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Theory of Electromagnetic Radiation in Nonlocal Metamaterials —
Part II: Applications

Said Mikki*

Abstract—We deploy the general momentum space theory developed in Part I in order to explore
nonlocal radiating systems utilizing isotropic spatially-dispersive metamaterials. The frequency-
dependent angular radiation power density is derived for both transverse and longitudinal external
sources, providing detailed expressions for some special but important cases like time-harmonic- and
rectangular-pulse-excited small dipoles embedded into such isotropic metamaterial domains. The
fundamental properties of dispersion and radiation functions for some of these domains are developed in
examples illustrating the features in nonlocal radiation phenomena, including differences in bandwidth
and directivity performance, novel virtual array effects, and others. In particular, we show that by
a proper combination of transverse and longitudinal modes, it is possible to attain perfect isotropic
radiators in domains excited by small sinusoidal dipoles. The directivity of a nonlocal small antenna is
also shown to increase by possibly four times its value in conventional local domains if certain design
conditions are met.

1. INTRODUCTION

The principal goal of this paper is to demonstrate how the general momentum-space theory of Part I [1]
can be deployed to help understanding the basic radiation properties of elementary sources embedded
into such nonlocal metamaterials. Some general issues related to the overall scope of this work and the
design of metamaterials for radiating nonlocal systems had already been discussed in the introductory
sections of Part I and Sec. 5 there and the reader is referred to that material for further information.
In the remaining part of this Introduction, we focus on providing a general overview of the content of
the present paper.

We start with Sec. 2, which is dedicated to presenting the main rudimentary facts (supported
by the Appendix) about the main genre of nonlocal metamaterials considered in Part II, namely the
generic isotropic medium whose essential features pertinent to radiation theory are briefly sketched
out in Sec. 2.1. After that, we further specialize the general isotropic case in Sec. 2.2 to concentrate
for the rest of this paper on the special but substantial example of non-resonant isotropic nonlocal
metamaterials (NR-NL-MTM). In Sec. 3, we start investigating the first concrete antenna type in this
paper, a point source, dipole-like radiator embedded into the NR-NL-MTM described in the previous
section. To do so, we first need to slightly modify the previous theory to deal with continuous sources,
which necessitates the introduction of the momentum space power spectral radiation density function by
applying a careful limiting process when the radiation energy test interval T goes to infinity. Starting
from Sec. 4, we focus on concrete antenna sources launching longitudinal (L) waves and explore the
dispersion data of such radiating systems and estimate the corresponding fundamental momentum-
space radiation functions. A specific temporal dispersion profile (generic Drude model) is assumed due
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to its popularity and wide applicability and the main features of nonlocality consequent on this choice
are investigated. The results of the previous sections are then combined in Sec. 5 to disclose one of
the most outstanding features of nonlocal radiating antenna systems, the phenomenon of virtual arrays
where careful manipulation of the processes of launching multiple T and L modes is found to lead to the
presence of an array-factor-like radiation pattern even when only a single physical source is used. The
general expressions for this system are derived and some numerical examples are given. The directivity
of a combined L-T nonlocal antenna system excited by a small dipole is shown to vary with frequency
and mode excitation type, with the possibility of increasing directivity from 1.5 in classical (local)
antennas to values as high as 6 (i.e., four-fold increase due to the use of nonlocal MTM domains.)
Another remarkable feature of nonlocal radiating systems is the possibility to synthesize a perfectly
isotropic radiation pattern, a feature unique to nonlocal MTMs and is shown to depend crucially on the
excitation of L modes. We provide an engineering application case study in Sec. 6, where exact MTM
design equations were derived for the case of point (dipole) source excitation energized by a sinusoidal
signal. We also point out possible generalization to implement approximation of isotropic radiators over
a desired frequency range for wideband applications like time-dependent arrays, UWB systems, and
nonsinusoidal antennas. Finally, we end with conclusions and recommendations for future work.

2. THE GENERAL THEORY OF ISOTROPIC NONLOCAL METAMATERIALS

2.1. Principal Radiation Formulas in Isotropic Nonlocal Metamaterials

One of the simplest — yet still demanding and interesting — nonlocal media is the special case of
isotropic, homogeneous, spatially-dispersive, but optically inactive domains [2]. In this case, very general
principles force the generic expression of the material response tensor to acquire the concrete form [3-5]:

Fk,w) = eV (k,w)d — kk) + e (k, w)kk, (1)

where k := |k|, k := k/k, and k is the wavevector (spatial-frequency) of the field. The first
term in the RHS of Eq. (1) represents the transverse parts of the response function, while the
second is the longitudinal component, with behaviour captured by the generic functions T (k,w) and

el(k,w), respectively. The tensorial forms involving the dyads l%l%, however, are imposed by the formal
requirement of the need to satisfy the Onsager symmetry relations in the absence of external magnetic
fields [5]. In Appendix A, we provided detailed further information about several prominent quantities
expected to play a key role in the general radiation theory of nonlocal materials. In particular, in order
to estimate the antenna radiation pattern using the general formulas [1]

Ui(k) = %Jznt[k,ka)]E(k)J[k,m(k)], Ui(k) = 5—10Rl<k) T Lk, wi (k)] A—kk) Tane [k, wi ()], (2)

ant

we need to evaluate the fundamental function R;(k) for several exemplary cases. This is already available
through the formula (A10) derived in Appendix A. It is interesting however to note that one may also
utilize the alternative general expression [1]

w

2 [w2 e ) F e - a0

Ri(k) = (3)

w=w; (k)

after specializing the material tensor by means of Eq. (1). Both computational methods were found to
lead to the same answer. In either case, what is really at stake is to know the dispersion relations, at
least for the use of (A10), and both the dispersion relation and the modal polarization when formulas
like Eq. (3) are used.

The dispersion relation is given by substituting Eq. (A4) into the general equation G~5H(k,w) = 0
derived in [1], leading to e“(k,w) [T (k,w) — n2]2 = 0, which is readily satisfied provided either the
longitudinal (L) or the transverse (T) waves are excited. In details, for the L. modes we denote these
dispersion data by

el(k,w) =0 = Lmodes: w=uwl(k), ék) =k, (4)
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where the modal fields are obviously polarized along the wavevector k. Note that such modes do not
exist in domains like free space, while if they exist in local temporally dispersive media, e.g., cold plasma
waves, they don’t effectively couple energy into the radiation zone because without spatial dispersion
their group velocity is zero [2]. On the other hand, for T waves, two degenerate modal fields é;5(k),
s = 1,2, exist and are both contained in the plane perpendicular to k. Their dispersion relations are
clearly

eT(k,w) —n*=0 = T modes: w=w(k), és(k) k=0, &, (k) &s,(K) =055, 512=1,2. (5)

Such [s-modes are analogous to classical (local) antenna radiation fields but their behaviour and
properties can be very different due to the peculiarity of nonlocal domains as will be seen below in
some selected examples below.

We now may directly calculate the radiation spectral structure functions for both modes. For L
waves, use of Egs. (A10) and (4) gives

1
9eL(k, ) !
—_ 7
Ow w:wlL(k)

Rl (k) = (6)

where the L, mode dispersion relation e" (k, wlL(k)) = 0 was used. A similar procedure for the case of T
waves yields

RI(k) = ! , (7)

0
— [T _n2
vy T e) —mhw)|

after the use of e* (k,w; (k)) — n?(k,w/ (k)) = 0, the dispersion relation of T modes. It is interesting
to note that the two R;(k) functions share the same form for both L and T waves even though the
underlying dispersion data are quite different. We also notice the complete decoupling between the two
types of waves. In general, such neat separation of waves into uncoupled T and L modes is not possible
in arbitrary anisotropic domains [5]. Precisely the same formulas (6) and (7) can be obtained if we start
with Eq. (3), providing self-consistency of our calculations but the details are omitted.

