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Dual-Feed, Dipole Antenna System for 2.4/5.2/5.8-GHz, Tri-Band
WLAN Laptop Applications

Che-Chi Wan and Saou-Wen Su”

Abstract—A low-profile, printed dipole antenna having two feed ports with two parasitic strips for
tri-band operation in the 2.4 GHz (24002484 MHz), 5.2 GHz (5150-5350 MHz), and 5.8 GHz (5725~
5825 MHz) wireless local area network (WLAN) bands is presented. The strip dipole is coupled-fed via
a chip capacitor connected to a dual-feed network and generates the 2.4 and 5.2 GHz bands with the
aid of the tuning stubs in the feed network. The two parasitic strips are further employed to introduce
additional resonance to cover the 5.8 GHz band. It was found that by loading the chip capacitor with
proper values between the strip dipole and the dual-feed network, the port decoupling in both the 2.4
and 5.2 GHz bands can be improved, making a dual-feed and yet single antenna system possible. The
design with constant strip width is simple in structure and occupies a compact size of 5mm x 40 mm
(about 0.04-\ x 0.32-\ at 2.4 GHz), which is well-suited to current narrow-bezel laptop computers.

1. INTRODUCTION

For laptop computers working in heterogeneous wireless networks, more and more antennas for different
wireless communications are expected to be incorporated into devices. The laptop computers with
the fifth-generation (5G) capability built in can be, for example, equipped with as many as nine
antennas, among which seven antennas are used for 5G networks (LTE/sub-6 GHz/millimeter-wave) and
two antennas for Wi-Fi/Bluetooth connectivity [1]. With the growing demand for multiple antennas
integrated into wireless devices, the available space for antenna designs becomes critically constrained.
The size of the antenna and the mutual coupling between the nearby antennas operating in the same
frequency band are, accordingly, considered the major issues for antenna engineers.

In conventional design methodology for two closely-paired antenna systems, it is quite common to
introduce an additional decoupling structure (resonator) as to provide a new coupling path against the
original coupling between two identical antennas for isolation enhancement [2-7]. However, the main
drawback is that the use of these decoupling structures limits further reduction in the design footprint
because of certain spacing wasted.

Recently, two-antenna systems that require no decoupling structure and show good isolation have
been favorably reported [8-12]. The self-isolated antennas in a close-form loop structure when being
packed in pairs in close proximity [8] do not need any decoupling structure between the antennas and
show isolation better than 17 and 14 dB in the 2.4/5 GHz bands. In [9], two gap-coupled antennas having
asymmetrical mirrored structures are shown to exhibit isolation > 10dB in the 3.4-3.6 GHz band.
In [10], two coupled-fed, U-shaped antennas sharing one coupled grounding strip for self-decoupling
with isolation > 17dB in the 3.4-3.6/4.8-5.0 GHz bands are presented. Two resonances are found in
the antenna pair. The first resonance is coupled between two antenna elements and not useful, while the
second resonance is decoupled using the shared coupled grounding strip [10]. The conjoined coupled-fed
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loops in [11] with no separation between the two antennas for the 3.3-4.2 GHz band are reported to
obtain isolation > 12dB. The conjoined section embedded with a chip capacitor is reported to act as
a band-pass structure, which attracts more currents on the ground excited by one port and suppresses
currents entering the other port, thereby decoupling the two antenna ports.

The decoupled two monopoles with two parasitic grounded strips conjoined to achieve isolation
better than 19 and 16dB for 2.4 and 5 GHz operation are introduced in [12]. A chip capacitor is
also used but loaded between the conjoined section and the antenna ground. Different from [11], the
capacitor allows the conjoined strips to generate two different resonant modes close to each other with
out-of-phase currents on one parasitic strip when the other strip is excited. Good decoupling is thereby
attained.

