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Dual Band Circular Polarized Printed Dipole Antenna for S and C
Band Wireless Applications

Gunaram1, Jitendra K. Deegwal2, and Vijay Sharma3, *

Abstract—In this article, a modified circular shape printed dipole structure is studied to achieve
wide bandwidth and dual-band circular polarization (CP) behavior along with dual polarizations. The
idea behind this structure is that asymmetric geometry can give rise to circular polarization with an
optimized position of coaxial probe feed. The circular patches on both sides of the substrate are
altered with elliptical slots at an optimized location in association with opening slots. With these
alterations the impedance bandwidth for S11 < −10 dB is ranging from 2.36–7.34 GHz (4.98 GHz)
which is nearly 102.5% about mid-point frequency 4.85 GHz. The antenna resonates at a lower band
(1.55 GHz) and shows linear polarization (LP) operation at that band whereas dual CP bands with
dual senses are obtained at higher frequency ranges 4.00–4.60 GHz and 6.07–7.13 GHz respectively with
3-dB axial ratio bandwidth of 13.7% and 16.6%. The simulated and measured experimental results are
in close agreement. This antenna is suitable to be used for navigation purposes, radar communication,
and wireless communication (especially wireless avionics intra communications) in S and C bands,
respectively.

1. INTRODUCTION

For a linearly polarized antenna, if the transmitter and receiver antennas are placed orthogonal to each
other the received signal strength will be very weak, and it will be strong only if both the antennas
(transmitter and receiver) are aligned properly. In many communication system applications, it becomes
quite difficult to manage the alignment or orientation of the antenna. To overcome this issue, the
circularly polarized (CP) antenna is promising, because in this category of antenna the received signal
strength is independent of the orientation of transmitter and receiver antennas [1]. Nowadays circularly
polarized (CP) antennas attain more focus due to the fast growth of wireless communication systems.
Modern days communication systems work for multiple frequencies simultaneously thus require wide
bandwidth. These systems can use single-band CP antennas through different employed frequencies to
come across the requirements of multi-systems. However, to adjust these requirements in communication
systems, issues like large size/volume in turn increase the cost of the antenna [2].

A conventional single-feed microstrip CP antenna has narrow 3-dB axial ratio bandwidth (ARBW)
(less than 2%); however, high impedance bandwidth (IBW) can be achieved by altering the geometry.
But in most of the cases, alteration in conventional geometry cannot guarantee a high ARBW.
Researchers working in the antenna field have discovered new ways and techniques to overcome this issue,
without affecting other parameters. A summary of efforts and focus devoted to this issue by scientists
and researchers in current time is as follows. In [3], an assembly of elliptical shape gap coupled patches is
presented by Sharma et al. to achieve the CP with wide bandwidth and suitable radiation performance;
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however, in this arrangement the size on the antenna is an issue, which limits its use. In [4], a dual-
band stacked single-feed CP antenna is presented by Kumar et al., which gives ARBWs 1.3% and 1.1%
for upper and lower bands respectively with a very small frequency ratio of 1.03. However, due to
stacking, the volume of antenna increases which becomes a constraint in some applications. In [5], a
planar monopole antenna for dual-band CP behaviour is presented by Tan and Wang, which has two
strips. One is of L-shape and other of C-shape for the lower band (2.32–2.70 GHz) and upper band
(4.76–6 GHz) respectively with ARBWs of 180 MHz and 870 MHz in the broadside direction. In [6], a
planar modified L-shaped monopole having altered ground and inverted-L strip (responsible for CP and
dual-band) is presented by Li et al. The gain of the offered antenna is found low due to FR4 substrate
which can be improved with the replacement of high-grade material. For radio frequency identification
(RFID) application, Kumar et al. [7] present a square patch on which three slots (one rectangular shape
and two triangular shapes) along the diagonal are etched. The orientation and dimension of slots are
optimized to achieve CP radiations. The offered antenna resonates at low-frequency 0.91 GHz at a cost
of large volume size which is 80× 80× 4.572 mm3. This size of the antenna can be reduced by applying
size reduction techniques which include meandering in the ground plane and/or in the patch. In [8] by
Maddio et al., with the combination of gap-coupled concept and arc-shaped slits in a circular patch, a
dual-band CP antenna is achieved at frequencies 2.45 GHz and 5.10 GHz applicable in Wi-Fi operation.
Circular polarization is observed due to the overlapping of TM11 and TM12 modes. In [9], to produce
CP with dual-frequency Bao and Ammann present a circular patch antenna encircled by a couple of
annular-rings and having a cross-slot of unequal length in ground. By optimizing the dimension of the
circular patch and annular-rings, the small frequency ratio can be tuned. Wang et al. [10] present an
aperture-shared dual-polarized (CP in S-band and LP in X-band) patch antenna with the use of stacked
and parasitic patches. High port isolation of 32 dB between these two bands (S-band and X-band) is
achieved with the offered antenna.

