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Four Dimensional Strictly Noncircular Unitary ESPRIT Algorithm
for L-Shaped Bistatic MIMO Radar
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Abstract—In this paper, a joint two dimensional (2D) direction of departure (DOD) and 2D direction of
arrival (DOA) strictly noncircular (NC) unitary estimation of signal parameters via rotational invariance
techniques (ESPRIT) method is proposed for an L-shaped bistatic multiple input multiple output
(MIMO) radar. In the case that the incident signals are NC signals, we first utilize the received data
vector and its conjugate counterparts to construct a new data vector, and then the unitary ESPRIT
method is adopted to estimate the 2D-DODs and 2D-DOAs, which can automatically pair the four
dimensional (4D) angle parameters. Simulation results are included to verify the effectiveness of the
proposed algorithm.

1. INTRODUCTION

As a new type of radar system, multiple input multiple output (MIMO) radar has many potential
advantages in enhancing spatial resolution, parameter identification, and improving target detection
capability [1, 2]. In MIMO radar, angle estimation is an important issue that has drawn significant
attention in recent years [3, 4]. For a MIMO radar system deployed with uniform linear arrays (ULAs),
the problem of joint direction of departure (DOD) and direction of arrival (DOA) [5–7] estimation is
studied, which is based on excellent two dimensional (2D)-DOA estimation methods such as the multi-
signal classification (MUSIC) method [8], estimation of signal parameters via rotational invariance
techniques (ESPRIT)-based methods [9–11], the method of combining ESPRIT and MUSIC [12], and
the method proposed in the presence of unknown mutual coupling [13]. In [14, 15], joint estimation of
2D-DOD and 2D-DOA is presented by transforming the four dimensional (4D) angle estimates into four
one dimensional (1D) estimates for bistatic MIMO radar deployed with plane arrays. However, none of
the above work considers the noncircularity characteristics of the signal.

With the aid of the noncircularity characteristic of noncircular (NC) signals [16, 17], a series of angle
estimation methods [18–20] for bistatic MIMO radar are proposed, which can improve the accuracy
of angle estimation and detect more signals. In [18], the combined ESPRIT and MUSIC approach
was applied to a bistatic MIMO radar in the case of NC incoming signals, but its computational
complexity was still relatively high. To solve this problem, in [19], the authors proposed an ESPRIT-
based method which is appropriate for the coexistence of noncircular and circular signals in bistatic
MIMO radar. In [20], a low complexity real value ESPRIT algorithm for NC signals was proposed with
real-value computation. However, the problem of 2D-DOD and 2D-DOA estimation using noncircularity
characteristic has been rarely reported so far. Therefore, by exploiting the noncircular property of
transmitting signals, this paper proposes a 4D NC Unitary ESPRIT algorithm to estimate 2D-DOD
and 2D-DOA for an L-shaped bistatic MIMO radar. The main contributions of the proposed method
are as follows:
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(1) A non-circular array signal model based on an L-shaped bistatic MIMO radar is constructed.
(2) The proposed algorithm can work in the case of common 1D DOD and DOA, and automatically

pair the 4D angle parameters.
(3) The algorithm derives the closed-form stochastic Cramer-Rao bound (CRB) expression as a

performance benchmark.
The rest of this article is organized as follows. Section 2 introduces the signal model. The proposed

algorithm is described in Section 3. Also the Cramer-Rao Bound for the considered scenario is derived
in Section 4. The experimental simulation results are conducted in Section 5. Finally, Section 6 draws
the conclusion.

Notations: (·)∗, (·)T , (·)+, and (·)H denote conjugate, transpose, pseudo-inverse, and conjugate
transpose, respectively. diag(·) denotes the diagonal matrix; blkdiag(·) represents the generation of a
block diagonal matrix; ⊗ and � are the Kronecker and Hadamard product, respectively; Ik denotes the
k-dimensional identity matrix; Υk denotes the k-dimensional exchange matrix; 0k×l denotes the k × l
zero matrix; arg(·) is the phase operation.

