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Abstract—Placing microwave absorbing materials into a high-quality factor resonant cavity may in
general reduce the large interior electromagnetic fields excited under external illumination. In this
paper, we aim to combine two analytical models we previously developed: 1) an unmatched formulation
for frequencies below the slot resonance to model shielding effectiveness versus frequency; and 2) a
perturbation model approach to estimate the quality factor of cavities in the presence of absorbers.
The resulting model realizes a toolkit with which design guidelines of the absorber’s properties and
location can be optimized over a frequency band. Analytic predictions of shielding effectiveness for
three transverse magnetic modes for various locations of the absorber placed on the inside cavity wall
show good agreement with both full-wave simulations and experiments, and validate the proposed
model. This analysis opens new avenues for specialized ways to mitigate harmful fields within cavities.

1. INTRODUCTION

Electrical circuits and systems often require protection against unwanted interactions with harsh
external electromagnetic (EM) environments. This protection is generally provided through
electromagnetic shielding and may take the form of an enclosure, such as a metallic cavity, which
may allow external EM fields to penetrate the interior of the cavity. This enclosure may support
resonances with high-quality factor, which may lead to very large interior field levels [1–8]. These
large fields could in turn be harmful to circuits and systems therein. Shielding effectiveness, defined
as SE(r) = |Ecavity(r)|/E0, with Ecavity(r) the field inside the cavity at location r and E0 the external
incident electric field strength, is a quantity that measures the shielding performance of an enclosure.
Placing microwave absorber materials within the enclosure may reduce such large fields and provide
additional means for the protection of electrical systems [6, 7, 9, 10].

In this paper, we aim to model analytically EM absorbing material placement within a slotted
cylindrical cavity to dampen the internal fields. In particular, we aim to combine two analytical models
we previously developed to provide shielding effectiveness versus frequency at resonant modes in the
presence of microwave absorber materials: 1) an unmatched formulation to model shielding effectiveness
versus frequency [8]; and 2) a perturbation model approach to estimate the quality factor of cavities
in the presence of absorbers [7]. It is important to point out that the first model provides shielding
effectiveness spectra only for an empty cavity, while the second model only provides the quality factor
change when an absorber is introduced within the cavity (and no shielding effectiveness spectra). Thus,
the analysis here reported is necessary to validate and investigate the appropriateness of a model to
analyze cavities loaded with absorber materials.
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As mentioned in [10], there is a lack of analytic tools to determine the optimum absorber properties
and placement; our resulting model represents a design toolkit that will be used in future work to
optimize the absorber’s properties and location over a frequency band, opening new avenues to maximize
the interior cavity real-estate while simultaneously reducing large fields that may adversely affect the
electronics’ electrical performance and reliability.

2. SAMPLE ENCLOSURE: SLOTTED CYLINDRICAL CAVITY LOADED WITH AN
ABSORBER MATERIAL

We consider here the enclosure in Fig. 1: a slotted, 0.25 inch thick cylindrical cavity made of aluminum-
alloy with conductivity σ = 2.6 × 107 S/m, interior height h = 24 inch = 60.96 cm, and interior radius
a = 4 inch = 10.16 cm. The slot is azimuthally located on one side of the cylinder, midway along
the cylinder height as shown in Fig. 1(a), with a width w = 0.02 inch = 5.08 × 10−4 m and a length
� = 2a sin−1[�p/(2a)] ≈ 2.02 inch = 5.13 cm (�p = 2 inch = 5.08 cm is the projected length). At the
frequencies here analyzed below its resonance of 2.92 GHz, the slot acts as a magnetic current source
drive for the interior cavity modes from the exterior fields. We consider the three absorber locations
shown in Figs. 1(b)–(d), which are referred to as ‘Case 1’, ‘Case 2’, and ‘Case 3’, with the following
center absorber locations: z = 0 (Case 1), z = −h/6 (Case 2), and z = −h/4 (Case 3).

(a) (b) Case 1 (c) Case 2 (d) Case 3

Figure 1. (a) Schematic of a slotted cylindrical enclosure excited by a plane-wave incident field as
depicted to probe TM modes. The cavity is loaded with a microwave absorber material (orange box)
at three different positions as outlined in panels (b)–(d) to dampen the EM fields. The origin of the
reference system is at the center of the cylinder.