2.2. Nonresonant Isotropic Nonlocal Metamaterials

For the remainder of this paper, a series of elementary concrete examples will be given in order to
illustrate some of the basic features of nonlocal antennas. Let us start with a class of nonlocal
metamaterials called nonresonant nonlocal metamaterial (NR-NL-MTM) in which the material dielectric
functions can be expanded in the power series

N N
l(k,w) =) aiw)k?, eT(kw) =) bi(w)k”, (8)
1=0 1=0

where N is some integer terminating the series expansion, the order of the MTM.! Let us further fix
N = 1. In this case, the NR-NL-MTM response model in Eq. (8) reduces to

el (k,w) = ap(w) + ay(wW)k?, €T (k,w) = bo(w) + by (w)k>. 9)
The L mode dispersion relation in Eq. (4) then becomes e"(k,w) = ag(w) + a1(w)k? = 0, which can be
readily solved to give
—ap(w) 1/2
b= || (10)

ai (w)

T The L and T dielectric functions need not share the same upper bound on the number of terms but we assume so here for simplicity.
The form in Eq. (8) often arises in practice, especially for media with no excitation of strong resonant modes like surface waves [2,4].
Media that may exhibit such behaviour include homogenized arrays with strong near-field mutual coupling between the unit cells [6],
materials with weak spatial dispersion [2], and some plasma materials at certain frequency/phase velocity range [7, 8], and numerous
others.
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Note that we assume ag(w) > 0, a1(w) < 0, as is expected from the basic underlying physics [2, 3, 9.
Moreover, we also assume the same for the transverse response function, i.e., by (w) < 0, bp(w) < 0, which
is the case for the same reasons as the L wave response. The negative root was discarded in Eq. (10)
because we already expect from symmetry that for every k-wave, the wave associated with —k is also a
solution but not of interest here since we are focusing on radiation away from the source/antenna (The
same is done below for T waves.).

The T mode dispersion relation in Eq. (5) gives by(w) + b1 (w)k® — n? = 0, which after using
n? = ?k? Jw? simplifies to w?by(w) + (w?b1(w) — ¢*) k* = 0. The positive root solution of this equation

: B Wby (w) 1/2
k= hc? —w2b1<w>>] ’ 1

which constitutes the T mode dispersion relation for N =1 (again the negative root is discarded).
Using the alternative form of the dispersion relation written in terms of the refraction index in
Eq. (B1), the T wave dispersion law can be found by

W) = o)

2 — w?by(w)’ (12)

where n is the function only of w but is independent of k. When there is no spatial dispersion, by = 0
and Eq. (12) reduces to the familiar n = /e law in local homogeneous and isotropic domains. Fig. 1
illustrates the T wave dispersion data in the two forms, the index of refraction function in Fig. 1(a),
and the direct k = k(w) function in Fig. 1(b). We study the T wave propagation characteristics within
a given frequency band with center frequency w., which could serve as the carrier frequency in an
analog or digital communication system. The strength of spatial dispersion is varied according to the
normalized parameter ( := —w?2by /c?, with no spatial dispersion when ¢ = 0. As can be seen from both
figures, as frequency increases, the propagation characteristics strongly deviates from the local antenna
scenario as ( increases. In particular, the frequency-dependent index of refraction nt(w) appears to
asymptotically approach zero when spatial dispersion is very strong. This suggests that nonlocal T
wave antennas may experience reduced radiation bandwidth under conditions of strong nonlocality, an
observation that will be confirmed by further results below.

To estimate the nonlocal antenna radiation pattern, we need to evaluate the fundamental R;(k)
function. Using Eq. (6) with the L mode dispersion relation in Egs. (10) and (9), straightforward
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Figure 1. Dispersion analysis results for the nonresonant nonlocal metamaterial (NR-NL-MTM) whose
model is given by (8) with case N = 1. We also further assume here negligible T wave response temporal
dispersion (by = 1, 9b1(w)/dw = 0). (a) The transverse refraction index nr as function of frequency. (b)
The transverse (T wave) mode dispersion relation. Here, ¢ := —w?by /c?, where w, := (Wmax — Wmin)/2
is the center frequency in the frequency band [wiin, Wmax]-
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calculations give

1

w ag(w) + a4 W)k |y

Ry (k) = : (13)

where wl*(k) can be obtained by inverting Eq. (10) and the prime indicates differentiation. For the T

modes, using Eq. (B1) in Eq. (7), the following expression is obtained for the T wave case:

RE(k) = ! - ! , (14)

0 0
w%ET(k,w) + 2n?(k,w) ) 2n(k,w)%[wn(k,w)] )

where w]' (k) is found by inverting Eq. (11). With the help of Eq. (9), expression (14) can be put into
the following general form

R} (k) = !

2c2by (w) (15)

b by (w)k? + ————
wbi(w) + wb (w)k? + 2 — w2by (w) T (B

The expressions (13) and (15) can handle arbitrary temporal dispersion profiles for antennas radiating
into isotropic nonlocal media of class N = 1 NR-NL-MTM. To gain further insight into the basic
behaviour of such antennas, we focus on the special but important case of negligible temporal dispersion.*
That is, for simplicity let us further assume that no temporal dispersion exists in the transverse dielectric
response case, which is mathematically expressed by

bo(w) =1, bj(w)=0. (16)

Therefore, the coefficients of the power series expansion in Eq. (8) are not dependent on frequency. For
the special case of Eq. (16), the relation in Eq. (15) may be further reduced into

1 c? — wi(k)by

= —5 =" 17
T , (1)

T
k
R (k) 2¢2

w=wr (k)

where for simplicity we removed the modal index [ since only one T wave exists for N = 1.8 In Sec. 3,

the formula (17) will be exploited to explore various properties and characteristics of basic sources
embedded into such class N =1 NR-NL-MTM.

3. TRANSVERSE WAVE NONLOCAL ANTENNA SYSTEMS

We are ready now to tackle our first elementary radiating antenna system: the fundamental infinitesimal
dipole antenna radiating at single frequency. This is nothing but a very short thin-wire antenna
concentrated at a position (say the origin) with orientation &s and frequency ws. In spite of its
extreme simplicity, this source has received considerable attention in classical antenna theory, usually
under the rubric of Hertizan dipole [10], or electrically small antennas [11]. Moreover, it can be
shown that any current that is not electrically small can be expanded into an optimized infinitesimal
dipole model composed of only a few such infinitesimal sources [12-15]. For these reasons, we propose
that understanding the basic behaviour of a T wave nonlocal antenna should start with a thorough
investigation of such fundamental infinitesimal-dipole-based nonlocal antenna systems. Extension to L
wave type and arrays will be given in Secs. 4 and 5, respectively.

 Indeed, even though nonlocal metamaterials are expected to exhibit both spatial and temporal dispersion behaviour, in certain
frequency bands and wavenumber ranges, these two types of dispersion can be treated as independent phenomena [2, 3].

§ Tt should be remembered that since by is negative, the ratio RT (k) is always positive and in fact less than one. Similarly, one can
show that RT(k) is between 0 and 1. Such inequalities follow from fairly general energy relations in dispersive electromagnetic media
imposed by thermodynamic considerations and are valid also for anisotropic MTMs, e.g., see [3,9].
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3.1. The Momentum Space Radiation Power Pattern of Continuous Sources
The expression of the infinitesimal dipole sinusoidal antenna current in spacetime is given by
Jant (1, 1) = G5 Js0(r —r5)e ™ Joni(k,w) = dse™T 21 T8 (w — wy), (18)

where r; is the location of the source and the frequency-dependent complex-valued quantity Js = Js(ws)
its strength. In order to utilize the radiation energy density expression [1]

1 . 2
Uik) = aRl(k) kX Jant[k, wi(K)]| (19)
we evidently need to square a delta function because of Eq. (18). This can be achieved with the help of
the generalized function identity [16, 17]
[276(w — ws)]? = T216(w — wy), (20)

where T is the duration of the excitation, and the limit 7" — oo is implicit here. The spherical coordinates
form of k is given by

k = k(Q) = & cos ¢sin 0 + §j cos ¢sin § + £ cos b, (21)

where Q := (0, ) and dk = dQ. With the help of Eq. (20) after substituting Eq. (18) into Eq. (19),
making use of Egs. (17) and (21), we arrive at
? — wi (k)b

PT(k7I%): 26250

|(2 cos psin @ + § cos psin @ + 2 cos 0) x és|? 2m|Js|*S(wr g —ws),  (22)

where the momentum-space power spectral density is defined by

_ .o Ulk)
P(k) := lim ZT (23)

T—o00

The expression (22) gives the radiated power per unit momentum-space volume d3k/(27)3 for transverse
(T) waves emitted by a point source oriented along & with source tuned to frequency ws. The angles

# and ¢ are those associated with observation in momentum space, hence their identification with k.

For example, the total power radiated in the angular sector 2, > k and within the wavenumber range
k1 < k < ko is given by

~ k2 A~
Praalky < k < ko, k€ Q,) = / dk/ dQ - Pr(k, k). (24)
k1 T

Physically, a radiation function of the form P(k, l%) measures the radiated power density per unit solid
angle per unit wavenumber, with units of Watt per solid angle per 1/m.

