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Surface Magnetic Resonance Tomography for Three-Dimensional
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Abstract—In recent years, surface magnetic resonance tomography (MRT), which is applied to the
direct determination of the presence of groundwater, has been developed from underground two-
dimensional to three-dimensional (3D) imaging. However, because of the influence of subsurface
electrical conductivity, the magnetic resonance sounding (MRS) signal has been proved to be a complex-
valued form. Moreover, the real and imaginary parts of MRS signals show different sensitivities
to aquifers of different depths. In this study, a complex model of 3D MRT with separated loops
configuration is introduced to provide accurate water-bearing imaging. Through simulation experiments,
we demonstrate that the separated loops configuration is conducive to obtaining the imaginary part
signal of MRS. Compared with a conventional model, the complex model has better 3D imaging
resolution and sensitivity, especially for the deep regions. Moreover, in the case of noise interference
and the presence of a multi-aquifer, the imaging results of complex inversion are reliable. As a result,
this study is significant to the further development of multi-channel MRS instruments and provides a
feasible method for high-precision imaging.

1. INTRODUCTION

Magnetic resonance sounding (MRS), which is also called magnetic resonance tomography (MRT) in
two-dimensional (2D) or three-dimensional (3D) imaging, has gradually become one of the mainstream
technologies used for groundwater exploration [1–3]. Among the known geophysical techniques, only
MRS can supply direct quantitative information about the locations and amounts of free water in a
subsurface [4]. With fresh water shortages becoming increasingly serious, there is an obvious motivation
for developing MRT to explore underground aquifers. The core problem in MRS application is the
limited detection depth. Because the MRS method uses single-frequency excitation, the penetration
depth of the excitation field is typically within the top 100 m of the subsurface [30], and the imaging
resolution decreases with increasing depth. Traditionally, initial amplitude inversion is used to quickly
estimate the distribution of aquifers [5]. However, there is still much room for improvement in edge
resolution, depth detection, and multi-aquifer recognition [6]. Thus, it is necessary to improve existing
interpretation methods.

In previous publications on MRS technology, Legcheoko and Shushakov [7] first proposed the
forward and inversion theory of initial amplitude interpretation method. They employed a coincident
configuration to transmit an electromagnetic pulse for a given Larmor frequency, which generated an
excitation magnetic field (EMF) that excited the hydrogen protons of a water molecule and collected the
free induction decay (FID) signal whose amplitude reflects underground water-content distribution [2].
In early-epoch of research, the effective magnetic field was considered to be a perpendicular component
of the EMF, which ignored the elliptic polarization and phase lag. Thus, the inversion results were
undoubtedly influenced by modeling errors. To obviate this problem during theoretical modeling,
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Weichman et al. [8] introduced the influence of electrical conductivity on MRS, which revealed that the
MRS signal is complex-value with a definite phase, and both the real and imaginary parts of the signal
are considered to contribute to the resolution of the inversion [9]. Braun et al. [10] proposed a complex
inversion theory based on phase information and found that the imaginary part of the MRS kernel
function was more sensitive to deep structures than the real part [11]. Later, Roy and lubczynski [6]
demonstrated that detection and parameterization of a multi-aquifer would become possible when using
both the amplitude and phase of the MRS signal. In terms of algorithm implementation, Müller-Petke
et al. [12] pointed out that the key step of complex inversion is to separate the real and imaginary parts
of complex data, producing a calculation program with complex Jacobian matrix. On this basis, Chen
et al. [13] expanded the modelling to 2D with separated loops, which significantly decreased model
ambiguities. Jiang et al. [14] continued to explore the stability and advantages of 2D QT complex
inversion [15] and directly performed 3D QT inversion using complex data to improve imaging accuracy
[16].

To date, the theoretical research of complex inversion mainly focuses on one-dimensional (1D) and
2D imaging, and its advantages and limitations in 3D applications have not yet been systematically
verified. As the structure of natural groundwater often exists in non-layered form (e.g., groundwater
under karst landform), 3D MRT technology for a complex model is analyzed in detail in this work.
First, forward modeling and the complex inversion method for 3D MRT are reviewed and discussed.
To evaluate the imaging results, the calculation formula of the 3D imaging resolution radius is derived.
Then, through a series of simulation experiments, the layout of 3D high resolution detection loops is
determined. By comparing it with the conventional initial amplitude inversion method, the advantages
and limitations of the 3D complex inversion method are summarized and analyzed.

