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Classical and Quantum Electromagnetic Interferences:
What Is the Difference?

Dong-Yeop Na and Weng Cho Chew*

Abstract—The zeroing of second order correlation functions between output fields after interferences
in a 50/50 beam splitter has been accepted decades-long in the quantum optics community as an
indicator of the quantum nature of lights. But, a recent work [1] presented some notable discussions
and experiments that classical electromagnetic fields can still exhibit the zero correlation under specific
conditions. Here, we examine analytically classical and quantum electromagnetic field interferences
in a 50/50 beam splitter in the context of the second order correlation function for various input
conditions. Adopting the Heisenberg picture in quantum electromagnetics, we examine components of
four-term interference terms in the numerator of second order correlation functions and elucidate their
physical significance. As such, we reveal the fundamental difference between the classical and quantum
interference as illustrated by the Hong-Ou-Mandel (HOM) effect. The quantum HOM effect is strongly
associated with: (1) the commutator relation that does not have a classical analogue; (2) the property
of Fock states needed to stipulate the one-photon quantum state of the system; and (3) a destructive
wave interference effect. Here, (1) and (2) imply the indivisibility of a photon. On the contrary, the
classical HOM effect requires the presence of two destructive wave interferences without the need to
stipulate a quantum state.

1. INTRODUCTION

The fact that light is a wave has been well accepted since Newton’s time [2] in the seventeenth
century. Even though Newton himself was an advocate of the corpuscular (particle) nature of light,
it was not accepted until recently or the twentieth century. In the electromagnetics community, the
concept of coherence is somewhat trivial since electromagnetic (EM) fields generated from macroscopic
electric current sources on antennas are mostly coherent due to their long wavelengths and low
frequencies. Namely, their field amplitudes, phases, and frequencies remain roughly constants (i.e.,
time-independent) in the timescale of the measurement, and in the absence of any artificial modulations.
The phase-locked loop can be used to stabilize the phase of many electromagnetic sources [3] or
electronic systems. On the contrary, in the optics community, optical sources often produce chaotic
(incoherent) lights coming from microscopic phenomena such as atomic collisional or Doppler broadening
effects [4, 5]. Therefore, to get coherent light, which is important for many practical optical engineering,
well-designed lasers or optical masers are needed. Furthermore, the operating wavelength λ is usually
much smaller than the size of objects analyzed or equipment settings; consequently, fast oscillations
during propagation cause optical incoherence due to the short wavelengths and the interaction with the
surrounding EM environment.

Optical coherence is typically assessed by using various orders of correlation of fields [5–8] widely
used in statistical mechanics. More specifically, they are a measure of the similarity of various physical
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quantities, on the average sense, across space and time with respect to a variable of interest. For
example, a first order correlation function, called field fluctuation, is defined by

g(1) (r1, r2, t1, t2) =
〈E(−) (r2, t2) E(+) (r1, t1)〉√

〈
∣∣E(+) (r1, t1)

∣∣2〉〈∣∣E(−) (r2, t2)
∣∣2〉 (1)

where E(+) and E(−) are positive and negative frequency components of an electric field,† respectively,
and rν and tν for ν = 1, 2 are observation positions and time instants. Here, angular brackets denote
an ensemble average.‡ It measures the extent of similarity or correlation of two field values probed
at different positions and time instants. It has a range of 0 ≤ g(1) ≤ 1 due to Schwartz inequality.
For instance, the degree of coherent light sources are often tested by evaluating g(1) in Michelson,
Mach-Zehnder, or Sagnac interferometers.

Meanwhile, a classical second order correlation function is used to measure the extent of intensity
fluctuations and correlations, defined by

g(2) (r1, r2, t1, t2) =
〈I (r2, t2) I (r1, t1)〉
〈I (r1, t1)〉〈I (r2, t2)〉

(2)

where an instantaneous intensity I (rν , tν) = E(−) (rν , tν)E(+) (rν , tν) for ν = 1, 2.§ Originally, it has
been exploited to improve the accuracy of stellar intensity interferometers in astronomy, known as
Hanbury Brown and Twiss (HBT) effect [9]. The experiment is also vividly described in Fox [8]. Unlike
g(1) for field fluctuations, g(2) ≥ 1 for classical lights, and as indicated in [8], it is usually less than 2.‖

More importantly, the concept of g(2) is significantly useful to identify particle nature of lights.
Thus, the use of g(2) (for coincidence count) has been a standard measurement protocol in quantum
optics experiments. For example, two photons interfering inside a 50/50 beam splitter always exit
through one of the output ports while being bunched, known as Hong-Ou-Mandel (HOM) effect [10, 11]
This is understood as a fully-quantum-mechanical phenomenon. Since the two-photon destructive
interference always produces zero coincidence counts, the zeroing of g(2) has been implicitly believed
as the direct evidence of the quantum nature of lights [12]. This effect has spawned a lot of interest
in the quantum optics community, and it has been avidly studied. Subsequent theoretical explanation
of HOM was given in [11, 13–16]. HOM has also been studied in plasmons [17], numerically [18], in
microwave [19], in atoms [20], in frequency domain [21, 22], in Gaussian wave packets [23, 24], with
and without beam splitters [25, 26], as well as in many particle systems [27]. Of interest is a paper
demonstrating this effect at astronomical length scale [28].