The wavenumber k can be considered a measure of the inverse of the characteristic wavelength
of the field’s spatial variation, so for small k the field possesses very large A-components, while short-
wavelength components correspond to k — oo [3,4]. However, in controlled radiation theory, we rarely
enjoy fully freedom in regard to manipulating the production of the source’s wavelength components.
Instead, what is typically available is the frequency of the externally-applied source/natural process
pumping energy into the nonlocal material/metamaterial.

Now the key idea of this paper is that radiated energy can be computed in both momentum space
and spacetime. Note that the delta function in Eq. (22) forces only one T mode to be excited, that in
which k satisfies the condition w(k) = ws. This corresponds to the familiar condition in local radiation
theory where all emitted waves must satisfy k¥ = ws/c; however, due to the increased number and
complexity of modes associated with radiation into nonlocal media, the antenna radiation pattern is
expected to be significantly altered qualitatively and quantitatively as will be discussed in Sec. 5.

Consequently, what is needed next is a general expression for the nonlocal antenna radiation pattern
expressed as function of angles and frequency instead of angles and k, i.e., a function of the form U;(w, l%)

or Pl(l%;w) in line of the proposal given toward the end of Part I. We provide here a simple method
to derive such frequency-dependent radiation pattern valid for the case of generic isotropic nonlocal
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domains. The most natural method is to equate energy in both representations, i.e., U;(w, l%) is defined

Note that in this paper we interchange k and Q whenever convenient, see Eq. (21). To do so, the
dispersion relation w;(k) will be used, but in the more appropriate form

~

k) (w) = ky(w)k (26)

valid only if the index of refraction n;(w, k) defined by Eq. (B1) is independent of &, which is the case in
isotropic nonlocal media (The generalization to arbitrary media is given in Appendix B). The function
k = kj(w) is obtained by inverting the dispersion relation w = w;(k). Note that by construction there is
only one mode captured by the dispersion relation w;(k) so this function is injective (one-to-one), and
hence invertible with one k-root for the equation w;(k) —w = 0, which we denote by k;.

Now, in spherical coordinates, the volume element in the momentum (spatio-spectral) space k may
be written as d3k = dkk2dQ, while dk = (dk;/dw)dw. Therefore, the LHS of Eq. (25) can be expanded

as 3 w 7.
/%Uz(k) _/dka%fu)/dQUl[kl(w)ak]‘ &)

Comparing Eq. (27) with Eq. (25), it is possible to deduce that

~ 2 w w
e - g

~—

Uilki(w), k). (28)

Physically, the quantity in Eq. (28) represents the radiation energy density, or energy per unit solid angle
per unit radian frequency (Watt per starad per rad/s). The total energy radiated within a frequency
band [w1,ws] and angular sector €, is given by

w2

Upad(w1 < w < wa, k € Q) = /

w1

dw /QT dQ U (w, k). (29)

On another hand, it is quite straightforward to compute the radiation pattern in terms of power instead
of energy. Using Egs. (28) in (23), the observable radiation power pattern of the nonlocal point source
can be put in the form

w2
16m3e9c?y/ c2 —w?by

where wy is the externally supplied (antenna) source frequency and the T wave dispersion relation in
Eq. (11) was utilized. The relation in Eq. (30) constitutes the T wave antenna (angular) radiation
power density (radiation pattern for short), i.e., the amount of power radiated by the T mode in the
direction (6, ) per unit frequency when a sinusoidal point source with frequency ws and orientation é,
excites an isotropic nonresonant nonlocal metamaterial with N = 1. In particular, the total radiated
power in the solid angular sector €, := {0; < 6 < 62, p1 < ¢ < pa} can be computed by means of the
formula

Pr(0, p;w) |(4 cos psin 0 + §j cos psin 0 + 2 cos 0) x G| 27| J, 26 (w — ws), | (30)

o o0 02 o2
Praa () :/ dw/ dQPr (6, ¢;w) :/ dw/ / dfdpsin® Pr(0, o;w). (31)
0 Qr 0 01 Jo1

The proof of Eq. (31) follows directly from the manner in which U; was constructed via relations of the
form in Eq. (27).
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3.2. Antenna Directivity Analysis

Moving further, the sinusoidal radiator directivity is defined as the ratio of the mazimum radiated power
density divided by the isotropic power density (the latter being the power density corresponding to ideal
isotropic radiator.) Quantitatively, this is given by [11]

maxg , P (0, ¢;w)
Prag(4m;w) /2

where P,.q(47;ws) is the radiated power on the entire infinite sphere. To give a concrete example, let
us assume that the point antenna is located at the origin and oriented along the z-direction. In this

case, |k x &,| = |k x 2| = |sinf]. From Egs. (30) and (31), it follows that

D(w) :=

(32)

Proa(dr:w) s e” " /Wdé? in® 0 s Pu” (33)
W) = S1n = 5
rad 8m2epci/c? — w?by Jo 4 0 3megccvVe? — w?by
where foﬂ dfsin® @ = 4/3 was used. On the other hand,
J 2 .2 J 2 .2
max Pr (0, p;w) = s max | sin® 4] = 5[ (34)

6, 8m2egc2v/c? — w2by 0,0 8m2epc?y/c? — w?by

Therefore, from Eq. (32), the T wave nonlocal antenna has directivity Dt = 1.5, which is the same as
its value for local infinitesimal antennas. Therefore, sinusoidal T wave antennas of modes described by
dispersion relation in Eq. (11) exhibit the same directive properties as conventional free-space antenna. |

In Fig. 2, we illustrate one of those curious divergences in behaviour between local and nonlocal
radiators. Fig. 2(a) shows the radiated total power (power radiated by all polarization components in
all directions) computed by means of the expression (30) over a frequency band. The case with {( = 0
corresponds to zero spatial dispersion, i.e., local antennas (free-space radiators.) On the other hand, the
cases ( = 0.1,0.5,1, model class N = 1 non-resonant in isotropic metamaterials with increasing spatial
dispersion strength, respectively. It is clear that the celebrated 1/A? power law in electromagnetic
transmission is no longer satisfied at large frequencies in the case of this nonlocal T wave antenna
system. Indeed, the local antenna possesses a w? frequency law, while spatially dispersive media with
the T wave mode of the class N = 1 exhibits a linear w frequency law or 1/ variation for high frequency.
This implies that electromagnetic waves radiated by this type of nonlocal T modes would experience
greater decay of their high-frequency components, leading to smaller transmission bandwidth compared
with local antennas. This striking behaviour can also be noticed in Fig. 2(b) where we plot the angular
radiation pattern of a point source parallel to the z-direction, so # measures the angle with the z-axis.
It can be seen that with significant spatial dispersion (( = 1), the peak radiated power level of the T
wave nonlocal antenna class N = 1 drops like 1/f with increasing frequency relative to the peak level
attained by the local antenna at the same frequency range.

3.3. Radiation Energy Patterns for Pulsed Signals

It is interesting to note that the theory developed in this paper is not exclusively restricted to sinusoidal
sources of the form in Eq. (18). In fact, the momentum space approach is quite general and can handle
arbitrary radiators in both space and time. To give a flavour of this possible expansion of the method,
we stay within the relatively simple confines of the class NV = 1 nonresonant nonlocal metamaterial we
have been exploring so far but now assume that the radiating source is excited by a rectangular pulse
rect(t/T), where T is the total pulse duration.Y The antenna current distribution in this case can be

I Note, however, that this does not imply that directivity is the same in all other cases. The nonlocal antenna remains fundamentally
different from conventional free-space antennas in many respects. The first element among these distinctions is the existence of multiple
modes in nonlocal radiators, e.g., both T and L waves, which inherently changes the radiation pattern, leading to what was described
previously as “intrinsic material array effect” emerging from the fact that several modes may act like array antenna even though only
a single physical radiator exists [18-21]. Some of these directive emission differences marking nonlocal and local antenna systems are
elaborated in general and for a few examples in Sec. 5.

