
Progress In Electromagnetics Research B, Vol. 88, 119–149, 2020

Wiener-Hopf Analysis of Planar Canonical Structures Loaded
with Longitudinally Magnetized Plasma Biased Normally

to the Extraordinary Wave Propagation: Near and Far Field

Xenofon M. Mitsalas1, Theodoros N. Kaifas2, and George A. Kyriacou1, *

Abstract—This work aims at completing the Wiener-Hopf analysis of a canonical problem referring
to an extra-ordinary transverse electromagnetic wave propagating within a parallel plane waveguide
loaded with magnetized plasma when incident normally at the truncated edge of its upper conductor.
The complicated mathematical issues faced herein comes from the non-symmetric Kernel functions
involved in the related integral equation. This property puts two challenging issues, first the rarely
occurring factorization of non-symmetric Kernels and secondly the handling of unidirectional surface
and leaky waves. Although the formulation of the Wiener-Hopf equations was carried out in our previous
work, these two challenges were not confronted, since that work has been completed only in regard to
the closed-shielded geometry which involves a symmetric Kernel. Thus, the novel contribution of this
work refers to completing the analysis of the open geometry by handling the factorization of the related
non-symmetric Kernel, evaluating the radiated field as well as studying the unidirectional waves for
their near and far fields.

1. INTRODUCTION

Magnetized ferrites and plasmas offer unique non-reciprocal features as well as tunability by means of
an electric control of their constitutive parameters. Ferrites have been exploited in the past, initially for
waveguide and later for printed structures of various forms, including thick and thin films. Although
the properties of ionized gas plasma were known long ago, its exploitation in microwave devices was
only stimulated when the cryogenic solid state plasma technology became available, e.g., Hoyaux and
Gans [1], Bolle and Chabries [2, 3]. Oliner and Tamir [4–6] gave a comprehensive treatment of the
electromagnetic field of a source-excited, isotropic plasma slab. When ferrite or plasma materials
are subject to constant magnetic field, they exhibit anisotropic permeability μr and permittivity εr,
respectively. These tensors’ entries depend on both the biasing magnetic field and the operating
frequency. This dependence enables their dynamic control through the dc current of an electromagnet
which generates the biasing constant magnetic field HDC. These features offered by ferrites are
extensively used in microwave waveguides, stripline, and microstrip devices. A significant additional
feature offered by magnetized plasma is the expanded range of relative permittivity compared to the
smaller range of relative permeability in magnetized ferrites. Also, the roles of perfect electric and
perfect magnetic walls are interchanged in plasma and ferrite applications, following a TEM duality
principle.

In the case of an isotropic plasma substrate, the structure under consideration is widely used as a
radiating device. The corresponding isotropic problem was investigated first by Angulo and Chang [7],
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in the case of the dominant TEM polarization of the exciting field and later by Bates and Mittra [8], who
were concerned with both TE10 and TEM excitation. Compared with the isotropic case and leaving
aside the obviously existing geometrical and physical similarities, the anisotropic substrate problem
treated herein exhibits several unique features. Our previous effort [9], directed towards the solution
of a canonical problem of a TEM wave propagating in a parallel-plane waveguide with a semi-infinite
upper conductor loaded with a magnetized plasma and normally incident on the edge defined by the
truncated upper conductor, as depicted in Fig. 1. The Wiener-Hopf equations are already formulated
in [9], but the Kernel factorization for the estimation of the scattered field at the edge and consequently
the reflected TEM wave propagating back in the parallel plane region was carried out only for the closed
shielded geometry shown in Fig. 1(a). The shielded geometry results from the placement of a metallic
shield parallel to the waveguide planes. As far as the open radiating structure is concerned, the analysis
was restricted only on the formulation of the Wiener-Hopf equations.