2. SIGNAL MODEL

Consider a bistatic MIMO radar system with an L-shaped transmit antenna array for transmitting and
an L-shaped receive antenna array for receiving, as shown in Fig. 1. The transmitting array has a total
number of M = M1 + M2 − 1 antennas, with M1 and M2 antennas located on the X and Y axes,
respectively, and the receiving array has N = N1 + N2 − 1 antennas, of which N1 and N2 elements are
located on the X ′ and Y ′ axes, respectively. The four subarrays are all uniform linear arrays (ULAs)
with the antennas to be omnidirectional and interelement spaced d that equals half-wavelength. It is
assumed that the reflection coefficient caused by the Doppler frequency to the signal can be ignored. The
transmitted waveforms are M orthogonal BPSK modulated signals. The targets are the far field signals
related to the transmitting and receiving arrays with directions parameterized as (θk1, θk2, θk3, θk4),
where (θk1, θk2) is the 2D-DOD of the kth target, and (θk3, θk4) is the 2D-DOA. Thus, the output of
the entire matched filters at the receiving array at time t can be expressed as

X(t) = C(θk1, θk2, θk3, θk4)S(t) + N(t) (1)

where X(t) = [x1(t), · · · ,xMN (t)]T is the MN × L data matrix, and L is the number of snapshots.
C = [c1, · · · , cK ]T is the MN ×K extended virtual array manifold matrix; ck = bk ⊗ak is the MN × 1
extended virtual array manifold vector; ak and bk are the M × 1 transmitting and N × 1 receiving
array manifold vectors, which has the form of ak = [ej2πλ−1dM2 cos θk2 , · · · , 1, · · · , ej2πλ−1dM1 cos θk1]T

and bk = [ej2πλ−1dN2 cos θk4 , · · · , 1, · · · , ej2πλ−1dN1 cos θk3 ]T, respectively. N(t) = [n1(t), · · · ,nMN (t)]T
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Figure 1. An L-shaped MIMO array structure.
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is the MN × L additive white Gaussian noise matrix with zero mean and variance σ2
n. S(t) =

[s1(t), · · · , sK(t)]T is the K × L matrix, where sk(t) = ejϕk · βke
j2πfktrk(t), rk(t) is the NC signal

vector; ϕk is the noncircular phase of the kth NC signal; βk and fk represent the refection coefficients
and Doppler frequencies of the kth target, respectively.

Then, sk(t) can be rewritten as sk(t) = ejϕk r̃k(t), where r̃k(t) = βke
j2πfktrk(t). Thus, S(t) can be

rewritten as
S(t) = ΦS̃(t) (2)

where Φ = diag(ejϕ1 , · · · , ejϕK ) and S̃(t)= [r̃1(t), · · · , r̃K(t)]T. According to Eqs. (1) and (2), the data
matrix is given by

X(t) = CΦS̃(t) + N(t) (3)
For notional convenience, the time t and angle pair (θk1, θk2, θk3, θk4) will be omitted in the following

sections.

3. THE PROPOSED ALGORITHM

In order to utilize the noncircularity characteristic of the NC signals, a new data matrix Y is defined
by stacking the original data matrix X and its corresponding conjugate counterparts as

Y =
[

X
ΥMNX∗

]

=
[

CΦS̃
ΥMNC∗Φ∗S̃∗

]
+

[
N

ΥMNN

]
= C̃S̃ + Ñ

(4)

where C̃ =
[

CΦ
ΥMNCΦ

]
is the 2MN × K extended array manifold matrix, and Ñ =

[
N

ΥMNN

]
is

the 2MN × L noise matrix, and S̃ = S̃
∗
.