9 See Fig. 3(b). Such pulses are essential in studying and designing modern digital communications. For example, digital data
streams can be modeled as a series of shifted rectangular pulses [22], see Fig. 3(a).
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Figure 2. T wave radiated power density pattern results for a sinusoidal radiator embedded into the
nonresonant nonlocal metamaterial (NL-MTM) given by Eq. (8) with N = 1. We also further assume
here negligible temporal dispersion (by = 1, 9b;(w)/0w = 0). The normalized radiated power is defined
as Praq/ g37r€003wg)*1. (a) The radiated power as function of frequency computed using Eq. (30). Here,
¢ := —w2by/c?, where w, = (Wmax — Wmin)/2 is the center frequency in the frequency band [wiin, Wmax]-
(b) Total power radiated by a point source oriented along the z-direction. All results on the nonlocal
(NL) antennas are computed for the case of ( = 1. The local antenna (L) case is clearly ¢ = 0, while
all other cases refer to nonlocal (NL) antennas (The L used in this figure should not be confused with
longitudinal waves used everywhere else in this paper.).
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Figure 3. Rectangular pulses carry information in a digital communications link, e.g., (a) a digital
data stream signal d(t). (b) A typical rectangular pulse is shown and is used to excite a point dipole
source embedded into a nonlocal metamaterials to explore the impact of such engineered domains on
electromagnetic radiation for potential deployment in wireless communications.

expressed in spacetime and momentum space via the relations

: T
Jant (r,1) = G J0(r — rg) rect(t/T),  Jans(k,w) = GsJ,T X T sinc (%) ; (35)
respectively, where &g, Js, and T are the source parameters and sinc(x) := sin (7x)/7x is the sinc

function. Substituting Egs. (19), (35) and (17) into Eq. (28), the radiation energy density U;(€2;w) can
be obtained, and after taking the limit in Eq. (23) we arrive at the momentum space radiation energy
density

J2T2w?|sinc(wT/2)|?
Ur (0, p;w) = =2 #cospsin b + §cospsinf + £ cosb) x d,l?, 36
T( ¥ ) ].671'35062\/m ‘( % Yy 1% ) S‘ ( )
where the dispersion relation in Eq. (11) was used. Similar to the calculation in Eq. (33), the total
energy radiated by a dipole with rectangular pulse excitation can be obtained and is found to be given
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by
 |JsPT?w?[sine(wT'/2) |
6m2e9c?V/ c? — w?by

This is the positive (single-sided) power spectral density. To compute the net energy radiated by the
rectangular pulse, we integrate over all frequencies:

00 00 22 2| o3 2
Erng = 2 / A Praa (w) = / du LT W sinewT/2) P (38)
0 0 3m2egc?y/c? — w?by
Figure 4 shows some results based on the expressions (36) and (37) for an infinitesimal dipole
oriented along the z-direction. We apply a rectangular pulse with width T' = 727 /w,., where w, is the
center frequency of the frequency-band sweep. The degree of spatial dispersion is measured as before
using the parameter ¢ with the local antenna corresponding to ¢ = 0. In Fig. 4(a), the radiation energy
function for a dipole’s rectangular pulse excitation width of T' = 27 /w, is plotted against frequency for
the case of local MTM (¢ = 0) and three scenarios of successive cases of nonlocal antennas experiencing
increase in spatial dispersion (¢ = 0.1,0.5,1). As we can see, the local antenna case exhibits very strong
second resonance peak at 150 GHz following the main resonance at 50 GHz. However, for nonlocal
antennas, the second resonance is significantly attenuated in comparison with the free-space antenna.
This is consistent with the results we saw previously in Fig. 2(b) where it was noticed that the nonlocal T
wave antenna’s radiation density of single mode exhibits weaker frequency growth compared with local
antennas. Here, the actual computation of the antenna’s radiation energy in Fig. 4(a) clearly confirms
the reduction in radiation bandwidth suspected in Fig. 1 with the analysis there of the corresponding
basic modal dispersion law.

Urad(w) (37)

0.1
= )
ﬂ 0.08 g
= T
E 0.06 E
5 G
< 004 =
o
2 g
£002 .
0 I i e s =2
100 0 50 100 150 200
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Figure 4. T wave radiated energy results for a pulsed-excited point source oriented along the z-direction
embedded into the nonresonant nonlocal metamaterial (NR-NL-MTM) given by Eq. (8) with N =1
and negligible temporal dispersion (bg = 1, 0b1(w)/0w = 0)). The antenna is excited by a rectangular
pulse with duration 7" as in Fig. 3. The normalized radiated energy is Uyaq/(J2T?/3meoc3w?) ™! where
We = (Wmax —Wmin)/2 is the center frequency in the frequency band [wiin, wmax)- (2) Radiated energy as
function of frequency for ¢ = —w?by/c? and T = 27 /w,. (b) Study of the impact of the excitation pulse
width 7" = 427 /w. on the T wave nonlocal antenna’s radiated energy with T wave spatial dispersion
strength parameter ( = 1.

On the other hand, Fig. 4(b) illustrates the impact of the excitation window pulse duration on the
radiation density. The energizing pulse width 7" is varied according to 277y /w. with v = 0, successively
assuming increasing values 0.25,0.5,0.75,1.0 (these results are obtained for nonlocal MTM ¢ = 1.)
As expected, when the pulse width increases, less frequency components become available to excite
transverse modes and the overall excitation approaches a DC or constant signal when T" — oo, which
explains why radiation dampens with increasing 7.7

+ We also add that the decay of the energy spectral density U,,q(w) shown in Fig. 4(b) is very weak, making the convergence of
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4. LONGITUDINAL WAVE NONLOCAL ANTENNA SYSTEMS

Longitudinal (L) waves represent the second major type of electromagnetic waves excitable by sources
embedded into nonlocal domains. The corresponding radiating systems will be dubbed L wave nonlocal
antennas.t Our goal here is to investigate when such waves can be excited and how the combined T
wave response developed in Sec. 3 and L wave radiation (to be developed shortly in this section) can
be joined together (the L-T array effect to be discussed in Sec. 5).

4.1. Some General Considerations for L Waves

Let us begin by first pointing out a peculiar fact about longitudinal waves. Since for L modes the

wave is polarized along the direction of propagation, we have é;(k) = k, and therefore the L wave
momentum-space radiation energy density derived in Part I can be put in the form

Ui(k) = E—loRl(k)u; T onn K, wr (K] 2. (39)

Writing the equation of continuity in the spatio-temporal domain then converting it to the momentum
space, we obtain, respectively
Opant (I‘, t)
ot
where pant is the electric charge density of electrical source corresponding to the externally applied
current distribution Jay. Substituting Eq. (40) into Eq. (39), the following general form is obtained
2
i) = B e P (41)
€0
The expression (41) is as good as the original form in Eq. (39). However, in certain applications, such as
microscopic emission processes and certain applications in nanotechnology, it might be easier to express
the radiating source as a charge density than as an antenna current distribution, and in the latter case
the relation in Eq. (41) is clearly more appropriate to work with. Nevertheless, in antenna applications
and macroscopic electromagnetics, the formula (39) expressing radiation in terms of surface or volume
current distributions is preferred because the geometrical shape of the antenna can often be invoked to
restrict the mathematical form of the current.*

One observation that immediately comes out after examining the L modes radiation formula when
expressed in the alternative form Eq. (41) is that such waves can radiate only if the mode frequency
wi(k) is nonzero. While this might be expected, note that from the L mode dispersion relation in
Eq. (4) the dielectric function v (k,w) must depend on frequency. Otherwise, the equation e"(k,w) = 0
will not yield any specific value for w for a given input k. This is clearer from the special case in
Eq. (10), where it is evident that no actual dispersion relation in the form w = wj(k) might obtain
if the condition (0/0w)e™ # 0 is not satisfied. Therefore, the following conclusions is inevitable: In
contrast to T wave nonlocal radiators, effective L wave radiation would not be possible if the L dielectric
function € is independent of frequency w. In other words, unlike T wave sources discussed in Sec. 3,
temporal dispersion is fundamental in order to excite L waves in nonlocal domains. Therefore, in all the
coming calculations we will need to assume some concrete temporal dispersion model for the coefficients
a;(w) appearing in (8). However, it is important to remember that longitudinal and transverse response
functions are independent physical processes in general [2, 4}.&

+ V- Jant(r7 t) = 07 k- Jant(k7w) = wpant(k7w)7 (40)

the total energy integral (38) slow. This is expected since the rectangular pulse excitation shown in Fig. 3 and implemented in the
source function in Eq. (35) assumes zero rise-/fall-times. In other words, this type of excitation current does not possess a first-order
derivative, which explains the slow decay of the energy spectral density. However, this represents no problem in principle for our
comparative study with nonlocal radiators since both the local and nonlocal antennas are utilizing the same time pulse excitation
form. In practice, we replace the ideal rectangular pulse by smooth pulses, e.g., Gaussian pulses [23], and those are known to have
Fourier spectra with very rapid frequency decay, e.g., see [17].