Recently, however, it has been experimentally shown that one can mimic g(2) = 0 in a classical
HOM given careful adjustment in the relative phase difference between two classical lights [1]. Here,
we examine classical and quantum electromagnetic field interferences in a 50/50 beam splitter in the
context of the second order correlation function for various input conditions. Adopting the Heisenberg
picture, we examine components of the interference terms in the numerator of second order correlation
functions to find their physical significance. As such, we reveal the fundamental difference between
the classical and quantum HOM effects. The latter turns out to be strongly associated with: (1) the
commutator relation that does not have a classical analogue; (2) the property of pure Fock states to
represent the single-photon states of the quantum system; and (3) a wave interference effect. Moreover,
(1) and (2) imply the indivisibility of a photon. On the contrary, the classical HOM effect requires the
presence of two destructive wave interferences; whereas the quantum HOM effect requires only one of
these cancellations.

† The positive frequency component of a real-valued electric field is the analytic signal of the electric field, i.e., E (r, t) =
E(+) (r, t) + E(−) (r, t) where E(−) (r, t) is the complex conjugate of E(+) (r, t).
‡ An ensemble average is the statistical average of many identical events.
§ In fact, this intensity expression is the result of the short-time averaged intensity with the assumption that fields are quasi-
monochromatic [6, p. 100 and p. 162]. In other words, in the short-time average of the rigorous instantaneous intensity given by

I (r, t) = E (r, t)2 =
[
E(+) (r, t) + E(−) (r, t)

]2
, diagonal terms such as

[
E(+) (r, t)

]2
and

[
E(−) (r, t)

]2
have no contribution.

‖ Due to the quirk of history, the radio astronomy community did not fully utilize Schwarz inequality in its definition. Otherwise, it
should have been bounded from above by 1 just as g(1).
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2. CLASSICAL INTERFERENCE IN A BEAM SPLITTER

Consider a two dimensional lossless beam splitter, as illustrated in Fig. 1. For simplicity, we assume
monochromatic electromagnetic (EM) waves (TMz polarized) impinge on the beam splitter. Input
and output field amplitudes can be related in such a way that [13, 29][

E
(+)
3

E
(+)
4

]
=

[T ′ R
R′ T

]
·
[
E

(+)
1

E
(+)
2

]
(3)

where E
(+)
ν denotes a complex-valued amplitude of the positive frequency component of an electric field

at ν-th port and R (or R′) and T (or T ′) are reflection and transmission coefficients, respectively.
For monochromatic signals, E(+), also termed complex signal, is equivalent to a phasor in electrical
engineering parlance. Its real part is a time-harmonic signal [30].

Figure 1. Illustration of a two dimensional beam splitter. Incident lights enter the beam splitter via
input ports 1 and 2 and exit through output ports 3 and 4. The second order correlation function is
evaluated for output fields measured at r3 and r4.

Then, we can decompose spatial normal modes of this system into two modes:

φ1 (r) =

⎧⎨
⎩

eikH ·r: incident from port 1
R′eikV ·r: reflected to port 4
T ′eikH ·r: transmitted toward port 3

, (4)

φ2 (r) =

⎧⎨
⎩

eikV ·r: incident from port 2
ReikH ·r: reflected to port 3
T eikV ·r: transmitted toward port 4

, (5)

where kH and kV are wavevectors along horizontal and vertical axes, respectively, and subscripts on
the left-hand side denote modal indices. It is to be noted that these two modes are orthogonal to each
other. They can also be thought of the limiting case of the Bloch-Floquet modes which can be found
numerically [31, 32]. When the period of the Bloch-Floquet modes tends to infinity, above analytic
solutions ensue.

The second order correlation function for classical lights is defined by [5, 6, 8]

g(2) (τ = 0) =
〈f∗f〉

〈g∗g〉〈h∗h〉 =
〈|f |2〉

〈|g|2〉〈|h|2〉
=

〈E(−) (r3)E(−) (r4)E(+) (r4) E(+) (r3)〉
〈E(−) (r3) E(+) (r3)〉〈E(−) (r4) E(+) (r4)〉

(6)
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where τ is a temporal delay for two input fields; the asterisk “*” implies complex conjugate; and
an angular bracket denotes an ensemble average. Since the temporal delay is just a phase delay, it
is redundant when dealing with monochromatic fields, and we discard the temporal delay from our
analysis.