3. UNMATCHED FORMULATION FOR A LOADED CYLINDRICAL CAVITY

The cylindrical enclosure in Fig. 1 supports transverse magnetic (TM) and transverse electric (TE)
modes [6, 8, 11, 12]. We focus on TM modes here, and briefly summarize the analytical, unmatched
formulation to calculate the shielding effectiveness versus frequency around cavity modes reported in [8],
and modify it to allow for the modeling of cavities loaded with absorber materials. We focus on slot
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apertures operating below their resonant frequency; the case of slots operating at or above their resonant
frequency will be considered in future work.

Under time dependence exp(−iωt), for empty, fully-enclosed cylindrical cavities with internal height
h and internal radius a, following [6, 8, 11, 12], the interior magnetic resonant fields for fundamental TM
modes even in z with indices (m, p, n) in space for 0 < φ < 2π, 0 < ρ < a, −h/2 < z < h/2 are
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are coefficients that account for the coupling through the voltage V (0) connected to the exterior short
circuit current density at the center of the slot, and φs and zs depict the location of the slot. Furthermore,
the term k depicts the free space wavenumber with which we are able to model frequency dispersion
around cavity resonant modes. Note that because we consider a cavity loaded with an absorber material
here, the term Qtotal

m,p,n appears in Eq. (2) rather than the quality factor of a mode supported by an empty
cavity Qcavity

m,p,n as reported in [8]. This is not a trivial change that requires to be validated via experiments,
as we do in this paper.

Assuming a dense and with limited volume microwave absorber material, with absolute permittivity
εm and absolute permeability μm, the quality factor Qtotal

m,p,n can be estimated using perturbation
theory [7, 12] via

Qtotal
m,p,n =

(
1

Qcavity
m,p,n

+
1

Qabsorber
m,p,n

)−1

(3)

where Qcavity
m,p,n = η

√
j2
m,p + α2

na2/[2RS(1 + εna/h)], η =
√

μ0/ε0, εn = 1 if n = 0, and εn = 2 if n �= 0,

and RS =
√

ωμ0/(2σ) is the surface resistance, and

Qabsorber
m,p,n ≈ ωm,p,n

�
V

μ0 |H0|2 dV
Æ

S
R |H0|2 dS

, (4)

is the quality factor associated with losses of the absorber material, where the field |H0| = |Hρρ+Hϕϕ|
is assumed to be the one of the unperturbed cavity as in Eq. (1) (in other words, the fields of the
loaded cavity are assumed to be only slightly different from the unperturbed, empty cavity model).
Furthermore, ωm,p,n is the modal resonance angular frequency; R = Re[−iZm tan(kmd)] is the absorber
surface resistance; Zm =

√
μm/εm is the absorber impedance; km = ω

√
εmμm is the wavenumber in the

absorber material; and d is the absorber thickness.
The interior resonant z-component of the electric field for TM modes used to compute shielding

effectiveness is given by
Ez = Am,p,nJm (ςm,pρ) cos (mφ) cos (αnz) . (5)

Maps of the magnitude of the normalized electric and magnetic fields in the x-z plane within an
empty cavity at y = 0 for the TM012 mode resonating at about 1.232 GHz are reported in Fig. 2; one
can note the presence of two maxima and two minima within the cavity along the z direction. Note
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Figure 2. Normalized electric and magnetic field magnitude maps for the TM012 mode in an empty
cavity in the x-z plane for y = 0 from Eqs. (1) and (5).

that the absorber will be placed at a vertical cavity wall, where in general the electric field exhibits low
values. However, the magnetic field map is pivotal in determining the effect of the absorber depending
on its location within the cavity as shown in the next section.

4. ANALYSIS OF SHIELDING EFFECTIVENESS IN CAVITIES LOADED WITH
ABSORBER MATERIALS

The absorber we consider here is the commercial material ECCOSORB MCS absorber material [13], a
thin, flexible, high-loss, magnetically loaded, electrically non-conductive broadband silicone absorber,
with thickness d = 1mm, radial extent of 3.181 inch (about 8.08 cm), and width along z of 1.201 inch
(about 3.05 cm) (totaling 0.013% of the cavity volume), whose permittivity and permeability in the band
1–3 GHz can be approximated by εm = ε0(38 + i1) and μm = μ0(4.5 + i3), respectively. We consider
the three absorber locations shown in Figs. 1(b)–(d): Case 1 aligns with the maximum magnetic field in
Fig. 2; Case 2 falls midway between the maximum and minimum magnetic field; Case 3 aligns with the
minimum magnetic field. We chose these three cases to validate the analytical model and to highlight
how the position of the absorber greatly affects the interior field reduction, especially over a frequency
band. Optimization of the absorber material properties and cavity placement will be investigated in
future work leveraging the model discussed in this paper.

