eq. (2) is simplified as follows:

Vij = Ps + Pf + Pr (3)

where Ps includes the power of the Gaussian signal of interest and the Gaussian noise generated by the
receivers, and Pf and Pdrift are the power of the flicker noise and random-walk noise, respectively.

With the visibility samples measured by the SAIR system, the image of the interest scene can be
reconstructed by using the inverse Fourier transform [1, 2, 11, 12]:

T (ξ, η) =
∫ ∞

−∞

∫ ∞

−∞
V (u, v) · ej2π(u·ξ+v·η)dξdη. (4)

where (ξ, η) = (sin θ cos φ, sin θ sinφ), u = (xi − xj)/λ, v = (yi − yj)/λ, T (ξ, η) is the brightness
temperature distribution of the interest scene.

From Eq. (3), the visibility samples measured by the SAIR system includes not only the Gaussian
thermal signal radiated by the interest scene but also the flicker noise and random-walk noise. These
noise components can affect the imaging performance of the SAIR system, and make it impossible to
image in severe cases. Therefore, it is necessary to distinguish the flicker noise and random-walk noise,
and reduce the impacts of the noise components on the SAIR system.

The Allen deviation method can identify and provide excellent differentiation between these three
types of noise components because the Gaussian thermal noise, flicker noise and random-walk noise
have different power spectral densities [10, 16]. So, the Allan deviation method is used to analyze these
noise components in the SAIR system. The Allen deviation is defined as follows [10, 16, 17]:

σ2
y(τ) =

√√√√√√
N−1∑
i=1

(yi+1 − yi)2

2(N − 1)
(5)

where yi is a N point measured data with sampling period τ .
According to Eq. (5), the Allen deviation of the measured samples in SAIR is expressed as:

σ2
y(τ) = σ2

0(τ) + σ2
−1(τ) + σ2

−2(τ)

=
h0

2 · τ + 2h−1 · ln 2 + h−2 · (2π)2

6
· τ (6)

where σ2
0(τ), σ2

−1(τ), and σ2
−2 are the Allen deviations of Gaussian noise, flicker noise, and random-walk

noise, respectively. τ is the sampling period, and h0, h−1, and h−2 represent the power spectral density
coefficients of Gaussian noise, flicker noise, and random-walk noise, respectively.
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From Eq. (6), the Allen deviations of these three noise components are different. More specific, the
Allen deviation of the Gaussian noise decreases with the increase of sampling time, while that of the
random-walk noise increases with the increase of sampling time. The Allen deviation of the flicker noise
remains constant with the increase the sampling time. So the power spectral coefficients of three noise
components can be obtained by combining the Allen deviation method with the curve fitting method
according to Eq. (6). With the obtained power spectral coefficients of three noise components, it can
distinguish different noise components and determine the optimal averaging time for imaging.

2.2. Optimal Averaging Time for Imaging in SAIR System

Based on the above analysis, a method is developed to measure the optimal averaging time of the SAIR
system in this subsection. With the optimal averaging time of the SAIR system, it can provide guidance
for system design, error calibration and high quality inversion imaging.

To make it clear, an example is firstly given as follows. Fig. 3 shows the Allen variation curves
of Gaussian noise, flicker noise, random-walk noise and its mixed noise. The lines with triangle, circle
and inverted triangle symbols denote the Allen variation curves of the Gaussian noise, flicker noise and
random-walk noise, respectively. The line with square symbol denotes the Allen variation curve of the
mixed noise.
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Figure 3. The Allen deviations of Gaussian noise, flicker noise, random-walk noise and its mixed noises.

From Fig. 3, the Gaussian noise predominates below the sampling averaging time A. So, the Allen
variance curve of the mixed noise is similar to that of the Gaussian noise. Due to the effect of the
flicker noise and random-walk noise, the Allen variance curve of the mixed noise no longer decreases
with the increase of sampling time because the flicker noise or random-walk noise predominates above
the sampling time A. In other words, the imaging performance or sensitivity of the SAIR system will
not be improved even increasing the sampling time. So it is necessary to obtain the optimal sampling
averaging time A to ensure the SAIR system with the best imaging performance in practical application.

Rewrite Eq. (6) as:

σ2
y(τ) =

a

τ
+ b + c · τ (7)

where a, b, and c are related with the power spectral density coefficients of the Gaussian noise, flicker
noise and random-walk noise, respectively.

By analyzing the Allen variance of the measured data, the power spectral density coefficients of
three noise components can be obtained and then used to calculate the optimal averaging time of SAIR
system according to the following equation:

τoptimal = min
(

a

b
,

√
a

c

)
(8)
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The processing steps of the proposed method are summarized as follows:
Step 1: For the scene of the extended source (e.g., cold sky), measure the cross-correlation data

between different receiving channels of the SAIR system.
Step 2: According to Eq. (5), calculate the Allen variance of the cross-correlation data measured

in Step 1.
Step 3: With the Allen variance calculated in Step 2, obtain the power spectral coefficients of the

Gaussian noise, flicker noise and random-walk noise by using the curve fitting method according to
Eq. (7).