2. METHOD

2.1. Forward Modeling

Under the influence of a static geomagnetic field B0, the hydrogen protons in groundwater make spin
precession around the B0 axis at a (angular) Larmor frequency ωL = |γB0|. The gyromagnetic ratio
for protons is γ = 0.267518 rad s−1 nT−1. In MRS experiments, the hydrogen nucleus is excited from
an equilibrium state to an excited state by alternating current (AC) at ωL through a large transmitter
loop (Tx) on the surface [4]. After the AC supply is turned off, the hydrogen nucleus gradually returns
to an equilibrium state by releasing energy, which can be measured as an induced voltage (FID signal)
in the receiver loop (Rx). Generally, the voltage response is given by [9, 17]:

E(q) = −2ωLM0

∫
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where M0 is the specific magnetization of the hydrogen nucleus; w(r) is the free water content at location
r; q is the pulse moment; B+

T and B−
R are the co- and counter-rotating components of the excitation

field, which depend on the resistivity ρ of the entire investigated volume V . b0 is the unit direction
of the geomagnetic field; b⊥

R and b⊥
T are the unit direction of the transmitter field and virtual receiver

field perpendicular to b0, respectively; and ζT and ζR are phase lags between the two loops and points r
on the subsurface, which are also affected by resistivity. For the convenient representation of the MRS
response, Equation (1) can be simplified to:

E(q) =
∫
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where K(q, r, ρ(V )) is the sensitivity kernel function; Equation (3) can be derived from Equations (1)
and (2)
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Equation (3) shows that K(q, r, ρ(V )) is related to subsurface conductivity, pulse moment, loop size,
and the characteristics of the geomagnetic field. Because it is affected by these complex factors, the
kernel function is a complex-valued [11]. Equation (2) can be written in matrix notation as [3]:

E = Kw (4)
After the kernel function is obtained, the solution for water content is converted to the inverse
solution of Equation (4) because the observed data E are known. The commercial software COMSOL
Multiphysics (Version 5.3) is utilized to subdivide the subsurface space for the accurate calculation of the
magnetic field distribution. Moreover, the hammer integral algorithm [18, 19] based on an unstructured
nonuniform tetrahedral mesh is applied to process the meshes; this limits the number of meshes, while
ensuring computational accuracy. Notably, since MRS is an electromagnetic method, the excitation
magnetic field depends on the resistivity of the subsurface, so resistivity is usually considered as a priori
information or an inversion parameter, in the inversion process [29]. In most cases, priori information on
geological conductivity is unknown. MRS method is usually combined with other electrical exploration
methods (such as transient electromagnetic method) for joint data interpretation [32, 33]. Because this
study focuses on the advantages and limitations of the 3D complex inversion method, the conductivity
is treated as known a priori information, which has been proved to be feasible in relevant studies
[13, 26, 29].

2.2. Model Resolution Calculation

Resolution is an effective parameter for analyzing the quality of MRT [20]. In order to evaluate imaging
resolution accurately, the resolution radius of the forward model is introduced in this work. We use the
sensitivity kernel singular value decomposition (SVD) method to determine the resolution matrix and
resolution radius. The sensitivity kernel function K decomposed by SVD can be written as:

K = USVT (5)
where U is an orthogonal data matrix; V is an orthogonal eigenvector matrix; and S is a diagonal
matrix. The resolution matrix of the model is defined as Rm, whose diagonal elements reflect the
accuracy of the inversion results replacing the real results. The diagonal elements of S are defined as
the filtering coefficient matrix F, while the filtering coefficient fi is given by [21]:

fi = s2
i /

(
s2
i + λ2

)
(6)

Rm = VFVT (7)
where λ is the Tikhonov regularization parameter; si is a diagonal element of the diagonal matrix S;
and fi represents the degree to which the Tikhonov regularization parameter affects the singular value
matrix S. Defining the resolution radius Rd as the radius of a sphere, the equation is given by [22]:

Rd = 3

√
Vm/

(
4π
3

Rm

)
(8)

As mentioned above, finite-element software is used to divide the 3D subsurface space into volume
elements. The volume matrix Vm is in the matrix form of the volume of all the subsurface subdivision
elements. The resolution radius Rd intuitively reflects the size of the diagonal elements of Rm, which
can be used to estimate the imaging resolution. The smaller the resolution radius is, the higher the
resolution is.