Classical monochromatic electric fields at r3 and r4, from Eqs. (4) and (5) are

E(+) (r3) =
(
T ′A1 + RA2

)
eiθ0 (7)

E(+) (r4) =
(
R′A1 + T A2

)
eiθ0 , (8)

E(−) (r3) =
(
T ′∗A∗

1 + R∗A∗
2

)
e−iθ0 (9)

E(−) (r4) =
(
R′∗A∗

1 + T ∗A∗
2

)
e−iθ0 , (10)

where Aν is a field amplitude for ν = 1, 2 and θ0 = kH · r3 = kV · r4. In what follows, without loss
of generality, we assume that θ0 = 0. It should be mentioned that the above is similar to the phasor
technique in electrical engineering where for a time-harmonic signal, it can be represented by a complex
signal [30]. Also, if a broadband time-domain real-valued signal is written in terms of Fourier expansion
in time, the real frequency part is analogous to E(+) (r3) which is complex. The negative frequency
part is analogous to E(−) (r3) to ensure the realness of the field.

Substituting Eqs. (7) to (10) into Eq. (6) yields

f = (R′A1 + T A2)(T ′A1 + RA2), (11)

〈|f |2〉 = 〈(T ′A1 + RA2)∗(R′A1 + T A2)∗(R′A1 + T A2)(T ′A1 + RA2)〉, (12)

〈|g|2〉 = 〈(T ′A1 + RA2)∗(T ′A1 + RA2)〉, (13)

〈|h|2〉 = 〈(R′A1 + T A2)∗(R′A1 + T A2)〉. (14)

The physical meaning of the numerator of g(2) is the ensemble average or cross correlation of two
field intensities at both outputs. When expanding Eq. (12), there are a total 16 terms, each of which
represents one of possible combinations for the intensity correlation in terms of two input fields; hence
each can be given a physical meaning. For example, 〈(R′A1T ′A1)

∗ R′A1T ′A1〉 results from the input
field 1, i.e., A1, that is reflected and transmitted at the same time.

To find more physical significance in the interferences, we examine an expanded version of f , viz.,

f =
(

R′A1T ′A1︸ ︷︷ ︸
self-divided by input 1

+ T A2RA2︸ ︷︷ ︸
self-divided by input 2

)
+

(
R′A1RA2︸ ︷︷ ︸
both reflected

+ T ′A1T A2︸ ︷︷ ︸
both transmitted

)
. (15)

The first two terms inside the first parenthesis in the second equation above is associated with two self-
divided components, as illustrated in Figs. 2(a) and 2(b). On the other hand, the next two terms in the
second parenthesis comes from both reflected and transmitted components, as depicted in Figs. 2(c) and
2(d). Hence, to make g(2) zero, one requires two distinct conditions: (1) introducing a quadrature relative
phase between input fields, i.e., A2 = e±iπ/2A1, causes the destructive interference for self-divided
components; and (2) using a 50/50 beam splitter with R′ = R = i/

√
2, T ′ = T = 1/

√
2 causes the

destructive interference for both reflected and transmitted components in the second parenthesis above.
In other words, in the classical regime, the zeroing of g(2) can be achieved by having simultaneously,
the occurrence of such two destructive interferences.

2.1. Coherent Lights

If classical waves are coherent, the ensemble average in Eq. (6) can be nulled since phasors of waves
do not contain any random variables but are always constant; hence, 〈|f |2〉 = |f |2, 〈|g|2〉 = |g|2, and
〈|h|2〉 = |h|2. As a consequence, g(2) becomes always unity due to the cancellation of numerator and
denominators in Eq. (6) for arbitrary reflection and transmission coefficients and field amplitudes. When
both numerator and denominators go to zero, one can still show that g(2) = 1 by using L’Hospital’s rule
to deal with the zero over zero limit.
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(a) self-divided term for port 1 (b) self-divided term for port 2 (c) both reflected term (d) both transmitted term

Figure 2. Four possible contributions of the simultaneous detection of lights at output ports.