! In Sec. 2.2, the dispersion relation of L waves launched into isotropic media were derived, see the general Equation (4), and the
special case of class N = 1 non-resonant type metamaterial in Eq. (10).

* For example, in one dimensional antennas like wires or loops, the direction of current flow is fixed once and for all by the geometry.
In cases like these and numerous others, the evaluation of the radiation energy density Uj(k) is expected to be considerably easier
using Eq. (39) than Eq. (41).

& That is, while in some problems they may get entangled with each other, fundamentally speaking the dielectric functions e and
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4.2. The Radiation Power Pattern of L Wave Antenna Systems

To evaluate the L wave radiation density function, it is to be noted first that the density expression (28)
is still valid for L waves and hence when combined with Eq. (39) would give

- k2 (w) dkp(w)

UL(w, k) = =&
L(w, k) go(2m)3  dw

as the radiation energy pattern for the L wave antenna. Here, R"(w) := R[kr(w)]." Substituting the L
mode dispersion relation in Eq. (10) into Eq. (13) gives
1 a1 (w)/w

R (W)l - Jant ke (w), K] (42)

Ry (w) = = . (43)
ap(w) ap(w)ag (w) — ay(w)ap(w)
w [ag(w) + a} (w —al(w)] 0 1
Furthermore, from Eq. (6) we have
dhuw) _ 1 d o) | 1 ah@)m(w) - ai(@)ae) "
dw 2kp, dw | —aq(w) 2k, a3 (w) '
Consequently, Eq. (42) evaluates to
> —nL(w) ‘ ~ 12
Un(kjw) = ———————— |k - Jant [k k]| 45
L( 7w) 2606(27‘(‘)30,1((,0) a t[ L(w) ] ( )
where the L wave index of refraction ny, is given by
k
np(w) == ky(w)e — _ao(w) (46)

w w\ —aj(w)

It is not possible to proceed further without specifying the functional forms of ag(w) and a;(w). As
stated earlier, these are some of the main MTM design parameters available for the material engineer.
For maximum clarity and concreteness, let us assume that this design data is given by
wp 9
wlw) =1- 5, —aw) =5, (47)

which means that the host domain dielectric response function ag(w) is assumed to follow the classical
Drude model with Plasma frequency w,. The parameter g is assumed to be a positive real number.
Its value, together with w,, may be determined by the material’s physics and design. The dispersion
relation of the L wave in Eq. (10) now takes the form

1
2 2 2 2 2, 272
ki (w) = 7 (w* — wp) ;o wn(k) =w, + g7k (48)
It is interesting to observe that the choice g = v/3V,, where V, is the thermal electron velocity in a hot
plasma, results in the famous dispersion relation of Langmuir waves [2,7]. Here, the thermal velocity is

equal to \/kpT./me, where T, and m. are the temperature of the electron gas and the electron mass,
respectively, while kg is Boltzmann constant. While the underlying physical realization of nonlocal
metamaterials need not be restricted to plasma structures, we mention in passing that the Langmuir-
type dispersion relations obtained with the choice g = v/3V, are often considered accurate when the
phase velocity v, = w/k is large compared with the thermal velocities of all species in the thermal

plasma.! In general, the L mode index of refraction in Eq. (46) under the special case in Eq. (48)

reduces into
2
w
nL(w):i\/aﬂ—wg:E 1——g:Ea0(w). (49)
wg g w g
T

e+ can be treated as two distinct functions. The material designer may then try to optimize the performance of some applications by
independently controlling the various internal parameters associated with each response function type, i.e., the array functions a;(w)
and b; (w).

A Note that we specify the L mode dispersion law by the subscript/superscript and suppress the modal index since the N = 1 class
has only one mode but the same formula is valid for other L. modes in higher-order classes.

! Usually ionic species are much slower than electrons due to the small electron/nucleus mass ratio provided the various ion gases
temperatures are not very large.
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Note that for very large frequencies w > wy, np(w) ~ c/g, i.e., the index of refraction eventually
converges to constant level with increasing frequency, a behaviour very different from the T wave index
of refraction nr(w) studied earlier, where in the latter case nt(w) — 0 as w — oo for the case of nonlocal
media, see Fig. 2(a).

We many now proceed to compute the L wave antenna radiation pattern. Using Eqs. (47) and (49)

in Eq. (45) leads to
A wy/w? — wg A 2
i zi‘kJank Bl

UL( 7w) 250(271')393 t[ L(CU) ] (50)

This is the general L wave radiation formula in our special MTM case. For a sinusoidal antenna with
radiating current in Eq. (18), the radiation power density can be obtained by a procedure identical to
the one employed to find Eq. (30). The result is

Wy [ w?

2
—w
3p |(d cos psin @ + §j cos @ sin @ + £ cos 0) - @,|* 2nJ20(w — wy). (51)

PL0, p;w) = —o——ee
L( 7()0ﬂw) 16€O7T3g

It is interesting to compare this form of the L mode radiation power density with the corresponding
formula for T waves, i.e., Equation (30). Both seem to share several structural features, e.g., similar w?
law for large frequencies. Also, since g has the unit of velocity, the appearance of factors containing ¢° in
the denominator of the multiplicative fraction of (51) makes the latter very symmetrical in comparison
with (30) where g is played there by c. In fact, when we consider the L-T combined response of nonlocal
antenna systems in Secs. 5 and 6, it will be found that the ratio between these two characteristic L and
T type speeds, namely g/c, will play a fundamental role.

Finally, we add another notable difference between T and L waves. It turns out that the momentum
space radiation function RY(k) has a fixed value

RY(k) = = (52)

for L waves. On another hand, the corresponding relation for T waves in Eq. (17) is very different,
exhibiting a strong function of k. Equation (52) can be proved by plugging the choice in Eq. (47) into
Eq. (43) and performing some additional but straightforward manipulations which are omitted here for
brevity.

5. VIRTUAL ARRAYS IN NONLOCAL ANTENNA SYSTEMS

5.1. Principal Formulas

As will be shown below, it turns out that the key to understanding one of the most outstanding features
of nonlocal antennas is the existence of multiple modes, transverse and longitudinal, that could be
excited simultaneously, leading to novel and unexpected radiation characteristics of external sources
embedded into nonlocal domains. To see this, we continue working with the nonresonant nonlocal
metamaterial model given in Eq. (8). The L mode dispersion relation for arbitrary N is obtained

from (4) and it assumes the form
N

Z ai(w)k* =0, (53)

=0

which is a polynomial equation in k2 of order N with frequency-dependent coefficients b;(w). Note that
these coefficients are real since by construction the dispersion relation is applied to the hermitian part
of the response function [1]. However, even with real coefficients, the polynomial equation (53) have
N generally complex roots kr,;, | = 1,2,..., N. We are interested only in modes propagating away from
the source carrying effective energy to the far zone, so roots with non-negligible imaginary part are
discarded and only those solutions of (53) consisting mainly of real wavenumber k are admitted. Let



100 Mikki

the number of these by Ny, < N. Similarly, the T wave dispersion relation in Eq. (5) together with
Eq. (8) results in the following general polynomial equation in %

bo(w) + [bl( )——] k2+Zb k2 =0 (54)

which is also an N-order polynomial equation in k2, leading to N generally complex roots k1,
[=1,2,...,N. Again, we only admit those roots with positive real part and negligibly small imaginary
part. Let us denoted their number by N1t < N. In sum, a total of N7+ Ny, distinct L and T modes may
be excited by a nonlocal antenna compatible with a given source excitation frequency w. Not all waves
must be present at the same time and it is expected that a great care must be exhibited to ensure that
all modes are actually launched by the externally-introduced current J,,¢. In case this situation can be
achieved, the total antenna radiation density pattern may be written in the following quite general form

Ulw, k) = UT(w, k) + U"(w, k), (55)
where
R N R Nt g2 (w w R R
Uk = Y U R = > TS ) bl B G0
=1 =1
~ M N N, :ICQ w w N ~
Ubw, k) : = Y U, k) =Y é_OL(;;)i dkzﬁ ) Ry, 1(w)[k - Jans [, 1 (), K] (57)
=1 =1
where
Ry i(w) == Bl [kr1(w)], Ry (@) = R [ky, ()], (58)

That is, the radiation pattern will consist of two major parts, one generated by all T modes and is
given by UT (w, k), while the L wave contribution is captured by the term U%(w, k). The data needed to
compute the radiation pattern in its most general form are summarized in Table 1. It is to be observed
that the momentum-space radiation functions RJ'(k) and R} (k) can be evaluated via Eqgs. (6) and (7),
respectively, and that involves only knowledge of both the dielectric functions e (w, k) and e* (w, k) and
the corresponding dispersion laws.”