2.3. Complex Inversion Method

Because of elliptical polarization and other factors, the observed MRS data E and kernel function K
are both complex-valued. Representing the real part of the kernel function with A and the imaginary
part with B, Equation (4) can be written as:

real(K) = A (9)
imag(K) = B (10)

|E| = |Kw| =
√

(Aw)2 + (Bw)2 (11)
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In a conventional model, a Jacobian transformation is used, and the complex kernel is converted into
a real value by taking the moduli of both sides of the equation; this results in a loss of the phase
information. In the complex model, assuming that the phase offset of all pulse moments and time is
constant, the following formulas can be obtained by processing the imaginary parts and the real part
of the MRS signal expression separately:

Ecomp = Kcomp · w (12)
real(E) = real(Kw) = Aw (13)

imag(E) = imag(Kw) = Bw (14)

By extracting the real part and imaginary part data of the MRS signal and kernel function, a new
data array for inversion is constructed [12], which can be inverted without losing phase information.
It should be pointed out that non-resonant excitation and hardware-related phenomena (i.e., resonant
tuning of receiver loops) also affect signal phase [4, 14, 23], but they are ignored here.

To obtain the water-content distribution, we employed the Tikhonov regularization [24] solution.
The optimization problem of the objective function Φ was solved by adding a smoothing constraint
condition. The resulting optimization problem is given by:

Φ = ‖D (Ecomp − Kcomp · w)‖2
2 + λ‖C ·w‖2

2 → min (15)

where D is the error estimate for the observed data, which satisfies D = 1/εd; εd is the covariance matrix
of observation data and fitting data. Ecomp and Kcomp are the new matrices obtained by separating the
real and imaginary parts of the data sets [Ereal,Eimag]T and [Kreal,Kimag]T; λ is the weighting factor that
balances the data-fit error and smoothness of the model [21]. The smoothness matrix C, as a derivate
operator, defines the order of the Tikhonov solution and the degree of smoothness, which ensures that
stable smoothness constraints can be obtained in all meshes [31]. The function in Equation (15) can be
minimized by iteratively updating the water-content model

w�+1 = w� + η�Δw� (16)

where 	 is the iteration number, and η� is the line-search parameter. The updated value Δw� of the
model can be calculated by solving the following Gauss-Newton system of equations [4, 25](

KT
comp DTDKcomp + λCTC

)
Δw� = KT

comp DTD
(
Ecomp − Kcomp ·w�

)
− λCTCw� (17)

where T is the matrix transpose.

3. SYNTHETIC RESULTS

3.1. High Resolution 3D Detection Loops Layout

The layout of the detection loops affects the quality of imaging. In recent years, the view that a
separated-loop configuration can improve lateral imaging resolution has been widely recognized and
tested [19, 26]. To evaluate the influence of loop-layout on a 3D complex model, the configurations of
the separated-loop and coincident-loop, as shown in Fig. 1, are provided for comparison.

For the convenience of distinguishing the detection loops, a coordinate system is used to mark the
position of the loops in abscissa and ordinate coordinates, and a coordinate system from −75 m to 75 m
is evenly marked as 0 to 6, with an interval of 25 m. In the coincident case, there are 13 transmitters
(Tx13, Tx22, Tx23, Tx24, Tx31, Tx32, Tx33, Tx34, Tx35, Tx42, Tx43, Tx44, and Tx53), and each
transmitter loop corresponds to an overlapping receiver loop [27]. In the separated case, there are only
nine transmitters (without Tx23, Tx32, Tx34, and Tx43); since the model is based on a four-channel
instrument, each measurement group contains one transmitter loop and four receiver loops (including
an overlapping loop); for example, the receiver loops for Tx13 are Rx03, Rx12, Rx13, and Rx14. All
transmitter and receiver loops are single-turn square coils of 50 m × 50 m. The detection depth of the
MRS instrument is positively correlated with the size of the transmitter and receiver [14]. Generally,
the effective detection depth for a square coincident-loop with side length 50 m is 50 m. In this work,
we focus on an MRS imaging resolution of 50 m. Additionally, we compare the resolution and imaging
results for the above cases from 10 m to 50 m underground.
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Figure 1. Arrangement models of Coincident loop and Separated loops.