2.2. Randomized Relative Phase Difference

In order for g(2) to be zero classically, one can also make the numerator zero while keeping denominators
non-zero. One can achieve this by introducing a random variable for the relative phase difference,
denoted by ϕ, between input classical fields and performing the ensemble average with respect to ϕ.
Suppose that A2 = eiϕA1 and ϕ is to be randomized from 0 to 2π based on a certain probability density
function, denoted by P (ϕ). Then, the numerator of g(2) can be explicitly represented by

〈|f |2〉 =
∫ 2π

0
dϕ |f |2 P (ϕ)

=
∫ 2π

0
dϕ(T ′A1 + RA1e

iϕ)∗(R′A1 + T A1e
iϕ)∗(R′A1 + T A1e

iϕ)(T ′A1 + RA1e
iϕ)P (ϕ) . (16)

One can evaluate 〈|g|2〉 and 〈|h|2〉 in the similar fashion. For the 50/50 beam splitter, one can derive
that

〈|f |2〉 =
∫ 2π

0
dϕ |A1|4

(
1 − sin2 ϕ

)
P (ϕ) , (17)

〈|g|2〉 =
∫ 2π

0
dϕ |A1|2 (1 − sinϕ) P (ϕ) , (18)

〈|h|2〉 =
∫ 2π

0
dϕ |A1|2 (1 + sinϕ) P (ϕ) . (19)

If P (ϕ) is the discrete distribution for ϕ to be either π/2 or 3π/2, i.e., P (ϕ) = 0.5δ (ϕ − π/2) +
0.5δ (ϕ − 3π/2), by the delta function sifting property

〈|f |2〉 = 0, 〈|g|2〉 = |A1|2 , 〈|h|2〉 = |A1|2 . (20)

Hence, it always guarantees g(2) = 0 even in the classical regime. Again, it should be emphasized
that the above results from two cancellations: one is between two self-divided terms and the other is
between both reflected and transmitted terms shown in (15). Note that [1] assumed that R′ = −1/

√
2

and R = T = T ′ = 1/
√

2, such that, for g(2) = 0, ϕ should be picked in {0, π}.¶ On the other hand,
P (ϕ) = 0.5δ (ϕ) + 0.5δ (ϕ − π) results in

〈|f |2〉 = |A1|4 , 〈|g|2〉 = |A1|2 , 〈|h|2〉 = |A1|2 , (21)

thus, g(2) = 1 which means that the self-divided terms in Eq. (15) are not extinguished. Likewise, when
P (ϕ) = 0.25δ (ϕ) + 0.25δ (ϕ − π/2) + 0.25δ (ϕ − π) + 0.25δ (ϕ − 3π/2), gives g(2) = 0.5.
¶ By the similar procedure shown here, when R′ = −1/

√
2 and R = T = T ′ = 1/

√
2, one can check that 〈|f |2〉 = 〈|A1|4

(
1 − cos2 ϕ

)
〉,

〈|g|2〉 = 〈|A1|2 (1 + cos ϕ)〉, 〈|h|2〉 = 〈|A1|2 (1 − cos ϕ)〉.
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Again, the classical second order g(2) correlation function strongly depends on the extent of the
two destructive interferences. But when the two destructive interferences occur simultaneously, classical
HOM effects appear.

3. BRIEF REVIEW ON QUANTIZATION OF EM FIELDS

It has been shown previously that quantum Maxwell’s equations can be derived to be [33]

∇× Ĥ(r, t) − ∂tD̂(r, t) = Ĵext(r, t), (22)

∇× Ê(r, t) + ∂tB̂(r, t) = 0, (23)

∇ · D̂(r, t) = �̂ext(r, t), ∇ · B̂(r, t) = 0. (24)

In the above, all the field quantities in the classical Maxwell’s equations are represented by field operators
(analogous to infinite dimensional matrix operators).+ For example, when a classical field E is elevated
to be represented by a field operator Ê, each of the field components, Ex, Ey, or Ez is now a random
variable with a mean and a variance. Since the fields are now operators, the above quantum Maxwell’s
equations make sense only if they operate on a state vector |Ψ〉 that describes the state of the quantum
system. To endow the field components further with properties of random variables, they are represented
by operators that operate on a state vector |Ψ〉 that represents the state of a quantum system. These
operators are called quantum observables analogous to their classical observables. Since the classical
variable such as the field component is a random variable, its means and variance can be “observed” in
the laboratory. The mean and variance of Ex, for instance, are given by

Ēx = 〈Ψ|Êx|Ψ〉, σEx = 〈Ψ|(Êx − Ēx)2|Ψ〉. (25)

In order to have real value observables Ēx and σEx , the operator representations of observables have to
be Hermitian. And for normalization purpose, 〈Ψ|Ψ〉 = 1 to give it probabilistic interpretation. The
Dirac notation is entirely analogous to the linear algebra notation where “|” implies an inner product,
and |Ψ〉 is a vector, with 〈Ψ| as its conjugate transpose. In general, the variance, σEx , is non-zero, and
this is quantum “noise” which cannot be eliminated, but part of the nature of quantum theory.