Despite no decoupling structure [8-10] or even no antenna separation of the conjoined
designs [11, 12], the above-mentioned designs in [2—12] are still based on two discrete antenna elements.
In this paper, we demonstrate that a single radiator (one antenna element) can be fed by two signal
ports, which are decoupled using the same radiator, and yet function as a two-antenna system. The
design comprises a simple strip dipole, a dual-feed network, and two parasitic strips. The strip dipole
is coupled-fed via a chip capacitor connected to a dual-feed network and generates 0.5-, 1.0-, and 1.5-\
dipole modes. The capacitor is located in the middle of the dipole where surface currents are null for
the dipole’s 1.0-A mode and maximum for 0.5- and 1.5-A modes, such as to affect both the 0.5-/1.5-
A resonance least. By choosing proper values of the chip capacitor, the operating frequencies of the
1.0-A mode, when portl is excited, can be decreased to cancel out opposite-phased 0.5-\ mode on the
opposite, half portion of the dipole close to port2, such that good isolation can be attained. Notice that
these two resonances (0.5-/1.0-\ modes) are both required and combined for decoupling in this design;
none of the resonances disappear. This is different from the working principle reported in [10].

Additionally, with the tuning stubs aiding in the dual-feed network, the desired frequency ratio of
the 1.5- and 0.5-A modes for the 5.2 GHz (5150-5350 MHz) and 2.4 GHz (2400-2484 MHz) bands can be
obtained. Together with the 5.8 GHz resonance generated by parasitic strips in 0.25-A monopole mode,
a tri-band, 2.4/5.2/5.8-GHz wireless local area network (WLAN) operation is attained for the proposed
dual-feed dipole antenna. Details of the dual-feed antenna system and the results thereof are described
and discussed in the article.

2. PROPOSED, DUAL-FEED DIPOLE ANTENNA SYSTEM

2.1. Antenna Configuration and Design Consideration

Figure 1(a) illustrates the proposed, dual-feed antenna system affixed to the supporting metal plate of
a 14-inch laptop display. In the experiments, the metal plate, made of stainless plate and coated with
the zinc for solderability, measures 1mm x 182mm X 315mm and can function as the large system
ground for both the antennas and the electromagnetic interference (EMI) grounding. The proposed
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Figure 1. (a) Geometry of the dual-feed, dipole antenna for 2.4/5.2/5.8-GHz, tri-band WLAN
operation affixed to the top edge of a display supporting plate. (b) Detailed dimensions of the design
prototype.
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design is constructed on the top side of a 0.8-mm-thick, flame retardant 4 (FR4) substrate (¢, = 4.4
and loss tangent § = 0.0245) of size 5mm x 40 mm and spaced 40 mm apart from the top-right corner
of the metal plate. The top side of the substrate is flush with the top side of the display metal plate
in the same z-z plane. The small antenna ground of size 1 mm X 40 mm is also reserved in the design
footprint as it is used for practical applications for grounding the antenna system to the large system
ground via a small copper tape (not shown here for brevity) in the assembly stage. Notice that owing to
its low profile of 5mm, the design is also well-suited to current narrow-bezel laptop computers [13-16].

The preferred parameters of the constructed prototype are detailed in Fig. 1(b). The design
comprises a simple strip dipole of length 38.5 mm, a dual-feed network of compact size 3mm x 22 mm,
and two parasitic strips. The dipole is coupled-fed via a chip capacitor C' connected to the feed network.
Except for the antenna ground, all the strip widths are kept the same at 0.5 mm for ease of studies;
the design structure is also symmetrically identical. At the beginning, the feed network looks like an
inverted-E shape with portl and port2 on the far ends and the shorting in the middle [see inset in
Fig. 5(a)]. The strip dipole when fed by the dual-feed network is able to generate the fundamental
(0.5-A\) and the two higher-order (1.0- and 1.5-\) dipole modes. To obtain the desired frequency ratio
of the 1.5- and 0.5-\ dipole modes for the 5.2 and 2.4 GHz bands, the tuning stubs of length 4 mm
are incorporated in the dual-feed network. Then, the 5.8 GHz resonance is added by employing two
parasitic strips in 0.25-\ monopole mode. Thereby, the tri-band WLAN operation is attained for the
dual-feed dipole antenna.