(a) (b) (c) (d) (e)

Figure 2. Resolution radii of two configurations. The first row and the second row represent the
resolutions of the separated loops and the coincident loop, respectively; Z represents the subsurface
depth.

Figure 2 shows that the optimum resolution positions of both configurations are concentrated in
the vicinity of the transmitter loop. The configuration of separated loops has a smaller resolution radius
than that of the coincident loop, which means that the separated loops have a higher resolution. At an
interface of 10 m directly below the transmitter loops, the resolution radius of the separation-loop can
reach about 1m, while that of the coincident-loop can only reach 2 m. Resolution decreases with depth,
and ultimately the resolution radius of the two configurations at 50 m subsurface is about 10 m. Under
the influence of a geomagnetic field, the resolution in the East-West (along the X-axis) direction is
asymmetric, and this asymmetry is evident with increasing detection depth. On this basis, an inversion
experiment is designed to compare the image quality of the two configurations.

We construct two identical aquifers symmetrically along the XZ plane, whose lengths, widths,
and heights are 30 m, 30 m, and 15 m, respectively. Fig. 3(a) shows two aquifers located at 10–25 m
underground with a central spacing of 10 m. It should be pointed out that the burrs on the edge of
the aquifer model can be improved by increasing the precision of the edge meshing. The water-content
distribution is presented in three sections of XY (Z = 0 m) plane, Y Z (X = 0 m) plane, and XZ
(Y = 0 m) plane. The geomagnetic field is 54752 nT; the absolute temperature is 293 K; the water
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(a) (b) (c)

Figure 3. Inversion results of two configurations ((a) aquifer model, (b) coincident loop, (c) separated
loops; both aquifers are set at 10–25 m underground; the minimum distance between the two aquifers
is 10 m). The water-content distribution is presented in three sections of the XY (Z = 0m) plane, Y Z
(X = 0m) plane, and XZ (Y = 0m) plane; the scheme of initial amplitude inversion is employed to
interpret the data.

(a) (b) (c) (d) (e)

Figure 4. Resolution radii of the two inversion methods. The first row and the second row represent
the resolutions of complex inversion and amplitude inversion, respectively; Z represents the subsurface
depth.
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content of the aquifer is 50%; the half-space resistivity is set to 1000 Ω ·m; the number of transmitting
pulse moments is set to 40, varying from 0.1A · s to 10 A · s logarithmically; Tx and Rx have one turn;
and 5nV Gaussian noise is added to the synthetic MRS data. After the model was built, we employed
the scheme of initial amplitude inversion to interpret the data. From an analysis of the resolution radius
(Fig. 2), it can be seen that when the depth of the aquifer is 20 m, the lateral effective resolution radius
of the separated loops configuration is 6 ∼ 8m, while the coincident loop is about 10 m, which indicates
that the coincident loop may not be able to distinguish the two aquifers.

The MRT results of the two configurations are shown in Fig. 3(b), which shows that both
configurations locate the aquifer roughly. The imaging results of the coincident loop cannot effectively
distinguish between the two aquifers and have low edge resolution, while the separated loops can
distinguish between the two aquifers with a better imaging resolution. The imaging results are consistent
with the resolution radius results discussed earlier. Accordingly, the separated loops configuration is
used to improve 3D imaging quality in the remainder of this work.

3.2. Inversion Results

Relevant research indicates that complex inversion can provide better results than amplitude
inversion [6, 11]. To confirm this, we compared the imaging quality of the complex inversion with
that of the conventional amplitude inversion for a 3D water-bearing structure. Firstly, as shown in

(a) (b) (c)

Figure 5. Imaging results of amplitude inversion and complex inversion ((a) aquifer model, (b)
amplitude inversion, (c) complex inversion; the aquifer is set at 10–20 m depth).
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Fig. 4, the resolution radius of the two inversion schemes is calculated. In a range of about 20 m from
the subsurface, the resolution radii of the two schemes are almost the same. When depth exceeds 20 m,
the resolution radius of the complex model is relatively small, which means that resolution is relatively
high; this trend becomes more obvious with increasing depth.

