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Abstract—The paper is devoted to the investigation of radiation frequencies characteristics of
a modified waveguide aperture by wire media (WM). Such construction allows radiating weak
electromagnetic (EM) waves — their frequencies are non-corresponding to the resonant ones of the
modified radiator. It is possible due to the unusual properties of metamaterials, namely the negative
value of permittivity of WM. The study of the simulation shows that the changing of value of wires
radius and at the same time the value of filling factor impacts on the radiation frequency. Therefore, the
increase of the filling factor leads to the increase of the resonance frequency. The radiation is narrowband
with S11-parameter less than −20 dB. The experimental investigation shows that the decrease of the
value of lattice period allows increase of the width of radiation frequency range from 30–40 MHz up
to approximately 80 MHz at the level of 0.3 (≈ −10 dB). At the same time, the increase of wires’
radius values leads to the increase of the value of resonant frequency. Finally, the experimental study
demonstrates that the value of overlap between waveguide port (source of EM waves) and WM sample
negligibly impacts on the resonance frequency values and operational range for D/L = 0...0.3.

1. INTRODUCTION

The WM is a kind of metamaterials characterized by the negative value of permittivity, so-called ε-
negative materials [1–3]. The simple example of WM is shown in Fig. 1 and consists of parallel metallic
wires included into a dielectric matrix [4]. The length of wires L and their diameter d (or it can be often
used as 2r) as well as lattice period a [3, 5] can be related to the important structural parameters of a
WM. To simplify the model, the vacuum is utilized as a dielectric; the lengths of wires are the same;
the lattice periods in two directions are defined and equal.

WM is widely studied for different applications including imaging, sensing, spectroscopy,
thermophotovoltaic [1, 2, 6, 7], etc. Most of these investigations show the possibility of narrowband power
transfer and radiation. Recent works [8, 9] achieve the broadband effect of EM energy transfer. It is
possible in the case when the source of EM waves and their receiver are overlapped with the WM sample
at input and output sides or at least are allocated at the same plane with WM interfaces [8]. However,
such overlapping must be supported from both sides. In another case, the construction operates at
the Fabri-Perot resonance frequency [10] that depends on the WM wires length. This effect is used in
antennas technology that gives the possibility to radiate weak EM oscillations at the frequencies different
from the antenna’s resonances or to modify the existent antennas such as horn, monopole, and others to
improve their gain, directivity, bandwidth, etc. [11–13]. The wire metastructure for broadband radiation
of EM waves which differs from conventional WM was suggested in [10]. Of course, WM cannot support
the radiation in a wide frequency range as the WM brush in [10], but the question of the influence of the
main parameters of WM (wires’ radius and lattice period) on the radiation frequencies is still topical.
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Figure 1. WM metamaterial that consists of metallic wires array with length and diameter of wires L
and 2r respectively and lattice period a.

Therefore, the impact of wires’ radius and lattice period of a WM sample on frequencies characteristics
is studied in the paper by simulations and experimental investigations. In the paper we would like
to demonstrate how to control by the frequency value of Fabry-Perot resonance and frequency range
around Fabry-Perot resonance without changing of wires length L.

For this aim, the approach used in [14] where the power transfer through the WM sample between
two discrete ports analyzed through the filling factor conception was considered and applied in the
paper. The filling factor is described as fr = π(r/a)2 and defines the part of metallization from the
general area of structure interface. By changing the value of a filling factor, the equivalent circuit of WM
also changes, because an array of parallel metallic wires can be considered as a transmission line [15–17]
which consists of distributed capacitance and inductance. It means that the variation of wires’ radius
and lattice period leads to the changing of total value of WM capacitance and inductance.