The capacitor in this design controls the occurrence of the 1.0-A dipole mode for each single port
excitation at a time to be very close to the 0.5-\ dipole mode. When portl is excited, the surface
currents of the 1.0-A\ dipole mode cancel out the opposite-phased currents of the 0.5-A dipole mode on
the opposite, half portion of the strip dipole, such that self-decoupled properties [9-12] around 2.45 GHz
can be attained. It should be noticed that with only one feed port [see inset in Fig. 2(b)], the strip
dipole only generates the 1.0-A dipole mode. That’s, the 0.5-A dipole mode only occurs when the two
feed ports are operating. More details regarding these two modes found on the same radiator (strip
dipole) will be discussed in the following section. The preferred parameters in this paper were attained
by rigorous studies simulated by the electromagnetic solver, ANSYS HFSS [17].

2.2. Decoupling Analyses and Controlling Mechanisms

Several reference cases are analyzed in this section to better understand the dual-feed antenna system
and port decoupling. Fig. 2 shows the simulated S-parameters for the proposed design, reference case 1
(single feed port only), and reference case 2 (no capacitor C, replaced by direct-feed stub); all dimensions
remain the same as those shown in Fig. 1. First, for the proposed design, three resonant modes (one in
the lower band and two in the upper bands) with acceptable isolation (S21) better than 15 and 12dB in
the 2.4 GHz (lower), and the 5.2/5.8 GHz (upper) bands respectively are seen in Fig. 2(a). For the cases
of the single feed port only as depicted in reference case 1, the reflection coefficients (S11 for portl, Soo
for port2) in Fig. 2(b) are very similar to their counterparts in Fig. 2(a). This suggests that each signal
port in the proposed dual-feed antenna system suffers less coupling from the other port as the individual
antenna with only portl (Antl) [or port2 (Ant2)] excitation in Fig. 2(b) functions independently.

However, when the capacitor is removed and replaced by a short stub [the strip dipole is direct-fed
as shown in Fig. 2(c)], the isolation becomes worse, particularly in the lower band and the first upper
band around 5.1 GHz, while the second upper band for 5.8 GHz operation is relatively less affected. This
is because the fundamental (0.5-A) and the second higher-order (1.5-A) modes of the strip dipole mainly
contribute to the 2.4 and 5.2 GHz bands while the two parasitic strips help generate the 5.8 GHz mode.
And the loaded capacitor is employed to decouple the two feed ports of the same dipole resonance.
Notice that the lower band for reference case 2 is also degenerated into two separate resonant modes
at 2230 and 2450 MHz. The properties of these two modes are further elaborated with the aid of the
surface current distribution in the following paragraph.

The surface-current distributions for portl excitation for the proposed design and reference case 2
are presented in Fig. 3. The frequencies selected here represent the most matched frequency points
studied in Fig. 2. The current null is denoted as a cross in the figure. First, for the proposed design,
relatively large surface currents are seen populated on the half (right) portion of the design closer to
portl side as circled in Fig. 3(a). The 0.5-A and 1.5-A dipole mode currents with no null at 2450 MHz
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Figure 2. Simulated S parameters (S7; for portl, Sy for port2, So; isolation between two ports) for
(a) proposed design, (b) reference case 1 (portl or port2 excitation only), and (c) reference case 2 (no
capacitor C' between dipole and dual-feed network); C' = 4.0 pF.

and two nulls at 5120 MHz are also easy to identify. For reference case 2, the surface currents of the
two different modes in the lower band as seen in Fig. 2(c) with 1.0-\ dipole mode at 2230 MHz and
0.5-\ dipole mode at 2450 MHz are seen in Fig. 3(b). The 1.0-\ dipole-mode current distributions
on the strip dipole are similar to those for reference case 1 (portl or port2 excitation only), and the
frequencies thereof can be controlled (results not shown for brevity). From the previous studies in [12],
larger capacitance leads to lower frequencies of the 1.0-A dipole mode (monopole mode in [12]). And
the direct-feed stub here resembles the case of using large values of the capacitor. Finally, the surface
currents in the upper bands are about the same as those for the proposed design, but the isolation is
not satisfactory as can been observed in Fig. 2(c).