Step 4: Based on the power spectral coefficients of three noise components, calculate the optimal
averaging time of SAIR system according to Eq. (8).

It is worth noting that the period of the cross-correlation data measured in Step 1 should be on
the order of seconds or more. Besides, the optimal averaging time of SAIR system should be measured
multiple times to ensure the accuracy of the measurements.

3. EXPERIMENTAL VALIDATION

In this section, the SAIR system at W band is used to test and verify the effectiveness of the proposed
noise behavior model and optimal averaging time picking method. The receiving array of the test system
is a staggered y-shaped array with 12 elements, as shown in Fig. 4(a). Fig. 4(b) shows the corresponding
uv sampling grid coverage in spatial-frequency domain. With the SAIR system, the cold sky scene is
observed and the cross-correlation data between different receiving channels in this scene is collected.

-40 -30 -20 -10 0 10 20 30 40
u[λ]

-50

-40

-30

-20

-10

0

10

20

30

v[
λ

]

-80 -60 -40 -20 0 20 40 60 80
u[λ]

-80

-60

-40

-20

0

20

40

60

80

v[
λ

]

(a) (b)

Figure 4. Receiving array of the experimental system: (a) layout of the antenna array; (b) uv sampling
grid coverage.

The black line in Fig. 5 plots the Allen variance curve of the data measured by channel 1 and
channel 2 of the test system. The red line in Fig. 5 plots the corresponding fitting curve. From
Fig. 5, the Allen variance of the data received by the test system gradually decreases with the increase
of sampling time when the sampling integration time is less than 7 seconds. That means that the
Gaussian noise predominates when the sampling integration time is less than 7 seconds. When the
sampling integration time exceeds 7 seconds, the Allen variance of the measured data rises slowly with
the increase of the sampling time. That means that the flicker noise or random-walk noise predominates
when the sampling integration time is greater than 7 seconds. So, the optimal averaging time is about
7 seconds from Fig. 5.

With the data received by all the antenna elements, the optimal averaging time of the SAIR system
is measured by using the proposed method. The result of the system’s optimal averaging time is plotted
in Fig. 6. From Fig. 6, the system’s optimal averaging time is about 5–10 second, and the mean value
of the system’s optimal averaging time is about 6.8 seconds.
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Figure 5. The Allen deviation of the data
measured by two receivers.
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Figure 6. The measured optimal averaging time
of SAIR testing system.

In addition, the optimal sampling averaging time of the system is mainly affected by the random-
walk noise from Fig. 6. This is because that the receiving channel of the test system does not take any
temperature control measures. From the result measured in Fig. 6, it provides guidance for the future
system design to take the temperature control measures to reduce the influence of the random-walk
noise component and extend the optimal sampling time of the test system.

In order to verify the correctness of the above analysis results, an imaging experiment has been
carried out. The schematic diagram of the imaging scene is shown in Fig. 7. A metal plate is placed
about 34 meters away from the testing SAIR system. The size of the metal plate is about 20 cm ×
20 cm.
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Figure 7. Schematic diagram of the experimental test scene.

With the measured data, the imaging results are reconstructed with different sampling averaging
times. Fig. 8(a)–Fig. 8(d) show the images recovered with 5, 8, 11, 14 seconds, respectively. The metal
target denoted with the dash line is well reconstructed with high SNR when the sampling averaging
time is 5 or 8 seconds. However, the amplitude of the reconstructed target decreases with the increased
sampling averaging time. This is because the random-walk noise predominates when the sampling
averaging time is greater than 8 seconds according to the above analyzed results.

Figure 9 shows the SNRs of the inversion results under different sampling integral time conditions.
From Fig. 9, the SNR of the image will be improved with the increase of the sampling averaging time
when the sampling averaging time is less than 8 seconds. When the sampling accumulation time is
greater than 8 seconds, the SNR of the image decreases with the increase of the sampling accumulation
time. This is consistent with the analysis results shown in Fig. 6, which proves the effectiveness of the
noise behavior model and the optimal averaging time picking method.
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Figure 8. Images reconstructed with different sampling averaging time: (a) 5 seconds; (b) 8 seconds;
(c) 11 seconds (d) 14 seconds.
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Figure 9. SNRs of images reconstructed with different sampling averaging time.

4. CONCLUSIONS

The main contribution of this paper is to model the noise behavior in the SAIR system and to present the
method for picking the optimal averaging time for imaging in the SAIR system. With the SAIR testing
system, some imaging experiments are carried out to validate the feasibility of the developed noise
behavior model and the optimal averaging time picking method. With the noise behavior model and
optimal averaging time picking method, it provides guidance for designing the SAIR system, correcting
the system error and imaging with high fidelity.
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