In addition, we established a hollow square water body model, as shown in Fig. 5(a), which is set at
10–20 m depth. This model is mainly located in the boundary region, which allows a good comparison
between the differences in resolution of two methods. The outer length of the square aquifer is 80 m; the
inner length is 60 m; and the height is 10 m. The geomagnetic field is 54752 nT; the absolute temperature
is 293 K; the water content of the aquifer is 50%; the half-space resistivity is set to 1000 Ω ·m; the number
of transmitting pulse moments is set to 40, varying from 0.1A · s to 10 A · s logarithmically; Tx and Rx
have one turn; and 5 nV Gaussian noise is added to the synthetic MRS data.

The imaging results of the two inversion schemes are illustrated in Fig. 5. Both inversion schemes
can image the aquifer model, and the imaging results reflect the characteristics of the model. The
results indicate that the two schemes have similar resolutions in shallow aquifers, which is consistent
with the results of resolution radius discussed earlier. On this basis, we continued to increase the depth
of the model and set the aquifer at 20–30 m underground, while other conditions remained unchanged.
Fig. 6 shows that amplitude inversion can barely image the aquifer in this case, while the complex
inversion scheme still maintains good imaging quality. This indicates that complex inversion has obvious
advantages in depth detection.

(a) (b) (c)

Figure 6. Imaging results of amplitude inversion and complex inversion ((a) aquifer model, (b)
coincident loop, (c) separated loops; the aquifer is set at 20–30 m depth).
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Figure 7. Sounding curves of the aquifer model measured by separated loops (the aquifer model is
shown in Fig.? 6(a); the signal amplitude is represented by the black line, the real part of the signal is
represented by the blue line, and the imaginary part of the signal is represented by the red line).

3.3. Sounding Curves

To further analyze the relationship between the real and imaginary parts and the amplitude of the MRS
signal, this work calculates the sounding curves of the aquifer model (Fig. 6(a)) measured by separated
loops. The results of pulse moments response for real and imaginary parts are shown in Fig. 7. The
imaginary part of the MRS signal exists only when the receiver loops and transmitter loops do not
overlap. The reason for this can be traced to Equation (3). The second line of Equation (3) accounts
for the geometric relationships of the loop fields. It is unity for a coincident loop configuration (i.e.,
b⊥

R = b⊥
T), but has complex values in the range [−1, 1] [−i; i] for a separated loop configuration, which

will reduce the signal amplitudes and cause geometry related phase lags [4]. Further observation shows
that the signals of the receiver loops on both sides of the transmitter in the north and south directions
show an approximate symmetry trend, while the signals in the east and west directions are asymmetric
due to the influence of the geomagnetic field. In conclusion, both the real and imaginary parts of the
MRS signal constitute the received signal. When considering the amplitude of the signal only, the phase
information of the signal is lost, resulting in a decline in imaging accuracy. Thus, the separated loops
configuration is conducive to obtaining a complex signal of MRS.

4. DISCUSSION

4.1. Noise Effect

Noise is always unavoidable in field experiments. Therefore, studying the inversion results of a complex
model with noise interference is necessary. In this work, we discuss the imaging quality of complex
inversion when Gaussian random noise at levels of 0 nV, 1 nV, 5 nV, and 10 nV is added to the MRS
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(a)
(b) (c) (d)

Figure 8. Imaging results of amplitude inversion. (a) The aquifer model is set at 20–30 m subsurface,
with (b) 0 nV, (c) 1 nV, and (d) 5 nV Gaussian random noise added to the MRS data.

data, and compare the imaging results of the same conditions with the conventional amplitude inversion.
The 3D aquifer model is shown in Fig. 8(a), and the model parameters are the same as those in Fig. 6(a).
The amplitude of the MRS signal is about 100 nV, which means that the noise level is about 0%, 1%,
5%, and 10% of the MRS signal. Conventional amplitude inversion imaging results are shown in Fig. 8,
while complex inversion results are shown in Fig. 9. The two schemes are not affected much with a noise
of 1 nV (about 1% of the MRS signal), except for slight variations in the water-content distribution and
an increase in boundary burrs. When the level of noise reaches 5 nV (about 5% of the MRS signal),
the imaging quality of the amplitude inversion worsens, while that of the complex inversion is relatively
stable. That is to say, complex inversion has higher anti-noise capability than amplitude inversion.
However, the complex model is also sensitive to noise, and the imaging quality becomes poor when the
noise reaches 10 nV (about 10% of the MRS signal).