As pointed in [20], due to real-valued processing, the corresponding method can reduce the
computational complexity. Therefore, in the first step of NC unitary ESPRIT, we extend the new
data matrix Y to Ỹ = [ Y YΥL ]. Then, transform complex-valued extended data matrix into the
2MN × 2L real-valued matrix [11]

Z = QH
2MN [ Y YΥL ]QH

2L (5)
where QP is the unitary matrix defined as

Q2P = 1√
2

[
IP jIP

ΥP −jΥP

]

Q2P+1 = 1√
2

⎡
⎣ IP 0P×1 jIP

01×P

√
2 01×P

ΥP 0P×1 −jΥP

⎤
⎦ (6)

Performing singular value decomposition (SVD) on the real-valued matrix Z, we can get

Z = USΣSVH
S + NNΣNVH

N (7)
where 2MN ×K matrix US and 2L×K matrix VS are the left and right singular signal subspaces

associated with corresponding left and right singular values matrices ΣS and ΣN , respectively, while
2MN × (2MN − K) matrix UN and 2L× (2MN − K) matrix UN are the left and right singular noise
subspaces, respectively.

Define a new matrix ES as ES = ESΣS, and the following selection matrices
J1a = [ 0(a−1)×(M−a) 0(a−1)×1 Ia−1 ] (8)
J2a = [ 0(a−1)×(M−a) Ia−1 0(a−1)×1 ] (9)
J1b = [ Ib−1 0(b−1)×1 0(b−1)×(M−b) ] (10)
J2b = [ 0(b−1)×1 Ib−1 0(b−1)×(M−b) ] (11)
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where a = M1, N1 and b = M2, N2. The selection matrices for θkl(l = 1, 2) of the NC signals can be
expressed as

Kl1 = blkdiag
(
Jl1,Υ(Ml−1)MJl2ΥMN

)
, l = 1, 2 (12)

Kl2 = blkdiag
(
Jl2,Υ(Ml−1)MJl1ΥMN

)
, l = 1, 2 (13)

where J11 = IM ⊗ J1M1 , J12 = IM ⊗ J2M1 , J21 = IM ⊗ J1M2 and J22 = IM ⊗ J2M2 . The selection
matrices for θkl(l = 3, 4) of the NC signals can also be expressed as

Kl1 = blkdiag
(
Jl1,Υ(Nl−1)NJl2ΥNM

)
, l = 3, 4 (14)

Kl2 = blkdiag
(
Jl2,Υ(Nl−1)NJl1ΥNM

)
, l = 3, 4 (15)

where J31 = J1N1 ⊗ IN , J32 = J2N1 ⊗ IN , J41 = J1N2 ⊗ IN and J42 = J2N2 ⊗ IN .
Following the principle of the NC ESPRIT algorithm [21], the overdetermined set of real-valued

shift invariance equations related to θkl(l = 1, 2, 3, 4) is given by

K̃l1ESGl ≈ K̃l2ES, l = 1, 2, 3, 4 (16)
where {

K̃l1 = 2 · Re{QH
2(Ml−1)

Kl1QH
2MN

}, l = 1, 2

K̃l1 = 2 · Re{QH
2(Nl−1)

Kl1QH
2MN

}, l = 3, 4
(17)

{
K̃l2 = 2 · Im{QH

2(Ml−1)
Kl1QH

2MN
}, l = 1, 2

K̃l2 = 2 · Im{QH
2(Nl−1)

Kl1QH
2MN

}, l = 3, 4
(18)

And, the least squares (LS) principle is adopted for getting the unknown real-valued diagonal matrices
Gl, i.e.,

Gl = (K̃l1ES)+K̃l2ES = EΘlE−T , l = 1, 2, 3, 4 (19)
where

Θl=diag
(

tan
(

2πλ−1d cos θ1l

2

)
, · · · , tan

(
2πλ−1d cos θKl

2

))
(20)

are diagonal matrices, and E is the K × K unitary matrix. Because Θkl(l = 1, 2, 3, 4) are real values,
we first select any two different real-valued diagonal matrices Gi and Gj , and then use the complex
decomposition [11] to achieve automatically paired angle estimates θi and θj as follows