In [11], the performance of a monofilar spiral slot antenna for dual frequencies and CP behaviour
is reported by Bao and Ammann. It is found that dual CP senses are observed because of the rotation
of current in two opposite directions. In [12], Kandasamy et al. apply split-ring resonators (SRRs) in a
corner truncated square slot antenna to achieve CP performance. The theoretical analysis of antenna
is also discussed which explains that resonance frequencies and polarization sense in both the bands
can be accomplished individually. In [13], Bhattacharjee et al. offer a miniature wearable antenna
capable of operating in the ISM band with a linearly polarized (LP) pattern at 2.45 GHz and circularly
polarized (CP) pattern at 5.8 GHz. The resonance modes of the ground plane are computed with the
help of a characteristic mode analysis (CMA) technique. In [14], a dual-band dual-sense CP antenna
with rotational symmetry of dipole structure is reported by Xu et al., which is upgraded from a bow-
tie dipole antenna (linear polarized). In [15], a compact planar inverted F-Antenna is presented by
Bhattacharjee et al. for dual-band (ISM 2.45 GHz band and 4G long term evolution band) and dual-
polarized operation. To grasp the antenna performance in ON body conditions, a single and multi-layer
tissue model is applied, and minimal deviations from the free space environment are attained which
reflects that for body-centric communications porotype is a possible candidate. Recently, Midya et
al. [16] propose a dual-band dual-polarized antenna which consists of a rotated U-shaped patch and a
slanting-edge ground plane. This design gives an ARBW of 73.54% (3.80–8.22 GHz) and bandwidth
of 29.84% (1.54–2.08 GHz) for linearly polarized radiation. The literature addressed here shows that
wide-band and dual-band antenna with circular polarization is a sizzling research topic in current time.
However, not much attention is paid to achieve a CP antenna with dual bands, dual senses, and a dipole
structure.

In this article, the design of a wide-band dual-polarized CP antenna is presented to encounter the
necessities of communication systems in one module. The dual senses and dual CP bands are achieved
by etching elliptical slots of appropriate dimension in-ground and patch at a suitable place in association
with an opening slot. The offered antenna has been fabricated after multiple computer simulations and
examined experimentally. The design analysis of antenna configuration with a parametric study of the
different parameters is also undertaken. The experimental results and comprehensive outcomes of the
present study are discussed in further sections.
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2. EVOLUTION PROCEDURE OF ANTENNA SCHEMATIC

Three designs are outlined, to validate the improvement strategy, as shown in Figs. 1(a)–(c). Antenna 1
is a conventional circular patch microstrip antenna (CPMA) printed on an FR-4 substrate along with
a microstrip line in the same plane. This is backed by another printed circular patch on the other
side acting as a ground. This antenna is fed by a coaxial probe via ground, which is connected with
the microstrip line as depicts in Fig. 1(a). The characteristics curve that describes the behaviour of
antenna in terms of impedance bandwidth (IBW), gain, and the presence of circular polarization (CP)
for antennas 1, 2, and 3 is described in this section. From Fig. 2, it is observed that antenna 1 gives
the first resonance at 2.19 GHz, and the two higher-order resonances are at 6.32 GHz and 8.34 GHz.
All three resonances are superimposing each other and resulting in a wider IBW nearly 121% (1.85–
7.54 GHz) about the mid-frequency 4.69 GHz. Also there exist two humps (close to −10 dB level) at
frequencies 3.0 GHz and 7.5 GHz, respectively.