Table 1. Data needed to compute the radiation pattern of a generic antenna embedded into an isotropic
nonlocal metamaterials with Nt and Ni, T and L modes, respectively, radiating into the far zone.

Data Description

Jant (w, k) Momentum-space source current distribution

k=kr(w),l=1,.., Ny Nr dispersion functions for the T modes

k=kp(w),l=1,.., Ny N, dispersion functions for the L modes

w, k) T wave dielectric function
w, k)

L wave dielectric function

» From the computational viewpoint, if the dispersion profiles of the modes are available, the only potential difficulty in computing
the total radiation pattern would stem from the need to estimate the derivatives dk;/dw for every mode. In addition, as can be seen
from Eqgs. (6) and (7), the calculations of RF(k) and R (k) themselves require estimating derivatives of the form de/0w. In this
paper, since all the examples given involve analytical approximation of the dispersion law, this does not present a problem. However,
in future work, dispersion analysis of more complicated materials will involve working mainly with numerical data. In that case more
careful methods to estimate the group velocity dw/dk might be required since numerical differentiation is not a stable computational
method.
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5.2. Virtual Arrays in with Single Sinusoidal Dipole Excitation

In order to better understand the key formulas (56) and (57), let us evaluate them for the special but
fundamental case of a point source with sinusoidal excitation as described in Eq. (18). The relevant
quantities in this case are the radiation power density obtained by means of Eq. (23) and are given by

L k3 (w) R, 1(w) by, (w)
go(2m)3 dw

P (w:0,p) = Tcoswsinf + gcospsinf + Zcos ) x G, 2orJ26(w—ws
S

(59)
for the radiation component mediated by T all excited transverse waves, while the corresponding
contribution due to longitudinal waves is collected in

z

k(W) R 1(w) dky, j(w)

@) 9o |(2 cos psin 6 + §j cos psin 6 + 2 cos ) - a,|* 2rJ20(w — ws).

PYw;0,¢) =

=1

(60
We may now illustrate more directly the virtual array effect alluded to above, which is unique to
radiation phenomena in nonlocal metamaterials. If one selects the orientation of the radiating dipole to
coincide with Z, then the radiation spectral power densities in Eqs. (59) and (60) after integrating over
all frequencies w will result in

J? dk:Tl .

PL (ws:0,0) = - Z . k%, (ws) R, (w) sin® 0, (61)
J2 NL dkr, 1(w)

Pl o(ws: 6, 0) = g lzl de L kzi 1(ws) Ry, 1 (w) cos® 6. (62)

The expressions (61) and (62) provide radiation patterns complementary to each other. We first note
that for each T and L radiation law type, the angular pattern function, while possessing a temporal
frequency w dependence, is essentially the same, namely that associated with the classic dipole sin? @
law in the case of T waves, and the cos? § for power law carried by L modes.® On the other hand, if we
combine the T and L wave radiation patterns in Eqgs. (61) and (62) according to Eq. (55), this would
result in different phenomena more akin to the array factor in conventional (local) antenna theory.
Indeed, in this case the total radiated power pattern

Prad(ws;ﬂ,go) - Pr};d(wﬁea ) +Prad(w8a07§0) (63)
can be put in the form
JSQAL(W) 2 .2
Prag(w; 8, ¢) = W [cos 0 + A(w) sin 9] , (64)
where
J2 dkL (w J2 dkT (w
Ap(w) = Togn? Z kL,z(W)RL,l(w), Arp(w) = Tegr? Z kTJ(w)RT,l(w), (65)

represent the L and T wave complex power pattern amplitudes, respectlvely, while their all-important
T-L power ratio is defined by

Nt

o T )R )

Alw) = A1) = . (66)
AL@) B k()

> TkL (W) R, (W)

© This, however, is valid for the present special case, and it depends on the radiation source, so the conclusion is not general enough
to cover arbitrary nonsinusoidal antennas.
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Figure 5. Radiation pattern for a short dipole source oriented along the z-direction and embedded into
the isotropic nonresonant nonlocal metamaterial (NR-NL-MTM) described by (8) with class N = 1 and
negligible T-wave temporal dispersion (by = 1, 9b;(w)/dw = 0). The antenna is excited by a sinusoidal
point source with frequency w = 1.1w, where w,, is the plasma frequency for the Drude model of ag(w)
given by (47). Only a single L and T modes each are excited here. (a) A = 0.6, (b) A =0.9.

The frequency-dependent factors Ar(w) and Ay (w) represent the degree of excitation (amplitude and
phase) of the transverse- and longitudinal-mediated radiation as can be inferred from Egs. (61) and (62),
respectively.’t They do not affect the angular radiation pattern of these types of radiation if each was
radiated individually. On the other hand, while the common factor Ar(w) in Eq. (64) still does not
affect the angular radiation pattern — exactly as it was in the individual T and L mode pattern
expressions (61) and (62) — the situation is completely different when we examine the combined T-
L pattern . In the latter, it is apparent that the actual radiation angular function does depend on
the source frequency w through the complex function A(w). When A = 0, we recover the pure L
mode radiation pattern, while in the other extreme case of A = oo the entire radiation is transverse.
Remarkably, in the special case of A = 1, we obtain essentially an isotropic radiation pattern though
the antenna is oriented along a particular direction (the z-direction in this case.) For values other
than 0 and 1, A(w) acts like a variable factor shaping the actually attained radiation pattern. As a
matter of fact, A(w) plays a role similar to array factor in conventional antenna theory. The main
difference though is that in traditional array theory, the radiated fields are always transverse and the
array factor has a simple algebraic form. In nonlocal antenna, however, the T-L mode array factor
in Eq. (66) possesses a complicated form ultimately dependent on the material response functions and
the dispersion relations. Moreover, in nonlocal antennas the radiated fields are both longitudinal and
transverse. In the case represented by Eq. (64), it appears that for sinusoidal point sources the shaping
effect due to the nonlocal domain is essentially due to the presence of longitudinal modes. ¥t

In Fig. 5, the radiation patterns for two T-L combined array cases are shown where two scenarios
are illustrated, with one in which the T-L power ratio is A = 0.6 — Fig. 5(a) — and the other is when
A = 0.9 — Fig. 5(b). The orientation of the dipole is also shown in the figure. It is evident that dipoles
can radiate power along the length of the source, in direct contrast to local (conventional) antennas and
this happens because of the excitation of L waves. Moreover, in the case of nearly equal L and T wave
radiation power, the overall radiation pattern approaches a perfectly isotropic radiator form as is seen
in Fig. 5(b). The exact case of perfect isotopic radiation occurs when A = 1, which will be discussed in
details in Sec. 6.

1 Note that to simplify notation, we replaced ws by w in (64), (65), (66).

f This, however, needs not be the case in other, more complex nonlocal antenna systems whose investigation is outside the scope of
the present paper. For example, the author expects that complex current sources supporting only T or L. waves may deviate from
the small dipole type radiation law of T or L waves, respectively, depending on how complex is the spatial distribution of the current
throughout the antenna surface. Such more complex radiators include patch-like antennas and will be explored somewhere else.



Progress In Electromagnetics Research B, Vol. 89, 2020 103

5.3. Basic Examples

To illustrate the dependence on specific material parameters and frequency, we give a few basic examples
based on the N = 1 class of isotropic nonresonant nonlocal metamaterial discussed above. From the
dispersion relations of the T and L modes with Ny = Ny, = 1, i.e., Equations (10) and (11), we readily
compute

2 52
Wiy /W wp w2 (g/c)3

Arp(w) = , Aw) = . (67)
8m2e9c2\/c? — w2by \/(1 — w2by/e?) (1 - wg/uﬂ)
Figures 6(a) and 6(b) illustrate the variations of A(w) with frequency for several degrees of nonlocality
in the T wave response as measured by the normalized parameter (. We first observe that as we change
¢ from no transverse spatial dispersion (¢ = 0) to stronger transverse nonlocality characterized by larger
positive values, the change in the shape of the ratio of power divided between the T and L waves, i.e.,
the array factor A(w), is not very significant. In general, the overall trend observed is strong decline
in the T-L power ratio as the operating frequency moves away from the plasma frequency w,. This
indicates that in this category of nonlocal antenna systems utilizing the N = 1-class NR-NL-MTM,
power tends to concentrate in the longitudinal wave radiation component with all MTMs behaving as

AL(w) =

8m2egg

i _
lim A(w) = { 63’ 21 ;8’ (68)
wmoee ) 1 .