The present effort aims at the factorization of the Wiener-Hopf equation for the open geometry
problem shown in Fig. 1(b) in order to estimate the scattered and reflected field. Unique features
regarding the discrete propagating modes and the continuous spectrum contribution to the radiated field
are extensively analyzed herein. Explicitly, interesting phenomena regarding the excitation of surface
and leaky waves in the grounded plasma region and the radiating space wave are involved in the scattered
field expressions. The dependence of the modes turn on/off conditions of the plasma parameters and
especially the magnetizing dc field are of particular importance. Reviewing the relative subject, we must
note that wave phenomena on grounded plasma slabs have been studied by Seshadri and Pickard [10].
Also, towards the direction of solving scattering problems of TM waves on truncated parallel plane
waveguides using Wiener-Hopf, the work of Pathak and Kouyoumjian [11] is of primary importance.
An insight in the radiation characteristics of surface waves in a parallel plane waveguide, which is
embedded not in free space but in homogeneous anisotropic plasma, is also provided by Johansen [12].
Higher order modes of this grounded structure are expected to become leaky waves. These waves offer
non-reciprocal features in their radiation mechanisms. All these types of modes are indeed involved in
the mathematical formulation and are required for the scattered and radiated field evaluation. Special
attention is devoted to the study of unidirectional leaky waves that concentrate their energy either on the
upper or the bottom surface of the slab. Working toward this direction, some preliminary results on the
study of modes supported by the grounded magnetized plasma are published in [13]. As a consequence of
the anisotropy, the derived Wiener-Hopf equation is characterized by a non-symmetric Kernel function.
This is in contrast to all isotropic problems treated by the same method which are characterized by
even Kernel functions, for which suitable decomposition techniques have been developed in the past,
e.g., Mittra and Lee [14, p. 91, 114], Bates and Mittra [15]. Herein, the lack of symmetry affects the
factorization procedure. This is clearly exhibited in the form of the resulting two factors from which
only one is characterized by even symmetry. The factorization methodology of non-symmetric Kernels,
as proposed by Fikioris et al. [16], is adopted herein. Explicitly in [16] the non-symmetric Kernel is
factorized through a modification of a classical technique for even Kernels proposed by Mittra, Bates,
and Lee [8, 14, 15].

As explained in our previous work [2] as well as in numerous publications on similar canonical
problems (e.g., Kuester et al. [34], El-Sheribny [35]), the resulting analytical formulas can be exploited
in various printed structures. Important contributions towards this direction consist of the work of
Talisa and Bolle [37], where a GaAs semiconductor is treated at cryogenic temperature, emulating
solid state plasma, in order to utilize non-reciprocal devices in the millimeter wave range. The quite
optimistic view in solid state plasma applications continues at lower frequency ranges, especially in the
zone of 4.5–40 GHz [38]. As stated by Iqbal and Gibson in [38], semiconducting solid-state plasma may
be preferable in phase shifters than ferrites, since their losses become more manageable. Explicitly,
based on the established reflection coefficient an accurate analysis of a tunable microstrip line printed
on a magnetized plasma can be studied as in [36]. The microstrip line is composed of two parallel
edges — apertures on which the scattering phenomena are governed by the present analysis. Important
microwave structures such as tunable filters, tunable phase shifters, true-time delay lines, circulators, and
isolators can be built using this type of microstrip lines [37, 38]. Its important features exploited in these
applications are the electrical tunability of the magnetized solid-state plasma as well as the controllable
non-reciprocal phenomena. From this approach the accurate field below the line can be evaluated along



Progress In Electromagnetics Research B, Vol. 88, 2020 121

with the associate input impedance of a possible probe excitation. Also, the scattering at the edges yields
its radiation impedance, the leaked energy, as well as its radiated field, e.g., [36]. But the specific case
studied herein can be best exploited for the analysis of rectangular patch antennas printed on solid state
plasma, where the internal waves (below the patch) are almost normally incident at the two of its four
edges, e.g., [34, 36]. The value of the present Wiener-Hopf analysis can be understood as offering physical
insight into the involved scattering phenomena and consequently providing the means to optimize or
tune the radiated field [34]. Unique and exotic radiating structures can be built exploiting the involved
tunable unidirectional waves supported by the studied structure. A similar example from magnetized
ferrites is a tunable travelling wave antenna which includes a build-in circulator, i.e., the forward
unidirectional wave is activated in transmit and the back-propagating one for receive functions [29].
Many attractive features of proposed anisotropic slabs in the band of optical frequencies are noticed
in the work of Taya [39–42]. There the effect of anisotropy in the refractive index enables the slab to
act as sensor, which can “be used in the characterization of plasma media” [39]. Increasing the mode’s
wavelength or decreasing substrate’s thickness causes the sensitivity of the sensor to increase [39].
This is of primary importance, since these sensors can be used in biomedical applications [39, 41].
Moreover, their use is also extended in the field of radiating structures, such as the proposed antenna
structures of Huang et al. [43]. These antennas, operating in the two main communication bands of
WLAN, (2.4–2.4835 GHz), and WiMAX, (3.3 GHz), are realized based on solid state plasma materials.
These antenna configurations have the special advantages of small volume, low profile, easy to carry,
convenient real time control, and almost perfect directivity, especially in the WLAN band [43]. Hence,
the analysis presented herein offers the means and primarily the physical insight to devise novel and
unique microwave front end stages including antennas.