The theoretical lower band-edge frequency corresponds to −10 dB, and S11 is 1.97 GHz, calculated

(a)

(b)

(c)
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(d)

Figure 1. Progress of final design. (a) Antenna 1, (b) Antenna 2 and (c) Antenna 3, (d) view of feed
system for ‘Antenna 3’.

Figure 2. Variation of S(1, 1) in dB with frequency for (a) Antenna 1, (b) Antenna 2, and (c) Antenna 3.

using the expression [17]:

fl =
c

λ
=

7.2
(L + r + p)

GHz (1)

which is close to computed frequency 1.85 GHz. Here L= 2R and r=R
4 , R is the radius of circular

radiator patch and p the feed gap (in cm).
Also, antenna 1 exhibits linear polarization (LP) as the axial ratio (AR) value is very large (above

6 dB) for the entire frequency range of interest as presented in Fig. 3.
To further improve antenna 1 (Fig. 1(a)), in terms of IBW and CP, it has to be modified by loading

some cuts/slots to alter the surface current distribution on metallic patch and ground. Two elliptical
slots (one in the ground and the other in the patch) are loaded for this purpose in antenna 1 as shown
in Fig. 1(b) and named this as antenna 2. The S11 variation for antenna 2 with frequency is depicted
in Fig. 2, which reflects that it is now resonating as a dual-band and for first band resonance frequency
is f1 = 1.95 GHz (2.98%) and for second band resonance frequency is f2 = 5.88 GHz (44.57%). Instead
of large IBW, this dual-mode is observed, and it is likely because the resonant mode created by these
elliptical slots does not overlap with the fundamental resonant mode of the circular patch with the
existing arrangement. The elliptical slot of the optimized dimension acts as a band rejection element at
nearly 3.88 GHz. A reduction in frequency for all the three resonances is also observed due to lengthening
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Figure 3. Variation of AR (in dB) and Gain (in dBi) with frequency for (a) Antenna 1, (b) Antenna
2, and (c) Antenna 3.

of the current path. Wideband is still there for the higher band, with a rejection band. However, in
this case, the current density increase on the periphery of these elliptical slots and a rotation of field
are detected, but the component is not orthogonal with the time phase. The AR value is still very high
(above 6 dB) as shown in Fig. 3, which exhibits that the antenna is still linearly polarized for both the
bands.

Keeping this in mind to generate an orthogonal vector of equal amplitude to generate CP the design
of antenna 2 is further amended by opening the elliptical slots etched in circular patch and ground. The
dimension and position of opening slots are optimized, and the final geometry ‘antenna 3’ is attained as
presented in Fig. 1(c). A glass epoxy FR4 substrate is used for the design of antenna having parameters
value εr = 4.4, tan δ = 0.025. The overall volume of this antenna is 64× 32× 1.59 mm3. In this design,
the left side portion of the dipole antenna is printed on the upper surface of the substrate (act as a
patch) whereas the right side portion of the dipole is printed on the lower surface (acts as a ground).
To maintain the rotational symmetry, the dipole is made up of two circular patches of the same radius
‘R’ at coordinate (−R, 0), and the feeding point is fixed at (Fd, 0). To attain dual-band CP radiation,
a couple of elliptical slots of dimensions a1 × b1 and a2 × b2 are etched in the ground as well as patch.
A wide gap of optimum dimension is also introduced at the circumference of circular shape ground and
patch such that the elliptical slot becomes open.