In addition to the above, there is a Hamiltonian Ĥ associated with an eigenstate |Ψ〉, and with the
above quantum Maxwell’s equations. Moreover, the corresponding quantum state equation has to be
satisfied:∗

Ĥ|Ψ〉 = i�∂t|Ψ〉 (26)

It turns out that if the classical Maxwell’s equations can be derived from a classical Hamiltonian [33],
then the quantum Maxwell’s equations can be derived from a quantum Hamiltonian [36]. But one
way of deriving quantum Maxwell’s equations is to use the mode decomposition approach [5, 6, 37–
39].� In this approach, the classical fields are first decomposed in terms of the modes of the system.
Then a homomorphism is established between a mode and a quantum harmonic oscillator or quantum
pendulum. In this manner, the quantum fields are represented by quantum operators. Here, we will
use a modal view of the quantum fields. Therefore, we illustrate the quantization of EM fields in an
inhomogeneous medium represented by a slab [31–33].

Using Lorenz gauge with Φ = 0, one can represent a classical vector potential in mode space via
eigenmode decomposition as

A (r, t) =
∑

k

φk (r) ake
−iωkt + h.c. (27)

where subscript k is the modal index; h.c. denotes Hermitian conjugate; φk (r), ωk, ak are the k-th
(traveling-wave) eigenmode, eigenfrequency, complex-valued modal amplitudes, respectively. It is to be
noted that if one were to fix r and observe the field, it has a simple harmonic motion just like that of
+ The infinite dimensional linear vector spaces associated with such operators are generally known as Hilbert spaces.
∗ Again, this equation is like the state equation in modern control theory using the state-variable approach [34]. It was first proposed
by Schrödinger [35] for the hydrogen atom.
� One can also refer to quite recent textbooks [7, 40–45] that also discussed the mode decomposition approach.
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a simple pendulum. Again, each term of the above is very similar to the phasor technique in electrical
engineering [30], a poor-man’s Fourier transform technique.

Then, one can evaluate the total energy of the system which is equivalent to the Hamiltonian,
denoted by H. And by using the orthonormal property of eigenmodes, we have [33]

H =
∑

k

Hk =
∑

k

a∗kak =
1
2

∑
k

(
p2

k + ω2
kq

2
k

)
(28)

where

ak =
ωkqk + ipk√

2
, a∗k =

ωkqk − ipk√
2

, (29)

qk and pk are (real-valued) canonical “position” and “momentum” of k-th eigenmode. Here, the reference
to position and momentum is entirely by analogy or mathematical homomorphism to a pendulum. It
implies that an electromagnetic field oscillates like a pendulum. The above physical picture is that the
time variation of the field of the system can be decomposed into sum of oscillations of each individual
mode Hk. Moreover, the total energy of the system, denoted by H, is now decomposed into the sum
of the energy of each individual mode. Each mode is analogous to a pendulum or a simple harmonic
oscillator. Therefore, the above Hamiltonian is mathematically homomorphic to that of uncoupled
harmonic oscillators: each mode is uncoupled to the other modes in this picture. Thus, one can employ
canonical quantization for a classical pendulum to quantize each mode of the field. Then, by the
correspondence principle, the canonical variables (also called conjugate variables) are represented by
quantum operators, i.e., qk → q̂k and pk → p̂k. In this manner, these classical variables pk and qk

become random variables with means and variances.
Furthermore, these operators need not commute, and hence, p̂k and q̂k satisfy the fundamental

commutator relations

[q̂k, p̂k′ ] = i�δk,k′ Î , [q̂k, q̂k′ ] = 0 = [p̂k, p̂k′ ] , (30)

where the commutator [Â, B̂] = ÂB̂ − B̂Â, and � is Planck constant, and Î is an identity operator. In
the coordinate space representation, p̂ = −i�∂/∂qÎ and q̂ = qÎ [33].

When two operators do not share the same eigenstates, their commutator is not zero [33, 46, 47].
It also implies that the order of measurements associated with canonical position and momentum
operators does matter because the two Hermitian operators do not commute. Also, if we can prepare a
pure eigenstate for one of the operators, it cannot be a pure eigenstate for the second operator. One can
easily show that the variance, in accordance to (25), is zero if the quantum state is a pure eigenstate. This
implies that if a pure eigenstate is prepared for one quantum operator, its eigenvalue can be determined
precisely. However, this eigenstate cannot be a pure eigenstate for the second operator, if the second
operator does not commute with the first one. This is the gist of the Heisenberg uncertainty principle
regarding two non-commutating operators representing two observables. (Note that the fundamental
commutator relations can be derived from Heisenberg equations of motion and quantum state equation
under the energy conservation [36].)