This paper is organized as follows. Section 2 recalls the characteristic equation and the formulation
of the Wiener-Hopf equation for the grounded anisotropic plasma. Section 3 presents the factorization
procedure of the resulting Kernel function. The Kernel function is first decomposed into a symmetrical
even and a non-even term. Then, the expressions for the reflection coefficient, as well as integral
equations describing the scattered field, are derived. Residues of poles of these integral equations
determine the contribution of both surface and leaky waves to the scattered field. Section 4 shows the
resulting dispersion curves for both surface and leaky waves excited in the anisotropic plasma slab. The
field of unidirectional waves is studied next as well as the dependence of these waves turn-on conditions
from the plasma tensor entries. Finally, a steepest descent method is employed in order to evaluate
the far field radiation. Field radiation is evaluated and plotted as a function of magnetizing dc field
and the waveguide thickness for validations purposes. For the sake of brevity, we have omitted several
mathematical proofs that the reader can find in [8–18].

2. FORMULATION OF THE CANONICAL PROBLEM AND WIENER-HOPF
EQUATIONS

As noted in the introduction, this work constitutes an extension of our previous work [9], toward the
evaluation of the scattered near and/or far field when the structure is open-radiating. The study, when
the structure is shielded, is carried out in [9] along with the formulation of the Wiener-Hopf equation for
both shielded and open cases. In order for this paper to be self-sustained a synopsis of formulation [9]
will be tried first.

The geometry to be studied is shown in Fig. 1. Basically, it consists of a parallel plane waveguide
loaded with magnetized plasma, where the lower conductor (ground plane) and the plasma substrate are
assumed extending to infinity, while a semi-infinite (truncated, z < 0) upper conductor is considered.
The biasing constant magnetic field (Hdc) is assumed parallel to the two planes and parallel to the
edge, (ŷ-axis, Hdc = H0ŷ), of the truncated plane conductor. The extra-ordinary TEM wave (possibly
emanating from a probe feed) propagating in the parallel plane region along the ẑ-axis (transverse to
Hdc) is considered to be incident normally on the edge defined by the truncated upper conductor. The
open structure of the parallel plane waveguide is presented in Fig. 1(b), as well as the shielded structure
in Fig. 1(a). Time harmonic fields (ejωt) and a spatial (ẑ-axis) to a λ-space (propagation constants)
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(a) (b)

Figure 1. A TEM wave incident upon the edge defined by the truncated upper conductor of a parallel
plane waveguide loaded with longitudinally magnetized plasma. Wave propagation normal to the biasing
DC magnetic field is considered (a) shielded geometry, (b) open geometry.

spectrum Fourier transform pair is considered (in the form ejk0λ·z) as follows:

f̃ (λ) =
k0

2π

{∫ 0

−∞
+

∫ ∞

0

}
f(z)ejk0λ·zdz = f̃− (λ) + f̃+(λ) (1)

and the inverse Fourier transform:

f+(z) =

⎧⎨
⎩

∫
+∞

f̃+(λ)e−jk0λzdλ, for z ≥ 0

0, for z < 0
, f−(z) =

⎧⎨
⎩

0, for z > 0∫
−∞

f̃−(λ)e−jk0λzdλ, for z ≤ 0 (2a)

The spectral functions f̃−(λ) and f̃+(λ) are analytic in the lower and upper λ half-planes respectively,
hence are called “negative” and “positive” functions. On the other hand, the spatial functions f+(z)
and f−(z) are defined only in the positive and negative z half-planes according to Eq. (2a), and their
summation gives the total response.

f(z) = f−(z) + f+(z) (2b)

As shown in Fig. 2, the contour C+ must be closed in the lower λ half-plane when f+(z) for z > 0
will be recovered employing Cauchy’s formula. Likewise, when f−(z) for z < 0 is to be recovered, the
integration contour C− must be closed in the upper λ half-plane. Note only this selection of contours
ensures that the integrands will tend to zero at infinity, (|z| → ∞), or equivalently that the associated
field expressions will obey the radiation condition at infinity (assuming the presence of at least small
losses).