To energize the patch, a feed line of optimum dimension (Lf × Wf ) is connected to the upper
circular patch, which is fed by an SMA connector via lower circular ground. The innermost pin is
attached to the feed line, which is in direct contact of the patch via ground, whereas the exterior part
of the SMA connector is in contact with the ground plane and insulated from the metal pin with Teflon
coating on a metal pin. The final layout with geometrical parameters is shown in Fig. 4. Feed System
for antennas 1, 2, and 3 are the same. To show the feeding system more clearly, the wire diagram of the
final design is given in Fig. 1(d). To assess the performance of the proposed antenna, CST Microwave
Studio v.17 is used [18]. A large number of the simulations are brought out to optimize the design
parameters, and final values of these parameters are recorded in Table 1.

It is observed from Fig. 2 that in the case of ‘antenna 3’ the two higher-order resonances come
closer and gives rise to a wide simulated IBW 2.36–7.86 GHz (107%) about mid-frequency 5.12 GHz
corresponding to −10 dB points on S11 curve; however, the fundamental mode appears as isolated at
1.55 GHz, and it is not combined with these two higher modes. Also, the hump becomes narrower in this
case than the case for antenna 2, resulting in a wide bandwidth. From Fig. 3, it is perceived that AR
value for both the antennas 1 and 2 is close to 40 dB, which corresponds to 0% 3 dB ARBW bandwidth.
However, with the insertion of these two wide slots, AR value (in dB) is significantly reduced and
gives rise to 3 dB ARBW in two bands. In the first band, the simulated ARBW is nearly 11.5% for
frequency range 4.04–4.53 GHz (4.28 GHz) whereas in the second band, it is 20.9% for frequency range
5.89–7.27 GHz (6.58 GHz) as depicted in Fig. 3.
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Figure 4. Top view of the proposed antenna geometry.

Table 1. Typical geometrical parameters of proposed antenna.

Parameter Dimension (Unit: mm)
Radius of circular radiator patch/ground (R) 14.0

Dimension of semi major axis of elliptical slot (a1 = a2) 13.0
Dimension of semi minor axis of elliptical slot (b1 = b2) 5.0

Coordinate of elliptical slot in ground (ceg) 18.0
Coordinate of elliptical slot in Patch (cep) 17.0

Opening slot in patch (D1) 6.0
Opening slot in ground (D2) 6.0

Gap (g) 0.0
Feed strip (length) (Lf ) 5.0
Feed strip (width) ‘Wf ’ 1.4

Position of feed point along x-axis ‘xf ’ 4.5
Length of the substrate material (Ls) 32.0
Length of the substrate material (Ws) 64.0

3. ANALYSIS OF CP MECHANISM

To generate the CP radiation, it is essential to produce a component of the electric field with a phase
variation of 90 degrees and identical amplitudes. Keeping this fact in mind, a further attempt is made
to increase the current path lengths in antenna 2 (with some more alteration in configuration). To
realize this, two wide slots are introduced on the periphery of circular patch and ground, respectively,
such that it makes open the elliptical slots loaded in antenna 2 as shown in Fig. 1(c). The position and
width of these wide slots in patch and ground are the key factors for the generation of the CP radiation.
This not only gives a wide 3 dB ARBW but also maintains the IBW value.

To realize the CP mechanism, the illustrations of surface current distributions for ‘antenna 3’ at
different instants of time (t = 0, t = T/4, t = T/2, and t = 3T/4) are given in Fig. 5 and Fig. 6,
respectively. In the first 3 dB axial ratio band (4.0–4.6 GHz), the surface current vectors rotation is
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analysed at 4.28 GHz. From Figs. 5(a)–(d), it can be observed that the majority of the surface current
vectors, on the patch and ground plane, rotate in the clockwise direction, hence it improves the radiation
in the same direction. Figs. 5(a)–(d) illustrate that ‘antenna 3’ radiates left-handed circularly polarized
(LHCP) wave at the frequency 4.28 GHz [19].