At this junction, it is customary to introduce the so-called annihilation and creation operators
similar to Eq. (29) given by

âk =
ωk q̂k + ip̂k√

2�ωk
, â†k =

ωkq̂k − ip̂k√
2�ωk

, (31)

satisfying the commutator relations[
âk, â

†
k′

]
= δk,k′ Î , [âk, âk′ ] = 0 =

[
â†k, â

†
k′

]
. (32)

Correspondingly, the quantum Hamiltonian operator becomes

Ĥ =
∑

k

Ĥk =
1
2

∑
k

(
p̂2

k + ω2
kq̂

2
k

)
=

∑
k

�ωk

(
â†kâk +

1
2

)
. (33)

It is noted here that the classical Hamiltonian represented by Eq. (28) is diagonalized in the coordinate
space by mode decomposition. When the classical conjugate variables are elevated to be represented by
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quantum operators, these operators now operate on a quantum Hilbert space, and they are in general
non-diagonal in this new Hilbert space. To diagonalize these operators, we need to solve the Schrödinger
equation†† or the quantum state equation associated with each of these modes. To this end, one can
find an eigenstate of k-th quantum harmonic oscillator by using the k-th Hamiltonian from Eq. (33),
viz.,

Ĥk|Ψ〉k = �ωk

(
â†kâk +

1
2

)
|Ψ〉k = �ωk

(
nk +

1
2

)
|Ψ〉k = Enk

|Ψ〉k (34)

where eigenstates are Fock (number) states denoted by |Ψ〉k = |nk〉, and Enk
=

(
nk + 1

2

)
denotes the

eigenenergy contained in k-th eigenmode. In the above, nk is related to the number of photons since
the energy levels are equally spaced �ωk apart, which is equivalent to the energy of a single photon with
frequency ωk. These are also known as non-classical states since they do not have classical equivalence.
Also, notice that in |Ψ〉k = |nk〉, nk denotes the number of photons in the state as well as used as an
index. The action of the annihilation and creation operators on a number state yields [46]

âk|nk〉 =
√

nk|nk − 1〉, (35)

â†k|nk〉 =
√

nk + 1|nk + 1〉, (36)

â†kâk|nk〉 = nk|nk〉. (37)

The multimode quantum state can be denoted by the (tensor) outer product of different eigenmodes or
eigenstates, each of which is expressed in terms of a number state, or

|Ψ〉 = |n1〉|n2〉 . . . |nk〉 . . . (38)

and these number states are orthogonal according to

〈n1, . . . , nk, . . .|n′
1, . . . , n

′
k, . . .〉 = δn1,n′

1
. . . δnk ,n′

k
. . . (39)

where |n′
1, . . . , n

′
k, . . .〉 is the shorthand notation of |n1〉 . . . |nk〉 . . .. Annihilation and creation operators

are called ladder operators since their action on Fock states either increase or decrease the photon
number by 1. Consequently, a quantum vector potential operator can be written as

Â (r, t) =
∑

k

√
�

2ωk
φk (r) âke

−iωkt + h.c. (40)

By taking the time derivative to Eq. (40), one can derive

Ê (r, t) =
∑

k

−i

√
�ωk

2
φk (r) âke

−iωkt

︸ ︷︷ ︸
Ê(+)(r,t)

+h.c. (41)

In the above, φk (r) can be found numerically using the Bloch-Floquet mode decomposition, and the
relevant periodic boundary condition [32]. Again, since we are considering a monochromatic wave, we
ignore the time dependence when evaluating quantum interferences. In the subsequent analysis in the
next section, we will assume that only two of the modes exist in the quantum system.

4. QUANTUM INTERFERENCE IN A BEAM SPLITTER

4.1. Quantum Electric Field Operators

As shown in the previous section, to describe quantum fields, modal amplitudes of classical fields are
represented by operators associated with a quantum state. In the system shown in Fig. 1, we can
consider the presence of two modes: one excited by an incident wave in port 1 while the second one is
excited by an incident wave in port 2. These modes are orthogonal per the theory outlined in [32]. At
†† For those with little background in quantum theory, the introduction given in [30] could be useful.
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locations r3 and r4, one can deduce the analytical expressions of the modes by using Eqs. (4) and (5).
The resulting positive components of quantum electric field operators at r3 and r4 can be written as

Ê(+) (r3) =

√
�ω

2
(
T ′â1 + Râ2

)
, (42)

Ê(+) (r4) =

√
�ω

2
(
R′â1 + T â2

)
, (43)

where subscripts of the ladder operators denote the modal index. Note that here we adopt the Heisenberg
picture. One can refer to [13, 48] for the interference of quantum lights in beam splitters as well. It
is to be noted that although we have emphasized the non-commutativity of quantum operators, it is
easily shown that the above two operators commute. Also, since the field is monochromatic, the above
is analogous to the phasor representation of a time-harmonic signal [30].