The Fourier transform pair of Eqs. (1), (2) yields the same simplification as when considering wave
propagation along the z-axis like e−jk0λz namely to substitute ∂

∂z = −jk0λ. For further simplification,
the analysis is restricted to the case without variation of the scattered field in the also infinite y-direction,
resulting to the simplification ∂

∂y = −jky = 0. Moreover, the magnetized cold plasma (Hdc = H0ŷ)
relative permittivity tensor is also given in [5] and the original references cited herein and in [8] as:

εr =

⎡
⎣ εr1 0 jεr2

0 εr3 0
−jεr2 0 εr1

⎤
⎦ where εr1 =

Ω2 − R2 − 1
Ω2 − R2

, εr2 =
R

Ω(Ω2 − R2)
, εr3 = 1 − 1

Ω2
(3a)

and

Ω =
ω

ωp
, R =

ωc

ωp
, ω2

p =
Ne2

mε0
=

γNe

ε0
, ωc = −eμ0H0

m
= −γμ0H0 (3b)

The above parameters ωp and ωc symbolize the plasma and gyromagnetic circular frequency,
respectively. The normalized gyromagnetic frequency is symbolized as R. Also, e and m are the
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Figure 2. Definitions of f̃+(λ) and f̃−(λ) analyticity regions and the appropriate C+, C− integration
contours.

charge and mass of an electron; γ = q
m is the magneto-mechanic or gyroelectric ratio; ε0, μ0 are the free

space permittivity and permeability; N is the average density of electrons.
In the geometry of the problem, shown in Fig. 1, the region −∞ < z < +∞, −∞ < y < +∞, and

−α < x < α is filled with uniform magnetized plasma, and the rest of half-space x > α is vacuum.
The wave equation for the scattered magnetic field in the plasma region −α ≤ x ≤ α can be written
as [8, 12]: [

∂2

∂x2
+ k2

0

(
εrq

εr1
− λ2

)]
H̃s

y = 0 (4)

where k0 = ω
√

μ0ε0 the free space wavenumber, εrq = ε2
r1− ε2

r2, and the transverse effective permittivity
is εreff = εrq

εr1
. The general solution of Eq. (4) takes the form:

H̃s
y = Bp(λ) cosh (k0upx) + Cp (λ) sinh (k0upx) for − α ≤ x ≤ α (5a)

where:

up =
√

λ2 − εreff =
√

λ2 − εrq

εr1
and Re(up) ≥ 0 (5b)

In order to ensure attenuated waves in the presence of losses only solutions with Re(up) ≥ 0 are
acceptable. The transverse field components can also be expressed by expanding the Maxwell rotational
equations and using the above simplifications [9]:

Ẽs
x =

ζ0

εrq

{
λεr1H̃

s
y − εr2∂H̃s

y

k0∂x

}
and Ẽs

z = j
ζ0

εrq

{
λεr2H̃

s
y − εr1∂H̃s

y

k0∂x

}
(6)

where ζ0 =
√

μ0/ε0 = 120πΩ is the free space characteristic impedance.
The solution in the air region must obey the radiation condition at infinity taking the form:

H̃s
y = Ap(λ) · e−k0u0(x−α) for x ≥ α (7a)

with u0 =
√

λ2 − 1 and Re (u0) ≥ 0 (7b)

Ẽs
x = − 1

jωε0

∂H̃s
y

∂z
= ζ0 · λ · H̃s

y and Ẽs
z =

1
jωε0

∂H̃s
y

∂x
= jζ0u0 · H̃s

y (8)
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The spectral quantities Bp(λ) and Cp(λ) can be obtained in terms of Ap(λ) by imposing the boundary
conditions and are explicitly defined as:

Bp(λ) =
εrqu0Ap(λ)

2
[
(λεr2)