In the second 3 dB axial ratio frequency band (6.04–7.13 GHz), the rotation of the surface current

(a)

(b)

(c)

(c)
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(d)

(d)

Figure 5. (a) The distributions of surface current simulated at 4.28 GHz for t = 0 (Φ = 0◦). (b) The
distributions of surface current simulated at 4.28 GHz for t = T/4 (Φ = 90◦). (c) The distributions of
surface current simulated at 4.28 GHz for t = T/2 (Φ = 180◦). (d) The distributions of surface current
simulated at 4.28 GHz for t = 3T/4 (Φ = 270◦).

(a)

(b)
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(d)

(c)

Figure 6. (a) The distributions of surface current simulated at 6.3 GHz for t = 0 (Φ = 0◦). (b) The
distributions of surface current simulated at 6.3 GHz for t = T/4 (Φ = 90◦). (c) The distributions of
surface current simulated at 6.3 GHz for t = T/2 (Φ = 180◦). (d) The distributions of surface current
simulated at 6.3 GHz for t = 3T/4 (Φ = 270◦).

vectors is analysed at 6.30 GHz as shown in Figs. 6(a)–(d). It is perceived that the densities of the current
vectors are almost the same on the wider area of the patch and the ground plane. It is also observed
from Figs. 6(a)–(d) that half of the surface current vectors (upper half vectors) on the patch rotate
in the anticlockwise direction, and remaining half current vectors (lower half) rotate in the clockwise
direction, due to which the overall radiation from the wider area is linearly polarized. Perhaps the
current vectors rotating on the long arm of the patch ellipse are in clockwise. Similarly, on the wider
surface area of the ground plane, the current vectors cancel out each other’s effect. However, the current
vectors rotating on the long arm of the ground plane are in the anticlockwise direction that makes the
radiation right-hand circularly polarized (RHCP) [20].

4. OPTIMIZATION OF VARIOUS PARAMETERS

To explore the consequences of essential parameters on antenna performance includes S11 and AR,
and the parametric study has been accomplished in this section. The simulated S11 and AR plots for
different values of parameters such as (i) variation in the width of opening slot ‘D1’ in the ground and
‘D2’ in the patch, (ii) the gap between the outer boundary (circumference) of the circular patch and
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ground, and (iii) the feed point location along the x-axis are discussed to understand the effect of these
parameters on S11 and AR. The substrate size and dimension of circular patch and ground are kept
fixed.

4.1. Variation in Width of Opening Slot ‘D1’ in Ground and ‘D2’ in Patch

The variation in the width of the opening slot ‘D1’ in the ground and ‘D2’ in patch plays the most
significant role in analysing the S11 and AR of the presented antenna design. Here one end of the slot
along the Y -axis is kept fixed, and the second end is moved from origin to another end so that the slot
width can be reduced as desired.

Figures 7–10 show that no significant change in the variation of S11 with frequency is observed with
the change in slot width for higher frequencies; however, it affects the first resonance reasonably. A clear
effect on ARBW and AR value is also observed. As the value of D1 or D2 decreases, the AR value also
decreases. When there is no passage (D1 = D2 = 0.0 mm), this antenna 3 transforms into antenna 2,
which gives no ARBW (as shown in Fig. 3). It is also observed that with increasing the value of D1 or
D2 no effect on the first band of ARBW is observed; however in the second band, ARBW shifts towards
higher frequency side. Again a lot of effort is given to optimize the final values as D1 = D2 = 6.0 mm.
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4.2. Effect of Gap between Patch and Ground ‘g’

One of the major factors that controls the S11 and AR is the gap between patch and ground ‘g’. It is
observed from Figs. 11–12 that for large gap value IBW improves; however, the ARBW decreases in
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the higher band. On the other hand, if a slight portion of both the geometries (modified circular patch
and ground) overlaps, it decreases the IBW but gives a good ARBW with a very low value of AR. So
again an optimized value of gap ‘g’ is chosen, for the final antenna design. The value of g is taken zero,
which means that the patch and ground are nearby without overlapping in two different planes.
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4.3. Variation of Feed Point ‘xf’