4.2. Quantum Second Order Correlation Function

The quantum second order correlation function was first proposed by Glauber [49], defined by

g(2) (τ = 0) =
〈f |f〉

〈g|g〉〈h|h〉 (44)

where
|f〉 = Ê(+) (r4) Ê(+) (r3) |Ψin〉, (45)

|g〉 = Ê(+) (r3) |Ψin〉, (46)

|h〉 = Ê(+) (r4) |Ψin〉. (47)
Note that |Ψin〉 is a quantum state vector describing input states of quantum fields in Dirac notation.
Moreover, in this quantum g(2), ensemble averages are replaced with expectation values.

In the above, the positive and negative frequency components of electric field operators have their
own physical significances. Since the positive frequency component contains a annihilation operator
that decreases the photon number by 1, it depicts the photon absorption process. Similarly a creation
operator in the negative frequency component describes the photon emission process. In other words,
the consecutive action of Ê(+) (r3) and Ê(+) (r4) on a given quantum state vector is intimately related
to two consecutive photodetections at the outputs 3 and 4, respectively [5, 6, 8, 49]. As a result, the
quantum second order correlation function becomes the mathematical expression for the underlying
physical principle of photodetectors at both outputs. In particular, the numerator of Eq. (44) is the
probability of the simultaneous detection of two photons.

The full expression for 〈f |f〉 can be written as

〈f |f〉 = 〈Ψin|Ê(−) (r3) Ê(−) (r4) Ê(+) (r4) Ê(+) (r3)|Ψin〉 (48)
incorporating four-term interferences consisting of various combinations of products of ladder operators.
It is important to note that one cannot do the arbitrary change of action orders of the ladder operators
on quantum state vectors due to the commutator relation whereas the classical counterpart, i.e., the
numerator in Eq. (6), is not affected by the arbitrary change of the product order among field values.
This is because, as indicated in Eq. (32), the absorption and emission process of photons are involved
in the Heisenberg uncertainty principle. For example, let us compare the expectation value of two
operators, viz., Â = â†1â

†
1â1â1 and B̂ = â†1â1â

†
1â1 with respect to |Ψin〉 = |11, 12〉. By using Eqs. (35),

(36), (39), one can evaluate

〈11, 12|â†1â
†
1â1â1|11, 12〉 = 0, (49)

〈11, 12|â†1â1â
†
1â1|11, 12〉 = 1. (50)

As seen in the above, the change of the action order of operators produces different results. To deal with
quantum interference, one should properly account for the commutator relation which has no classical
analogue in classical interferences. Next, we investigate the behaviors of g(2) for two specific types of
quantum fields. The fact that Eq. (48) is zero also means that a single photon cannot be absorbed
twice.
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4.3. Fock States

An initial quantum state for two input photons can be modeled by a single-excitation of Fock state in
each normal mode as

|Ψin〉 = |12〉 ⊗ |11〉 ≡ |12, 11〉 = â†2â
†
1|0〉. (51)

The above is the two-photon quantum state we have prepared to launch into the beam splitter quantum
system from two different ports.

Then, substituting Eqs. (42), (43), and (51) into Eq. (44) yields

〈f |f〉 =
�

2ω2

4
〈0|â1â2

(
R′∗T ′∗â†1â

†
1 + R′∗R∗â†2â

†
1 + T ∗T ′∗â†1â

†
2 + T ∗R∗â†2â

†
2

)
×

(
R′T ′â1â1 + R′Râ1â2 + T T ′â2â1 + T Râ2â2

)
â†2â

†
1|0〉. (52)

Thus, it contains multi-term interferences with respect to the vacuum state. Again, due to the
commutator relation, one cannot change the action order of ladder operators arbitrarily. To gain more
physical insight, when evaluating |f〉, we expand it into four terms, viz.,

|f〉 =
�ω

2

(
R′â1T ′â1︸ ︷︷ ︸

self-divided by input 1

+ T â2Râ2︸ ︷︷ ︸
self-divided by input 2

+ R′â1Râ2︸ ︷︷ ︸
both reflected

+ T â2T ′â1︸ ︷︷ ︸
both transmitted

)
â†2â

†
1|0〉

=
�ω

2

(
R′T ′â1â1â

†
2â

†
1|0〉 + T Râ2â2â

†
2â

†
1|0〉 + R′Râ1â2â

†
2â

†
1|0〉 + T T ′â2â1â

†
2â

†
1|0〉

)
=

�ω

2

(
R′T ′â†2â1â1â

†
1|0〉 + T Râ†1â2â2â

†
2|0〉 + R′Râ2â

†
2â1â

†
1|0〉 + T T ′â2â

†
2â1â

†
1|0〉

)
=

�ω

2

(
R′T ′â†2 â1|0〉︸ ︷︷ ︸

=0

+T Râ†1 â2|0〉︸ ︷︷ ︸
=0

+R′R|0〉 + T T ′|0〉
)