In other words, for this class of NR-NL-MTM, the cube of the velocity ratio g/c presents the minimum
T-L power ratio at very large frequencies, providing a level at which the relative T and L waves’
contribution to the total far-field radiation tend to stabilize. As we have seen before, g has the units
of speed. If the NL-MTM is to be implemented using plasma domains, then ¢ is likely to reflect the
thermal velocity of the charged particles composing the plasma medium, e.g., electrons. In general, we
prefer to keep the discussion at a more abstract and generic level in this paper where the goal is to
understand the basic physics and design principles of nonlocal radiating systems. No concrete plasma
model will be invoked in what follows, but we classify the range of possible values of the g-parameter
to three distinctive cases: (i) Nonrelativistic regime (g < ¢), (ii) superluminal? regime (g > ¢), and
(iii) relativistic regime (all remaining values of g). From Eq. (68), we can see that in the nonrelativistic
regime, the T-L power ratio is small even when ( is large (strong T wave response), implying that the
L wave contribution to the far field will tend to dominate even when the T wave response is significant.
Moreover, at higher frequencies the T-L ratio becomes even considerably smaller since (g/c)?® is much
less than g/c < 1. This case is illustrated in Fig. 6(a). On the other hand, Fig. 6(b) shows that for
larger g/c, the T-L power ratio A becomes significantly larger at all frequencies. This suggests that
NL-MTDMs designed to operate in the relativistic regime exhibit larger contribution of T waves to the far
zone. Finally, in the superluminal regimes, calculations show that the T-L ratio could become greater
than unity at all frequencies. For ¢ — ¢ but still g < ¢, A(w) may become greater than unity in the
lower edge of the frequency range w > wy,.

5.4. Virtual Arrays and Antenna Directivity

Finally, let us estimate the directivity of the nonlocal antenna system exhibiting virtual array effects
by focusing on the radiation power pattern in Eq. (64) with the data in Eq. (67). From the definition
of directivity formula (32), we have

maxg,p Prad(0,00) maxy ., [cos? § + A(w)sin? 4]

D(w) := T .
Praa(4m;w)/4 2m T
al4m;w)/Am / d(p/ dfsin b [60820 + A(w) sin? 0]
0 0

(69)

% The term ‘superluminal’ does not imply a violation of special relativity since all relevant velocities are phase velocities or w/k,
which can be greater than speed of light. Group velocity is usually bounded by the speed of light if expresses energy transport
velocity.



104 Mikki

Figure 6. Virtual array effects in the radiation by a point source oriented along the z-direction
embedded into class N = 1 isotropic nonresonant nonlocal metamaterial (NR-NL-MTM) given by (8)
and negligible T wave temporal dispersion (by = 1, 9b1(w)/Ow = 0)). The antenna is excited by
a sinusoidal point source with frequency w while w), is the plasma frequency for the Drude model
ap =1 —w?/w? and a; = —g*/w?. (a) Variation of A(w) with frequency for g/c = 0.1. (b) Variation of
A(w) with frequency for g/c = 0.5.

Using [y dfsin® 6 = 4/3 and [ dfsinfcos? 6 = 2/3, this evaluates into

3A(w)
D(w) = maxg,, {1+ [A(w) — 1]sin? 0} _ T 24 Alw) > 1, -
1/3 4+ 2/3A(w) 6—3A(w) ) <1

Evidently, this is very different from the classic dipole directivity of D = 3/2. In fact, the later is
obtained only when A — oo since this is the case when Ay, = 0, i.e., the L wave does not exist. On the
other hand, the maximum directivity that can be attained by this system is D = 6 and occurs when
A = 0, i.e., when the entire radiation is due to L waves. For other intermediate case, the directivity
can assume the range of values depicted in Fig. 7. In the range 0 < A < 1, L waves dominate the
composition of the radiated fields, while at A = 1 the critical transition from L-mode-dominated to
T-mode-dominated composition occurs. As A increases, the radiation field tends to become essentially
transverse. Therefore, use of carefully-designed nonlocal MTMs may lead to significant increase in
the directivity of an infinitesimal dipole antenna from 1.5 to 6, i.e., four times the classical antenna
directivity.

6. ENGINEERING APPLICATION: SHAPING THE RADIATION PATTERN TO
PRODUCE ISOTROPIC ANTENNA SYSTEMS

6.1. Exact Design Equations

A quick application is developed here where the main idea is to theoretically demonstrate how the
design of a suitable nonlocal MTM may lead to the construction of future radiating system exhibiting
isotropic radiation pattern. For simplicity, we continue to focus on the special but fundamental case of
infinitesimal dipole source with time-harmonic excitation. The nonlocal T-L array factor in Eq. (66)
can be put in the form

A(w) =F [w7€T(kvw)7€L(kvw)aNTaNL] (71)

in order to emphasize the design parameters available to the engineer, where F' is the generic functional
form of the dependence on such parameters. The data that must be found to design the system are
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Figure 7. Directiviy of a nonlocal antenna system with single T and L modes vs. the T /L power ratio

A.

encoded in the T and L dielectric response functions T (k,w),e"(k,w). These in turns determine the
dispersion law data kr(w), kr,(w). The numbers of T and L modes N, Ni, must also be determined by
the designer. If the desired radiation pattern is required to be isotropic, then from Eq. (64) we easily
deduce that a sufficient condition for this to happen is given by the equation A(w) = 1, or in details

Nt NL

dkT,l(w) dkL,l(w)
> s k(W) Rra(w) = Y etk (@) R (w): (72)
=1 =1

From the form of Eq. (71), the unknowns to be estimated in this case are T (k,w), e (k,w) for a given
frequency w and numbers of modes N, Ny,. The relation in Eq. (72) is the general design equation for
sinusoidal isotropic nonlocal antenna systems utilizing an isotropic metamaterial.

We give an example illustrating the design process by specializing for the class N = 1 NR-NL-MTM.
Making use of Eq. (65), the isotropic radiator design equation (72) reduces to

g—c[<1—w;bl> (1—2—%)]1/6. (73)

The relation in Eq. (73) represents the main design equation for isotropic nonlocal antenna systems
using class N = 1 NL-MTM. It spells out the exact connection between this MTM’s design parameters
by and g on one hand, and the operating frequency on another. Design curves are given in Fig. 8(a)
and Fig. 8(b). In Fig. 8(a), the velocity ratio g/c is plotted across frequency for several possible values
of (, allowing us to assess the impact of the T wave’s degree of nonlocality — as measured by ( — on
the ability to attain perfectly isotropic radiators. The results suggest that for local T wave response
(¢ = 0), the optimum value of g approaches the speed of light ¢ as the antenna frequency increases
sufficiently away from the plasma frequency w), since in such scenario we inherently enter the relativistic
regime. Hence, to properly design a plasma-type NL-MTM for this application, one needs to operate as
close to w), as possible if it is desired to remain within the nonrelativistic regime. However, as we start
to inject nonlocal behaviour into the MTM by gradually increasing ¢, the optimum value of g shifts
into the relativistic regime at much lower frequencies compared with the local T wave case (¢ = 0). In
fact, at sufficiently large values for (, the optimum g-parameter value enters the superluminal regime
at operating frequencies fairly close to wy,. This general behaviour is further investigated in Fig. 8(b)
where we focus on how the optimum value of g changes with the T wave’s nonlocality parameter ( at
specific frequency. We there find that whenever the operating frequency is shifted away from w,,, the
NL-MTM design parameters enter the relativistic then the superluminal regimes with even increasing
¢. This behaviour becomes more acute at higher frequencies. For example, in the case of w = 1.5wy,, the
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Figure 8. Design curves for perfectly isotropic power radiation by a point source oriented along the
z-direction embedded into class N = 1 isotropic nonresonant nonlocal metamaterial (NR-NL-MTM)
given in (8) and negligible T wave temporal dispersion (by = 1, 9bi(w)/0w = 0)). The antenna is
excited by the sinusoidal point source with frequency w while w,, is the plasma frequency for the Drude
model agp = 1 — w?/w? and a; = —g*/w?. We use (73) to estimate the optimum design value of g in

two cases: (a) Variation of optimum isotropic g with frequency for various values of ¢ := —wgbl /2. (b)
Variation of optimum isotropic g with ¢ for various frequencies.