Gi + jGj = E{Θi + jΘj}E−1, i ∈ l, j ∈ l, i �= j (21)
Then the paired estimate of θi and θj can be obtained by extracting the real and imaginary parts of
the feature eigenvalues Θi + jΘj :{

θ̂ki = arccos (λ arctan(Θki)/(πd))
θ̂kj = arccos (λ arctan(Θkj)/(πd))

,

k = 1, 2, · · · ,K, l = 1, 2, 3, 4, i ∈ l, j ∈ l, i �= j

(22)

In order to pair the four angles, we need to perform at least three pairing operations with two different
angles according to Eqs. (21) and (22).

Till now, the proposed method provides closed-form 2D-DOA and 2D-DOD angle estimates, which
are automatically paired, and is summarized in Table 1.

Remark 1: The major computational effort of the proposed algorithm contains performing SVD
of Ẑ and the implementation of unitary ESPRIT algorithm. SVD of Ẑ requires the amount of complex
multiplications of O((2MN)3). Owing to real valued processing, the computational cost of the unitary
ESPRIT algorithm is a quarter of that of the conventional ESPRIT algorithm, which further reduces
the computational complexity.

Remark 2: The maximum number of detectable signals by the proposed algorithm is based on
the new data vector in Eq. (4) as well as the matrices Kl1 and Kl2, l = 1, 2 in Eqs. (12) and (13) for
2D DODs, Kl1 and Kl2, l = 3, 4 in Eqs. (14) and (15) for 2D DOAs. The maximum detectable signal

number of our proposed algorithm is
{

KDOD = min{2N(M1 − 1), 2N(M2 − 1)}
KDOA = min{2M(N1 − 1), 2N(N2 − 1)} .
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Table 1. Summary of the proposed algorithm.

Step 1 Define a new data matrix Y, and obtain the real-valued matrix Z.
Step 2 Perform SVD on Ẑ to get ÛS , and then compute ÊS = ÛSΣ̂S.
Step 3 Construct the rotational invariant equation (16), then solve them

by means of LS to obtain rotational factor matrices Gl.
Step 4 Pair the elements of Gl according to (21).
Step 5 Compute θ̂kl according to (22).

4. CRAMER-RAO BOUND

In this section, the deterministic NC CRB for the estimates of 2D-DOA and 2D-DOA is derived
for the L-shaped bistatic MIMO radar.

Under the deterministic assumption, Y are circularly Gaussian distributed with mean CeS(t) and
covariance σ2I2MN , where Ce = [CT ,CHΦT ]T . According to [22], the 5K × 5K CRB matrix of
θkl(l = 1, 2, 3, 4) and ϕk is given by

CRB =
L

σ2

{
Re [DHP 1

Ce
D� R]

}−1
(23)

where P 1
Ce

= I2MN − Ce(CH
e Ce)−1CH

e , R=15 ⊗ 1T
5 ⊗ RT

S and RS is the covariance matrix of S(t).

D = [D1,D2,D3,D4,D5] with Dl =
[

∂Ce
∂θ1l

, · · · , ∂Ce
∂θKl

]
(l = 1, 2, 3, 4), D5 =

[
∂Ce
∂ϕ1

, · · · , ∂Ce
∂ϕK

]
.

5. SIMULATION RESULTS

In this section, the proposed algorithm is compared with the ESPRIT algorithm [9], Xia’s algorithm [14],
the deterministic CRB in [14], and the derived NC deterministic CRB. The first experiment is based
on an L-shaped MIMO array with M1 = M2 = N1 = N2 = 2 and for the next experiment,
M1 = M2 = N1 = N2 = 3, and d is the half wavelength. We use the root mean square error (RMSE)
given by

RMSE DOD =

√
1

KMc

K∑
k=1

Mc∑
m=1

[
(θ̂k1 − θk1)

2
+ (θ̂k2 − θk2)