2. SIMULATION STUDYING OF FREQUENCIES CHARACTERISTICS

For the simulation investigation, the model that consists of a waveguide port and WM structure was
designed in CST Studio Suite as shown in Fig. 2(a). The waveguide port was picked up as a source of
EM waves. Its aperture’s dimensions correspond to the experimental ones and are equal to aw = 164 and

(a) (b)

Figure 2. (a) The simulation setup that consists of waveguide port loaded by the capacitive diaphragm
and WM with length and diameter of wires L = 100 mm and 2r = 1 mm respectively and lattice period
a = 10 mm and (b) the cross-section in the aperture plane between the capacitive diaphragm and WM
interface which depicts the the placement and constructive features of the diaphragm.
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bw = 82 mm. With such dimensions the waveguide port provides transverse TE10-mode as a dominant
mode for the frequency range from 0.9 up to 1.9 GHz which can be calculated from the formula of the
critical value of wavenumber: kc =

√
(mπ/aw)2 + (nπ/bw)2, where m and n are indices of TEmn, as

well as kc = 2πfc, where fc is the critical frequency of the used waveguide port. In usual case, the
aperture of waveguide port radiates well, but we are concentrated on the investigation of radiation at
frequencies of Fabry-Perot resonances. Therefore, in order to avoid the waveguide port radiation, the
aperture was loaded by a capacitive diaphragm to imitate the evanescent EM waves. The diaphragm
consists of two parallel metallic sheets that are allocated along the longer walls of the waveguide port
and inserted at 20 mm depth from the aperture inside the waveguide port (Fig. 2(b)). An air slot by
the width of 10 mm is between the metallic sheets of the diaphragm. The WM slab consists of a 17
by 7 metallic wires array. The lattice period a is 10 mm, and the length of the sample L is 100 mm.
WM was embedded into the waveguide port at depth D = 10 mm without any electric contacts with
the used waveguide port and diaphragm.

As introduced above the filling factor of WM can be varied changing the wires radius r or the
lattice period a. The first case was used in our studied simulation. The parameters of the investigated
model were as mentioned above, and the values of wires’ radius were changed from 0.01 up to 1 mm.
They correspond to the values of fr from 3.14 ∗ 10−6 up to 3.14 ∗ 10−2. Further increase of the radius is
not relevant because it can be much smaller than the lattice period a (2r ≈ a/10). Therefore, we will
demonstrate below the possibility of controlling by Fabry-Perot resonances of WM with the defined and
unchangeable length via tuning of filling factor of metal at the plane of the WM interface in the paper
below.

The simulation shows that the structure radiates at the resonant frequency that is Fabry-Perot
resonance, and this result is predictable. However, Fig. 3 depicts the strong dependence of the resonance
frequency from the value of wires radius for the same wires’ length. The frequency dependences of S11-
parameters in Fig. 3 depict the radiation for radius values that are narrowband. The linear increase
of radius value from 0.01 to 1 mm leads to the linear increase of the value of resonance frequency from
1.138 up to 1.178 GHz (40 MHz shift).

Figure 3. The simulation results of S11-parameters dispersions obtained for different values of the
wires’ radius of WM with lattice period a = 10 mm.

The increase of the resonance frequency value in the case of r increasing for L = const can be
explained by the decrease of self-inductance of each wire of WM and decreasing the total value of
inductance of WM in general. It is described by the formula of self-inductance of a straight thin
(a � 2r) cylindrical wire [18, 19] as follows: Lw = 2L[log(2L/r) − 0.75], where L and r are the length
and radius of wires as presented in Fig. 1.
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3. EXPERIMENTAL INVESTIGATION OF FREQUENCIES CHARACTERISTICS

For the experimental study, two WM samples were manufactured that consist of parallel copper wires
with the length L = 100 mm. The wires’ diameters and lattice periods were 2r = 1.5 mm and a = 6mm
respectively for the first sample (experiment 1 ) as well as 2r = 1 mm and a = 10 mm for the second
one (experiment 2 ). The values of the filling factor are 0.049 and 0.00785, respectively. The parameters
of the used waveguide port correspond to the parameters of simulated one in previous chapter. The
aperture of the waveguide port was also loaded by the capacitive diaphragm. It allows providing the
evanescent EM waves near the aperture of the waveguide port because of the experimentally measured
S11-parameters equal to 0.6...0.7 (∼ −4... − 3 dB).