The effect of changing the feed point ‘xf’ on S11 and AR is depicted in Figs. 13–14. It is perceived that
there is no effect on AR with this change. However, it affects S11 considerably. By proper positioning
of the feed point, the IBW can be controlled or tuned for a certain range. The final value for the feed
point is taken (4.5 mm, 0).
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5. EXPERIMENTAL RESULTS AND DISCUSSION

The design of the prototype antenna presented here is fabricated on an FR-4 substrate to confirm
the design reliability. Photographs of the fabricated antenna front side (in an anechoic chamber) for
radiation pattern measurement and back is shown in Figs. 15(a)–(b). The comparison of the simulated
and measured S-parameter is elaborated to validate the results as given in Fig. 16. The simulated
S-parameter is established by utilizing full-wave CST MWS whereas the Agilent N5234A PNA-L vector
network analyser (VNA) [21] is used for the S-parameter measurement. It is replicated from Fig. 16
that measured resonance is at 2.72 GHz and 6.07 GHz with −10 dB impedance bandwidth ranging
2.36–7.34 GHz (102.5%), whereas the simulated resonance is at 2.63 GHz and 6.32 GHz with −10 dB
impedance bandwidth 2.36–7.86 GHz (107%). It is perceived that there is a slight deviation in measured
and simulated S11 variation with frequency, which is probably due to divergence in business accessible
dielectric material properties or applied boundary conditions.

(a) (b)

Figure 15. Photograph of the fabricated antenna. (a) Front side (in anechoic chamber) and (b) back
side.
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Co- and cross-polarization patterns (simulated and measured) for final design ‘antenna 3’ at
frequency 1.55 GHz, where linear polarization is achieved, are displayed in Figs. 17(a)–(b). An anechoic
chamber is used for the measurement of the radiation pattern. The radiation pattern in the H-plane for
co-polarization is omnidirectional, whereas the radiation pattern in the E-plane is more directional than
that in the H-plane. It is also found that cross-polarization is more than 20 dB below in comparison to
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(a) (b)

Figure 17. Normalized radiation patterns at 1.55 GHz. (a) XZ plane. (b) Y Z plane.

(a) (b)

Figure 18. The numerical and measured CP radiation patterns (LHCP and RHCP) at (a) 4.28 GHz
and (b) 6.3 GHz in XZ plane.

the co-polarization level in both the planes.
The numerical and measured CP radiation patterns at (a) 4.28 GHz and (b) 6.3 GHz in the XZ

plane and Y Z plane are displayed in Figs. 18(a)–(b) and Figs. 19(a)–(b). The measurements of LHCP
and RHCP of the antenna are performed by the phase-amplitude method as this gives all the data
required for complete polarization determination [22]. It is shown that the cross-polar levels are nearly
16 dB down in the direction of the main beam. The antenna radiates a bidirectional wave with opposite
sense circular polarization. There is acceptable agreement between the measured and simulated results,
and the observed small discrepancies between the measured and simulated results may probably be
caused by fabrication imperfection and cable effects.
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(a) (b)

Figure 19. The numerical and measured CP radiation patterns (LHCP and RHCP) at (a) 4.28 GHz
and (b) 6.3 GHz in Y Z plane.
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The variations of simulated and measured ARs and gains of the proposed antenna traces are plotted
in Fig. 20 and found in agreement. The measured 3 dB ARBWs are 4.00–4.60 (4.28 GHz, 13.7%) and
6.07–7.13 (6.3 GHz, 16.6%). The measured values of peak gains at lower and upper-frequency bands
are about 4.5 dBi and 3.1 dBi, respectively. In general, the gain in the upper band is larger than the
lower band; however, in the offered design, it is less, which is probably due to the losses in the substrate
material at high frequency. The variation of total and radiation efficiency values of ‘antenna 3’ with
frequency are presented in Fig. 21. These efficiency values are comparable to other previously published
designs mentioned in Table 2. The total and radiation efficiencies of the offered antenna are more than
90%.