The quality factors for an empty cavity as well as the three loaded cavities in Figs. 1(b)–(d) for
the TM012 mode are reported in Table 1: one can see that while Cases 1 and 2 have largely reduced
quality factors with respect to the empty case, this is not observed for Case 3. Indeed, Case 3 exhibits
the absorber near a minimum of the magnetic field (see Fig. 2), and thus does little to dampen the
fields within the cavity.

Table 1. Quality factors for the empty and loaded cavities in Fig. 1 for the TM012 mode.

Case Qtotal
m,p,n Qcavity

m,p,n/Qtotal
m,p,n

Empty 27095 1.00
1 1191.5 22.74
2 4124 6.57
3 22948 1.18

Using Eqs. (2) and (3) in the field Eq. (5), one can compute shielding effectiveness from the
unmatched formulation in the presence of the absorber at r = (2.54 cm, 180◦, −h/2 + 0.43 cm), which
is reported in Fig. 3 for the three absorber locations considered in Figs. 1(b)–(d) as well as for an empty
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(d)(d)

(a) Empty (b) Case 1

(c) Case 2 (d) Case 3

Figure 3. Shielding effectiveness versus frequency for the TM012 mode for (a) an empty cavity, and a
loaded cavity as in (b) Case 1, (c) Case 2, and (d) Case 3. Photos of experiments are reported as insets.
The unmatched formulation (UF) results using the short circuit current density for a finite cylinder are
reported as solid curves. Full-wave simulation (Sim) and experimental (Exp) results are reported as
dashed and dotted curves, respectively. The x-axis scale is narrow (1.22 to 1.24 GHz) around the TM012

mode to capture the exhibited large quality factors.

cavity (note shielding effectiveness is shown in dB units). These results are compared in Fig. 3 to full-
wave simulations and experimental data. Our measurements were performed in an anechoic chamber
on the test cylinder reported in the insets of Fig. 3 placed 3 m from the antenna and aligned to have
the aperture slot at the same height as the transmitting antenna; we used a 4.3 mm monopole (designed
to have negligible effect on the cavity performance) located on one plate of the cylinder and placed 1”
off center. We used a 4-port network analyzer located outside the anechoic chamber to both supply
and monitor the RF signal while also measuring the monopole field level. A wide band 10–4200 MHz
mini-circuits power amplifier is used to boost the RF signal from the network analyzer before the signal
is transmitted using a 30 MHz to 6GHz Biconilog antenna with the electric field oriented along the
axis of the cylinder. In a separate measurement, an AD80D field sensor is placed in the same location
as the test cylinder aperture slot to measure the incident field level which is required for the shielding
effectiveness normalization.

One can see that analytics, simulations, and experiments are in good agreement in terms of spectral
position, quality factor, and shielding effectiveness peak value, validating the proposed model. For Case
3 and the empty cavity, the small discrepancies between experiments and full-wave simulations are due
to additional joint losses as discussed in [6]; these additional losses are negligible in the presence of an
absorber that dampens the resonances as in Cases 1 and 2. In particular, the modeled peak shielding
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Empty, peak SE = 19.4 dB Case 1, peak SE = -7.7 dB

Case 2, peak SE = 3.07 dB Case 3, peak SE = 17.98 dB

(a) (b)

(c) (d)

Figure 4. Electric field magnitude maps for the TM012 mode for (a) an empty cavity, and a loaded
cavity as in (b) Case 1, (c) Case 2, and (d) Case 3. in the x-z plane for y = 0. SE is the abbreviation
used for shielding effectiveness.

effectiveness is about: 18.7 dB for the empty cavity, 17.9 dB for Case 3, 2.4 dB for Case 2, and −8.5 dB
for Case 1, showing a maximum improvement of shielding effectiveness of about 27 dB for this mode
when the absorber is placed at a magnetic field maximum. Note similar results would be obtained if the
absorber were azimuthally shifted by a π phase at each respective location (see the result for Case 1 in
Fig. 3(b)). Although we are moving the absorber in azimuth, we are still maintaining the same modal
symmetry by selecting a position of π with respect to the slot. Fig. 3 confirms that the unmatched
formulation here presented works well also in the presence of absorbers within the cavity, even for the
case when there is a twentyfold reduction in quality factor (Case 1). Furthermore, it also confirms that
introducing an absorber within the cavity does not necessarily guarantee an improvement of shielding
effectiveness, as attested by the result of Case 3 (note that the experimental result in Fig. 3(d) nearly
overlaps with the empty cavity result). In other words, this stresses the fact that inserting localized
absorbers within the cavity may not necessarily lead to reduced fields due to field nulls and mode
degeneracies.