The experimental setup is shown in Fig. 4(a). The WM slab was embedded into the port, and in

(a)

(b)

(c)

Figure 4. (a) Experimental setup and the results of distributions of dispersion reflection coefficient
(S11-parameters) obtained for different values of the overlap of WM with the waveguide port for the
wires’ radius r and lattice periods a were (b) 0.5 mm and 10 mm as well as (c) 0.75 mm and 6 mm,
respectively.
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the investigation process its position was changed from 0 up to 30 mm depth of overlap D. The distance
between the diaphragm and WM slab was fixed and equal to 10 mm. Thus, the colormap of distribution
of reflection coefficient (S11-parameters) dispersions depending on the depth of overlap was measured
and plotted for the experiment 1 (Fig. 4(b)). The range of values D was 0...30 mm, and in such a case,
the ratio D/L = 0...0.3. One can see from Fig. 4(b) the minimum value of S11-parameters (maximum
of radiation) approximately corresponds 0.1 (−20 dB) at 1.02 GHz, and at the level 0.3 (∼ −10 dB) the
operational frequency range is 30–40 MHz. Such z value of the range keeps almost without changing for
D up to 20 mm that corresponds to λ/10.

For the experiment 2 another WM sample was picked up, and the same measurements were carried
out for that. The obtained results show that the increase of the value of lattice period leads to the
expansion of resonance frequency band up to 80 MHz at the level 0.3 for D ≈ 20mm = λ/10 (Fig. 4(c)).
The minimum value of S11-parameters is shifted to 1.062 GHz due to the increase of the wires’ radius
as found in the simulation studying. The decrease of lattice period a leads to the increase of the total
capacitance of WM. It can be explained by consideration of the capacitance of two parallel wires as
given in [15, 20]: Cw = πε0L/arcosh( a

2r ) = πε0L/ log( a
2r +

√
( a
2r )2 − 1)).

However, in order to describe the increase of the operational frequency band (to compare Figs. 4(b)
and (c)), it is necessary to take into account the shunt inductance included in parallel to Cw [16]. The
value of shunt inductance increases with the decrease of lattice period a especially in the case of the
experiment 2, where a is not much larger than 2r. Thus, the equivalent circuit of WM represents a
band-pass circuit scheme where by tuning r and d, one can set the values of capacitance and both
inductances.

4. CONCLUSION

In the paper, the frequencies characteristics via reflection coefficients dispersion, so-called S11-
parameters, of modified waveguide port were investigated. The modification was performed by the
WM sample which was embedded into the aperture of waveguide port. As the results of simulation, the
strong dependence between the radius of wires and the value of resonance frequency was found. The
increase of filling factor leads to the increase of the value of resonance frequency, and for the radius
changing from 0.01 up to 1mm the resonance frequencies change from 1.138 up to 1.178 GHz due to the
decrease of the WM inductance. Although the radiation at all of frequencies is narrowband, the values
of all S11-parameters at the resonance frequencies are less than −20 dB. These results are presented for
the defined value of lattice period that is 10 mm.

For the experimental investigation, two samples of WM were manufactured with wires radii 0.5
and 0.75 mm, lattice periods 10 and 6 mm as well as wires length 10 mm, respectively. These gave
the possibility to investigate two WM samples with different values of filling factor (0.049 and 0.00785,
respectively), radii of wires, and lattice periods. The obtained experimental results confirmed the
simulation ones and showed that the decrease of lattice period leads to the increase of the operational
frequency range. It can be explained through the occurrence of the shunt inductance between adjacent
wires in parallel to the capacitance of those wires, and as a result, WM can be presented as a band-pass
circuit. Finally, the experimental investigation shows that the change of the depth of overlap of the WM
slab and EM wave source is possible up to values D ≈ 20mm = λ/10 without changing the operational
frequency band.
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