Table 2 demonstrates the examination of the proposed antenna and different sorts of dual-band
dual-sense CP antennas. The various antenna parameters such as dimension, gain, 3 dB ARBW, and
−10 dB IBW of the presented antenna are compared with various antennas reported in the literature and
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outlined in Table 2. It can be perceived from Table 2 that the proposed antenna provides the maximum
IBW and wider CP bandwidth among the existing reported antennas with optimum dimensions of the
antenna. The gain values in both bands are also improved.

Table 2. Comparison in performance of various dual frequency/band CP antennas.

Reference

−10 dB

Reflection

Coefficient

Bandwidth

(in GHz)

3 dB AR

Bandwidth

(in GHz)

Gain (in dBi) Overall

Dimension

(mm× mm)

Efficiency

(Radiation,

Antenna)

Lower

Band

Upper

Band

Lower

Band

Upper

Band

Lower

Band

Upper

Band

[5] 2.32–2.7 4.76–6 2.39–2.57 5.13–6.00 2.01–2.48 2.55–3.09 40 × 47 Not mentioned

[6] 2.38–2.75 4.05–6.38 2.39–3 5.15–6.00 0.88–1.4 3.9–4.5 42.5 × 48 Not mentioned

[9] 1.19–1.26 1.44–1.53 1.22–1.23 1.47–1.49 1.35 3.5 60 × 60 Not mentioned

[12] 1.44–1.72 2.42–2.91 1.58–1.65 2.61–2.70 3.9–4.4 2.8–3.8 100 × 100 Not mentioned

[13] 2.84–3.39 4.50–4.83 3.05–3.15 4.65–4.85 5.9 5.9 70 × 48 Not mentioned

[14] 1.96–5.68 2.29–2.51 4.96–5.61 2.0 4.6 55 × 30 Not mentioned

[23] 2.36–2.58 5.15–6.00 2.38–2.53 5.51–6.0 2.51 3.51 40 × 54

80% and

75% in

lower band

72% and

68% in

upper band

[24] 2.3–2.7 4.8–6.8 2.39–2.43 5.06–5.70 0.4–1.4 1.3–4.5 42 × 30 Not mentioned

[25] 1.81–3.83 2.2–2.9 3.40–3.65 1.5–2.5 1.5–2.5 63 × 75
more than 90%

in both the band

[26] 2.3–3.7 3.1–3.8 2.37–2.57 - 1.0–1.6 1.1–1.57 40 × 40
more than 75%

in both the band

[27] 2.72–7.34 3.30–3.78 5.4–5.86 3.03 3.42 50 × 50
more than 90%

in both the band

proposed 1.82–7.12 4.00–4.60 6.04–7.13 4.5 3.1 64 × 32
more than 92%

in both the band



Progress In Electromagnetics Research C, Vol. 105, 2020 145

6. CONCLUSIONS

This paper presents the design and analysis of a dual-polarized antenna having wide bandwidth and
reflects a dual-band CP behaviour to address the issue of alignment and orientation of communication
systems. The design includes a modified circular shape printed dipole structure. To achieve this,
elliptical slots of appropriate dimensions are etched in the ground and patch at appropriate positions
supported by opening slots. The offered antenna has been fabricated on an FR-4 substrate after multiple
computer simulations and examined experimentally. The measured resonance is at 2.72 GHz and
6.07 GHz with −10 dB impedance bandwidth 102.5% (2.36–7.34 GHz) along with 3 dB ARBWs 13.7%
(4.00–4.60) in lower frequency bands and 16.6% (6.07–7.13 GHz) in upper frequency bands, respectively.
At frequency 1.55 GHz, a linearly polarized behavior is also perceived which makes the offered antenna
a dual-polarized antenna. The measured values of peak gains at lower and upper-frequency bands are
4.5 and 3.1 dBi, respectively. Moreover, the radiation patterns in the entire region of IBW are stable.
This antenna may be useful for navigation and communication application in the S and C bands.
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