4.2. Two Aquifers Effect

Complex inversion has advantages in deep detection, and whether it has good imaging capabilities in
complex 3D water-bearing structures is worth further discussion. Therefore, we analyzed the imaging
quality of the complex model for two underground aquifers. We still used the hollow-square aquifer
model mentioned above. The two aquifers are set at 0–10 m and 20–30 m underground, and the minimum
distance between the two is only 10 m. The number of transmitting pulse moments is set to 40, varying
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(a) (b) (c) (d)

Figure 9. Imaging results of complex inversion. The aquifer model is the same as that in Fig. 8(a),
with (a) 0 nV, (b) 1 nV, (c) 5 nV, and (d) 10 nV Gaussian random noise added to the MRS data.

from 0.1 A · s to 10 A · s logarithmically, and 0 nV and 5nV Gaussian noises are added to the MRS
data. The imaging results are shown in Fig. 10. When 0nV noise is added, the complex inversion
scheme can effectively distinguish between the two aquifers. The imaging results worsen when 5nV
Gaussian noise is added, but the positions and rough outlines of the two aquifers can be visualized.
The overall imaging results are basically consistent with the constructed model, which indicates that
complex inversion improves the imaging quality of complex water-bearing structures.

4.3. Conductivity Effect

Section 2.1 mentions that the MRS signal is affected by subsurface conductivity, and the MRS signal is
mainly determined by its kernel function. The change in relative proportion of the real and imaginary
parts of the kernel function reflects the change in phase. To study the effect of conductivity on the MRS
signal, slice diagrams are presented of the kernel function for homogeneous half-space with resistivities
between 1 and 1000 Ω ·m (Fig. 11). Due to electromagnetic attenuation, the value of the kernel function
decreases with decreasing resistivity, but the proportion of the imaginary part of the kernel function
increases gradually. When the resistance value is more than 100 Ω ·m, the MRS kernel function is
mainly determined using its real component, and the amplitude and phase change gradually become
stable. Our results agree with those of Braun and Yaramanci [29]. Thus, a priori information regarding
subsurface conductivity is needed for more accurate data interpretation.
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(a)

(b)

(c)

Figure 10. Imaging results of complex inversion for two aquifers. The first aquifer is set at 0–10 m
underground and the second aquifer is set at 20–30 m subsurface: (a) aquifer model, complex inversion
with (b) 0 nV, (c) 5 nV Gaussian random noise added to the MRS data.

(a) (b) (c) (d)

Figure 11. Slice diagram of the kernel functions for a homogeneous half-space with resistivities between
1 and 1000 Ω ·m. From the first row to the third row, the absolute value, and the imaginary and real
parts of the kernel function are shown (Y Z (X = 0m) plane).
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5. CONCLUSION

Research in high-precision MRT technology is of critical significance to groundwater detection.
Conventional models use the amplitude of the MRS signal to locate aquifers and ignore phase
information. By separating the real and imaginary parts of MRS data, a 3D complex model of MRS
inversion provides an accurate imaging result for water-bearing structures. Using two comparative
experiments, we prove that the separated loops configuration is conducive to extracting a complex
MRS signal, and that complex inversion has a higher depth resolution than amplitude inversion. The
simulation results agree well with the calculated resolution radius. Complex model imaging quality for
noisy interference and multi-aquifer cases is discussed. When the noise level is lower than 10% of the
MRS signal, the imaging results of complex inversion are relatively stable and reliable. However, the
implementation of the algorithm needs further improvement of the instrument, because it is difficult
to acquire complex-value MRS data using existing instruments. In addition, existing multi-channel
instruments can only support eight to twelve channels of acquisition [28], which is not sufficient for
high-efficiency 3D detection. Thus, further development of instruments with more acquisition and
transmission channels is expected to improve the practicability of the complex inversion algorithm.
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