2
]

and

RMSE DOA =

√
1

KMc

K∑
k=1

Mc∑
m=1

[
(θ̂k3 − θk3)

2
+ (θ̂k4 − θk4)

2
]

as the performance criterion, where Mc is

the number of Monte-Carlo trials.
Experiment 1. In the first experiment, we verify that the proposed method can

increase the number of maximum detectable signals, as compared to other methods. We
consider five uncorrelated NC signals with direction pairs (60◦, 105◦, 60◦, 105◦), (70◦, 80◦, 70◦, 80◦),
(85◦, 90◦, 85◦, 90◦), (100◦, 70◦, 100◦, 70◦) and (110◦, 100◦, 110◦, 100◦). The number of snapshots is 300,
and the SNR is set at 20dB and Mc = 100. Fig. 2 shows the 2D-DODs and 2D-DOAs scattergram of
five NC signals, respectively. It can be seen that the proposed algorithm can estimate the 2D-DODs
and 2D-DOAs of five NC signals correctly with available noncircular information, while the algorithm
in [9] and [14] fail to work.

Experiment 2. In the second experiment, we consider the scattergrams of four closely spaced
NC signals distinguished by the proposed algorithm and other algorithms. The four NC signals are
from direction pairs (65◦, 70◦, 65◦, 70◦), (65◦, 65◦, 65◦, 65◦), (70◦, 65◦, 70◦, 65◦) and (70◦, 70◦, 70◦, 70◦).
The number of snapshots is 1000, the SNR set at 25 dB, and Mc = 100. Figs. 3(a) and (b) show the
2D-DODs and 2D-DOAs scattergrams of four NC signals, respectively. As shown in Fig. 3, the 2D-DOA
and 2D-DOD of the proposed algorithm are slightly scattered for the cases of closely spaced sources,
but the estimated angles are roughly distributed around the true values. However, the algorithms in [9]
and [14] fail to work.



98 Liu et al.

Experiment 3. In the third experiment, the performance of the proposed algorithm is studied
with SNR varying from −5 dB to 15 dB. We consider four uncorrelated NC signals with direction
pairs (60◦, 40◦, 70◦, 50◦), (70◦, 50◦, 80◦, 70◦), (80◦, 60◦, 90◦, 80◦) and (100◦, 70◦, 100◦, 90◦). The number
of snapshots is 300 and Mc = 2000. As shown in Fig. 4, the estimation performance of the proposed
algorithm is shown to be superior to ESPRIT algorithm [9] and Xia’s algorithm [14] for both 2D-DOD
and 2D-DOA estimations by utilizing the noncircular information. In addition, the CRB using NC
signals is better, and the estimated performance of the proposed algorithm is even better than CRB
without using noncircular information.

(b)(a)

Figure 2. 2D-DOD and 2D-DOA scattergrams of five NC signals. (a) 2D-DOD estimator. (b) 2D-DOA
estimator.

(b)(a)

Figure 3. 2D-DOD and 2D-DOA scattergrams of four closely spaced NC signals. (a) 2D-DOD
estimator. (b) 2D-DOA estimator.
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Figure 4. RMSE of 2D-DOA for NC signals versus SNR. (a) 2D-DOD estimator. (b) 2D-DOA
estimator.

6. CONCLUSION

Based on the unitary ESPRIT, NC-based 2D-DOD and 2D-DOA estimation algorithm for L-shaped
bistatic MIMO radar is proposed in this paper. It utilizes the noncircularity characteristic to construct
a virtual array and then derives the NC unitary ESPRIT algorithm to achieve automatically paired 4D
angles of NC signals. The NC deterministic CRB is also analyzed. Simulation results show that the
proposed algorithm has better angle estimation performance than the algorithm without noncircularity
characteristics. Finally, we will consider further research from the following two aspects: 1. Whether
the proposed algorithm is applicable in the case of mixed noncircular and circular signals. 2. Whether
the proposed algorithm is applicable in the case of noncircular distributed sources.
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