=
�ω

2

(
RR′ + T ′T

)
|0〉 (53)

It is noted that â1 and â2 commute since they are from two independent orthogonal modes. Furthermore,
the four terms in the first equality describe the four possible scenarios of the simultaneous detection
of photons at both outputs, similar to the classical case in Eq. (15). After expanding (in the second
equality) and rearranging operators (in the third equality) based on the commutator relation in Eq. (32),
we can arrive at the fourth equality by performing raising and lowering prcess of the photon number from
the ground state through Eqs. (35) and (36). One can see that the first two terms in the fourth equality,
corresponding to self-divided terms, become zero since annihilation of the ground state is always zero.
In other words, a single photon (or a particle) driven from one of two inputs cannot be simultaneously
detected at both outputs, or equivalently, cannot be split through the beam splitter. We interpret in
the context of g(2) that the non-existence of self-divided terms in quantum interferences comes from
the particle nature of lights or the indivisibility of a photon. This is because a single photon passing
through the beam splitter gets entangled rather than being split, which can be explicitly explained by
taking the Schrödinger picture [7]. Consequently, the simultaneous detection of two photons is coming
from the interference of both reflected and transmitted components. It becomes zero when the reflection
and transmission coefficients have the correct phase. In summary, the disappearing of the self-divided
term above implies that a single photon cannot be divided when it passes through the beam splitter.

4.4. Coherent States

If input quantum fields are described by coherent states [7, 46, 47], which are semi-classical states, the
corresponding initial quantum state becomes

|Ψin〉 = |α1, β2〉 ≡ |α1〉 ⊗ |β2〉. (54)



Progress In Electromagnetics Research, Vol. 168, 2020 11

where α1 and β1 are complex numbers whose magnitudes incorporate the average photon number
information, and subscript denotes a modal index. The coherent state is the linear superposition of
Fock states as

|αν〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!
|nν〉 = e−

|α|2
2 eαâ†

ν |0〉. (55)

Hence, the expectation value of field operators w.r.t. coherent states is not zero. Furthermore,
eigenstates of annihilation operators are coherent states, viz.,

âν |αν〉 = αν |αν〉. (56)

This makes the simultaneous detection of lights at the two output ports possible while even obeying
the commutator relation since self-divided terms are non-zero. To check this, by substituting Eq. (54)
into Eq. (44), one obtains

|f〉 =
�ω

2

(
R′â1T ′â1︸ ︷︷ ︸

self-divided from input 1

+ T â2Râ2︸ ︷︷ ︸
self-divided from input 2

+ R′â1Râ2︸ ︷︷ ︸
both reflected

+ T â2T ′â1︸ ︷︷ ︸
both transmitted

)
|α1, β2〉

=
�ω

2

(
R′T ′α2

1 + R′Rα1β2 + T T ′β2α1 + T Rβ2
2

)
|α1, β2〉, (57)

where the second equality can be derived by using Eq. (56). One observes that self-divided terms exist
in quantum interferences since coherent states passing through the beam splitter can be divided into two
packets of energy since many photons are involved. Again, the use of the 50/50 beam splitter cancels
out both reflected and transmitted terms whereas the cancellation of self-divided terms depends on the
relative phase difference between two input coherent states. To show this, suppose β2 = eiϕα1. When
ϕ = π/2 or 3π/2, g(2) = 0 and when ϕ = 0 or π, g(2) = 1, similar to the classical interference.

5. CONCLUSION

We have examined classical and quantum electromagnetic field interferences in a 50/50 beam splitter
in the context of the second order correlation function for various input conditions. Using closed form
solution of wave modes passing through a beam splitter, we extract deeper analytic insight into this
difference. Adopting the Heisenberg picture in quantum electromagnetics, we decomposed components
of four-term interferences in the numerator of second order correlation functions and found their physical
significances. As such, we revealed the fundamental difference between the classical and quantum HOM
effects. The quantum HOM is strongly associated with: (1) the commutator relation that does not
have a classical analogue; (2) the property of pure Fock states needed to describe single-photon states;
and (3) a wave interference effect similar to classical waves. In the quantum HOM effect, two of the
four terms disappear due to (1) and (2). Together, they imply the indivisibility of a photon, and the
other two terms disappear due to destructive wave interference. On the contrary, the classical HOM
effect requires the presence of two destructive wave interferences among all the four terms to have them
cancel each other.
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