The decoupling mechanisms are also illustrated in Fig. 3(c). The strip dipole can generate 0.5-,
1.0-, and 1.5-\ resonant modes. The center of the dipole, where the current null of the 1.0-A mode
occurs, is connected to the chip capacitor. When portl is excited, the surface currents for 0.5- and 1.0-\
modes on the half (left) portion of the antenna close to port2 as circled in Fig. 3(c) are out of phases
while in phase on the other (right) portion close to portl. This characteristic reflects those observed in
Fig. 3(b). The frequencies of the 1.0-A dipole mode can be controlled by the chip capacitor to be very
close to the 0.5-A\ dipole mode. As a result of the two resonant modes of similar magnitude but with
opposite phases, the mutual coupling can be reduced [18].
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Figure 3. Simulated surface currents for portl excitation at (a) 2450, 5120, and 5760 MHz for the
proposed design and (b) 2230, 2450, 5050, and 5855 MHz for reference case 2. (c) Illustration of the
decoupling mechanisms for the antenna in Fig. 3(b).

The port decoupling between the two ports in this design can be fine tuned by varying capacitor
value C. Fig. 4 shows the simulated S parameters for the proposed design as a function of the capacitor
C. The capacitor values are practically selected from the Murata GJM 0402 series datasheet. With the
variation of 1pF, the obtained S;; and Sas curves in Figs. 4(a) and (b) are comparatively unaffected;
however, the Sa; properties change quickly, especially in the 2.4 GHz band as seen in Fig. 4(c). The
drop (smallest value) of the Sy varies from —15.4dB at 2.43 GHz (C' = 3pF) to —20.6 dB at 2.50 GHz
(C = 5pF). The near-optimum value of the capacitor in this study is 4 pF, which gives a So; drop of
—17dB around 2.45 GHz.

Figure 5 further explains how the dual-feed dipole system evolves with regard to the tri-band
operation for each 2.4, 5.2, and 5.8 GHz band. At the beginning, the strip dipole is connected, via the
chip capacitor, to the inverted-E-shaped dual-feed network as shown in the inset of reference case 3
in Fig. 5(a). The tuning stubs are not yet incorporated in the dual-feed network, and the length of
the dipole is extended at both ends by 3mm to operate in the 2.4 GHz band. It can be seen that the
fundamental (0.5-\) and the second higher-order (1.5-)\) dipole modes resonate at 2.45 and 6.56 GHz,
respectively. The S parameters in the lower band are comparable to those of the proposed design (see
corresponding dashed lines). To lower the 1.5-A dipole mode for operating in the 5.2 GHz band, the
tuning stubs of 5.3 mm are added to the feed network as shown in the inset in Fig. 5(b). In this case,
the single strip dipole can generate at the 2.4 and 5.2 GHz bands with isolation (S2;) better than 16 and
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14 dB, respectively. By further applying two parasitic strips to reference case 4, the tri-band, dual-feed
dipole antenna system can be attained. Notice that for the proposed design, the operating frequencies

of the two parasitic strips are decoupled by the large distance therein between (24.6 mm, about 0.47\
at 5725 MHz).
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Figure 4. Simulated S parameters for the proposed design as a function of the capacitor C: (a) S1;
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3. EXPERIMENTAL AND SIMULATION RESULTS