NL-MTM becomes superluminal starting from just around ¢ = 0.4. The overall conclusion here is that
one would expect the MTM to exhibit weaker T-wave-type nonlocality in order to realize the optimum
L wave design parameter ¢ if the latter is to be associated with particle velocities much lower than ¢.%

6.2. Alternative Design Procedure Based on Optimization

There are two potential difficulties with the exact design equation (72). First, it is not immediately
clear that for a given frequency and number of modes that relation can yield useful solution for
e (k,w),e"(k,w). Even if such solutions exist, the realization of the nonlocal metamaterial might
be not available for the range of values obtained. Second, the design approach encapsulated by Eq. (72)
is inherently a single-frequency approach and hence inherently narrowband. For many applications,
especially modern wireless communication system, the bandwidth could be much larger. To resolve
these two difficulties, an approximation is more suited. The idea is that instead of enforcing an ezxact
isotropic radiator, one may construct a suitable cost function to measure the deviation of the actually
obtained radiation pattern from a target isotropic reference

JQAL (w)
Poot(w; 0, ) := =—2, 4
alwif, ) = 2L (74
One such suitable cost measure can be the minimum mean square error (MMSE) function
T L 1 e 1 2
C [6 (k7w)75 (kaw)vNTvNL] = dw— dQ‘Prad(w§07(p) _Pref(WSH,(P)’ s (75)
Wmax — Wmin Jw,,;, Qr Qr

where a convenient numerical optimization of this error will be performed over both the frequency
interval of interest [wWmin,wmax] and the radiation pattern observed over a given solid angle sector €Q,.
The goal then is clearly to use powerful optimization algorithm to numerically search for the best
nonlocal metamaterial parameters €1 (k,w),e"(k,w), N1, Np, such that the error C' is minimum. This is

88 However, note that relativistic corrections on speed in plasma have been known long time ago, e.g., see the analysis of the so-called
relativistic plasma (2,4, 8]. Also, radiation phenomena in which the radiating particles are relativistic (Cherenkov radiation) are well
understood [4, 24]. Finally, we add that the generic nonresonant nonlocal metamaterial discussed here need not be exclusively realized
as hot plasma domain; other technologies might be deployed in the future to implement such metamaterial system such as near-field
coupled dense packing domains, metasurfaces, or other periodic structures.
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usually attained with additional constraints on the available ranges for these optimization parameters
caused by material availability, leading effectively to constrained optimization problems. In this way, a
nonlocal metamaterial may be designed to realize a wideband isotropic nonlocal antenna system.

7. CONCLUSION

We provided a detailed application of the general momentum-space radiation theory expounded in
Part I focusing on the special but essential case of nonlocal isotropic metamaterials. The specialized
dispersion and radiation formulas corresponding to this scenario were derived in details and several
analytical and numerical examples were provided to illustrate the use of the theory in describing and
designing nonlocal antenna systems. In particular, we studied the behaviour of transverse (T) and
longitudinal (L) wave antennas and explored some of their properties. Comparison with local antenna
counterparts were given for the cases of time-harmonic and rectangular pulse excitation of infinitesimal
dipole sources. Bandwidth and directivity performance were investigated and the distinctive differences
between local and nonlocal antennas were explicated. As a more striking difference we also explored
virtual array phenomena in nonlocal domains and showed that single sources can have array-factor like
radiation pattern. One of the possible engineering applications demonstrated here was the design of
perfectly isotropic antenna systems using small dipoles launching a proper combination of T and L
waves. Also, we computed the directivity of a combined L-T system and predicted that it may reach
four times the value of classical (local) antenna under certain (design) conditions.

APPENDIX A. ISOTROPIC SPATIALLY-DISPERSIVE TENSOR FORMULAS AND
SOME OF THEIR PROPERTIES

We work with a medium possessing a dielectric tensor given by Eq. (1). In this case, we can write

G "Mkw) =k w)kk, G N (kw) = (€T (kw) —n?) (T — kk), (A1)
where the momentum-space dyadic GF
G (kw) = —% (i — k:k:) + E(k,w) (A2)
from [1] and n? = ’igg were used. From the definition of matrix determinant, we conclude
Gk, w) =M (k,w), GTVT(kw) =T (k,w) — n? (A3)
It can also be shown by direct calculations that the following decomposition hold
G (k,w) = ¥ (k,w) [7 (k,w) — n?]. (A4)
On the other hand, expanding the co-factor matrix into longitudinal and transverse parts, we arrive at
C(k,w) = (¥ (k,w) — n?) [(sT(k, w) = n2) kk + % (k, w)(T — /%/%)] . (A5)

In particular, the forward Green’s function of this special nonlocal medium acquires the simple form

_ (e (k,w) — n?) kk + e¥(k,w)(T — kk)

Gl w) = 0, o) (T k@) — ) (49)
Let us now evaluate the trace of the co-factor matrix. Noting the relations tr[kk] = 1,tr[I] = 3, the
trace function v;(k) := tr[C(k,w;(k))] from [1] applied to Eq. (A5) yields
(k) == (g7 (k,w) — n?) [(eT (k,w) — n?) + 2e%(k,w)] . (AT)
Next, in order to estimate the crucial R;(k) function
Rifk) = — i (43)

wOG1(k,w) /0w | ,_y, 1)
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constructed in [1], we use Eq. (A4) to compute

8G;£Jk’“) - 8€Lé§i’“) [T (k) — 2] 4 26 (k) (7 (k) — n2) & (gT(kéZ) L RN

which after substituting into Eq. (A8) and making use of Eq. (A7) results in the following expression

(eT(k,w) — n?) + 2e%(k,w)
9 (" (k,w) — n?)
ow w=wy (k)

Ri(k) :=

85 (k,w) (A10)

Oow

valid for arbitrary nonlocal isotropic and optically inactive metamaterials. Even though Eq. (A10)
may still look complicated, it has the advantage that it does not require evaluating the modal field
distribution functions é;(k) and depends only on the dispersion relations w;(k) and the material tensor
functions.

(eT(k,w) — n?) + 2wel(k,w)

APPENDIX B. THE MOMENTUM-SPACE RADIATION FORMULA FOR GENERIC
TIME-DOMAIN SOURCES

We convert the radiation formula (2) into a form more convenient for antenna applications involving
arbitrary nonlocal metamaterial domains, i.e., not restricted to the isotropic media of Sec. 3. The

direction of wave propagation is k= k/k, so we may describe this direction by a solid angle Q. The

magnitude k = |Kk| is related to frequency through the mode dispersion relation w = wy(k, k). It is
better, however, to express the dispersion relation in the form

k2c?

2 = (w k:) (B1)

which is very frequently used in optics [5]. Here, n; is the index of refraction of the /th mode and the
positive square root of Eq. (B1) is assumed. The volume element d*k/(27)% in momentum space can
now be re-expressed in spherical coordinates, then we transform k to w using Eq. (B1). Therefore,

w?n? (w k:) ) )
— . B2
/ A /47r ™ (2mc)3  Ow [wnl (w, k)] (B2)
We now introduce the antenna radiation pattern Uj(w, k) which is defined by

3
/ dk / dw/ del kk (B3)
47

Physically, U;(w, 12:) is the energy radiated in standard time interval with duration 7" per unit frequency
per unit solid angle. Using Eqs. (B2) and (2), we finally arrive at

. w?n? (w,l%) 9 X N
U, (w,k) Wa [wnl (w,k)} U, [(w/c)nl (w,k) k

E (B4)

where

U {(w/c)nl (w,l%) 12:] = Ji ik w) Ri(k) - Jans(k,w ‘k (/e (. Kb (B5)

In writing Eqs. (B4) and (B5), we have used k = kk then re-expressed k in terms of w and k with the
help of Eq. (B1). Consequently, the radiation mode antenna pattern intensity as function of direction
and frequency is completely determined by the dispersion relation in Eq. (B1).
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