Though in the experiments we are limited to sample the field at one probe in space within the
cavity, we can now use the validated model to investigate the spatial distribution of interior field levels
within the cavity. Maps of the magnitude of the electric field in the x-z plane at y = 0 for the four cases
in Fig. 3 are reported in Fig. 4. One can see that while the field distribution is very similar in all cases,
the magnitude is largely dependent on the position of the absorber within the cavity; overall, one can
see that the entire field distribution is affected by a single absorber at one location in space, with Case
1 showing the largest field reduction in the cavity.

We also investigate the effect of the absorber positions in Figs. 1(b)–(d) for two other modes
supported by the cavity in Fig. 5: the TM010 and the TM114 (note that by approaching the slot
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(a) TM (b) TM010 114

Figure 5. Shielding effectiveness versus frequency for the (a) TM010 and (b) TM114 modes for a
loaded cavity with an absorber located at a magnetic field peak. Normalized magnetic field magnitude
distribution within the cavity in the x-z plane for y = 0 from Eq. (1) for the two cases are reported as
insets.

Figure 6. Shielding effectiveness versus frequency for the TM012 mode for a slotted cavity with a slot
located at z = h/6 with an absorber at z = 0. The absorber location within the cavity is reported as
inset.

resonance for increasing frequency, the unmatched formulation becomes less accurate). Regarding the
TM010 mode, since the magnetic field is maximum along the entire wall surface (see inset of Fig. 5(a)),
all the absorber locations considered in Fig. 1 lead to a quality factor of about 2309, resulting in
a shielding effectiveness peak of about −8.2 dB. The situation is different for the TM114 mode: the
absorber locations at z = 0 and z = −h/4 align with magnetic field peaks, leading to a quality factor
of about 573 and peak shielding effectiveness of about −9.7 dB. The absorber location at z = −h/6
aligns with a medium level magnetic field (see inset of Fig. 5(b)), leading to a quality factor of about
1996 and peak shielding effectiveness of about 1.1 dB (not shown). The unmatched formulation results
shown in Fig. 5 are in agreement with both full-wave simulation and experimental results. Importantly,
for the three modes here considered, one can note that the absorber location and material properties in
conjunction with the magnetic field profile in the cavity are pivotal in improving shielding effectiveness,
and an optimization over a frequency band will be required for improved wideband performance.

We finally consider the case where the slot is located at z = h/6 in Fig. 6 and investigate the
absorber location at z = 0 in correspondence of the magnetic field peak. Although modes that have
odd parity for the H field can be generated, they are not degenerate in frequency. In addition to the
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shielding effectiveness improvement due to the alignment of the absorber with the magnetic field peak,
an additional improvement is provided by misaligning the slot from the field maximum, as observed by
comparing Fig. 3(b) and Fig. 6. This confirms further that the absorber location for optimal dampening
of fields within the cavity is of critical importance.

5. CONCLUSION

We discussed in this paper an analytical model that estimates the shielding effectiveness of cavities
in the presence of absorbers. This model combines: 1) an unmatched formulation to model shielding
effectiveness versus frequency; and 2) a perturbation model approach to evaluate the quality factor of
cavities in the presence of absorbers. Comparisons of results for three transverse magnetic modes from
this model to both full-wave simulations and experiments were performed for various locations of the
absorber within the cavity. Importantly, the absorber location relative to the magnetic field magnitude
distribution within the cavity is pivotal to maximizing shielding effectiveness improvements. These
results showed good agreement and validated the proposed model, which can then be used as a toolkit
to optimize the absorber’s properties and location over a frequency band for shielding effectiveness
improvement. Reducing interior field levels using absorbers allows for a more seamless protection of
electrical circuits and systems contained within the cavity.
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