Figure 6 shows the measured and simulated S-parameters for the proposed dual-feed dipole antenna
system. The simulation results are presented by dashed lines. The targeted 2.4 and 5.2/5.8 GHz WLAN
bands are marked by the three shaded frequency ranges. The experimental data in general agree with the
simulation. The reflection coefficients (511 and S22) within the bands of interest are all below —7.4dB
(about VSWR of 2.5), which is industrially acceptable for WLAN laptop antennas and corresponds to
about 0.8 dB transmission loss via the antenna. The measured isolation (S2;) between the antennas
over the 2.4 and 5.2/5.8 GHz bands is better than 16 and 14 dB. The two 50-Q mini-coaxial cables of
length about 80 mm are used for feeding the dual-feed network across a feed gap of 0.5 mm. The inner
conductor of the cable is connected to point A while the outer grounding is soldered to point B on the
small antenna ground (see points A and B in Fig. 1).
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Figure 6. Measured and simulated (gray dash lines) S parameters for the proposed design; C' = 4.0 pF.

The radiation performance of the constructed prototype was measured at our in-house SATIMO
chamber of model SG 64, which has multiple probe arrays and uses the conical-cut method [19].
Figs. 7 and 8 show the measured radiation patterns in Fy and E,, fields for portl and port2 excitation,
respectively, at 2442, 5250, and 5775 MHz, the center frequencies of the 2.4, 5.2, and 5.8 GHz bands.
During the measurement for portl excitation, port2 was terminated at the 50-Q) load connector, and
vice versa. Across the bands, comparable Ejy and Ey fields are observed in the x-y planes, which is
advantageous to WLAN operation in complex propagation environments. Also, similar to the radiation
properties of the WLAN laptop antenna as studied in [15], the radiation patterns in the two major
elevation planes (2-z and y-z planes) show larger radiation above the display toward the +z direction.
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Figure 7. Measured 2D radiation patterns for port2 excitation in the proposed design at (a) 2442 MHz,
(b) 5250 MHz, and (b) 5775 MHz.
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(b) 5250 MHz, and (b) 5775 MHz.
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antenna efficiency for portl and port2 excitation  simulated, complex, F-field radiation patterns for
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Figure 9 plots the measured peak antenna gain and antenna efficiency against frequency. For portl
excitation of the proposed design in the 2.4 and 5.2/5.8 GHz bands, the peak gain is about 3.3-4.0
and 4.1-5.1 dBi with antenna efficiency larger than 60% and 66%, respectively. As for port2 excitation,
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the gain is about 3.2-3.7 and 3.5-4.9 dBi with efficiency larger than 57% and 63% in the lower and
the two upper bands. The radiation measurement here took account of the antenna mismatch and the
mini-coaxial cable loss. The realized gain [20] and the antenna efficiency [21] were measured in the
chamber.

The envelope correlation coefficient (ECC) for the dual-feed antenna system is given in Fig. 10.
The ECC is also obtained from the ANSYS HFSS, which computes the Hermitian product of the two
far-field 3D radiation patterns with each normalization [22]. Very good ECC smaller than 0.06 and
nearly zero are obtained over the 2.4 and 5 GHz bands, respectively, which are much better than the
value 0.5 as suggested for mobile devices reported in [23].

4. CONCLUSION

A single strip dipole fed by a dual-feed network via a chip capacitor for achieving a dual-feed antenna
system for 2.4/5.2/5.8-GHz WLAN operation has been proposed. The strip dipole generates in both the
0.5-A and 1.5-\ dipole modes to cover the 2.4 and 5.2 GHz bands. The 5.8 GHz band is contributed to
by the 0.25\ monopole mode of the added parasitic strips. A chip capacitor is loaded between the strip
dipole and the dual-feed network to enhance the two-port isolation of the dipole antenna. The capacitor
is used to decrease the operating frequencies of the 1.0-\ dipole mode for each single port excitation to
cancel out opposite-phased 0.5-A dipole-mode currents on the strip dipole when the dual-feed network
is operating, such that good isolation can be attained. The measured port isolation is better than 16
and 14 dB over the 2.4 and 5.2/5.8 GHz bands. The antenna efficiency overall exceeds about 60% across
the bands. The proposed design is simple in structure and compact in size, very promising for future
multiple laptop antennas for Gbps communications.
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