2 − (εr1 · up)
2
] ·

(
λεr2

cosh (k0upα)
+

εr1 · up

sinh (k0upα)

)
(9)

Cp(λ) =
εrqu0Ap(λ)

2
[
(λεr2)

2 − (εr1 · up)
2
] ·

(
εr1 · up

cosh (k0upα)
+

λεr2

sinh (k0upα)

)
(10)

The common term in Eqs. (9)–(10) can be simplified as:
εrq

2
[
(λεr2)

2 − (εr1 · up)
2
] =

−1
2 (λ2 − εr1)

(11)

The incident extra-ordinary TEM wave propagating in the parallel-plane region toward the positive
z-direction is given by Johansen [12], or Bates and Mittra [8], in the spatial domain as:

H i
y = exp

(
k0εr2x√

εr1
− jk0

√
εr1z

)
and Ei

x =
ζ0√
εr1

· H i
y (12)

The inhomogeneous boundary conditions at the interface x = α (truncated metal-air for z < 0 and
plasma-air for z > 0) are imposed, and the Jones’ procedure [14] is followed to formulate the Wiener-
Hopf equation in [9]:

Q (λ) R̃+ (λ) = L̃− (λ) − j̃i
+ (λ) (13)

The involved spectral current density j̃i
+(λ) results from a fictitious but mathematically rigorous and

convenient induced current density on the plasma-air interface (x = α, z > 0), according to Mittra and
Lee [14, p. 126]. For this assumption, the incident field is assumed to propagate un-attenuated beyond
the edge in the region z > 0. The fictitious field contribution introduced in the scattered field will be
evaluated from its residue and subtracted later on. Since this current density is identically zero at the
interface, (x = α, z > 0), it can be represented by a “positive” function as:

j̃·i+ (λ)=− k0

2π

∫ ∞

0
H i

y

(
x=α−, z

)
ejk0λzdz=−j

1
2π

(
λ −√

εr1

) · exp (k0εr2α/
√

εr1 ) , valid for z > 0 (14)

The vanishing electric field on the boundary condition on the semi-infinite metallic upper conductor
(x = α, z < 0) is satisfied through a “positive” spectral function as [9]:

R̃+ (λ) = u0Ap (λ) (15)
On the contrary, the tangential magnetic field (Hy) exhibits an unusual discontinuity at the semi-infinite
plasma-air interface, (x = α, z > 0), equal to the fictitious current density j̃i

+(λ). This is in turn ensured
through the definition of a “negative” spectral function, as in [9]:

L̃− (λ) = H̃s
y

(
x = α+, λ

) − H̃s
y

(
x = α−, λ

)
+ j̃i

+ (λ) (16)

The Kernel Q(λ) reads:

Q (λ) =
1
u0

+
λεr2 + εr1 · up · coth (2k0upα)

(λ2 − εr1)
(17)

The inverse function G of the Kernel that is used in next Sections, is explicitly defined in Eq. (19), as
a product of expressions (20)–(22). Q(λ) = 0 is identified as the characteristic equation of the open
problem and needs to be factorized as its roots constitute the propagation constants of the excited
modes. Additionally, the corresponding Kernel function for the shielded geometry of Fig. 1(a) studied
analytically in [9] is defined as:

Qclosed (λ) =
1

u0 tanh [k0u0 (d − α)]
+

λεr2 + εr1up coth (2k0upα)
λ2 − εr1

(18)

It is obvious from Eq. (18) that in the limit when the metallic shield distance is moved to infinity
d → ∞, the term tanh[k0u0(d − α)] tends to unity, and the above equation yields the respective one,
Eq. (16) for the open geometry.
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3. FACTORIZATION OF KERNEL FUNCTION G

For the solution of the Wiener-Hopf equation, the Kernel function in Eq. (17) must be separated into
“positive” and “negative” terms. For this purpose, Kernel Q(λ) or its inverse G(λ) should be factorized
into a product as: Q(λ) = Q+(λ) · Q−(λ) or G(λ) = 1/Q(λ) = G+(λ) · G−(λ). The challenge here is
to handle the anisotropy introduced by the permittivity tensor in Eq. (3a) and particularly the term
λεr2 which causes the kernel in Eq. (17) to lose their even symmetry. Physically, this is reflected to
the non-reciprocal behavior of the magnetized plasma, which in turn causes waves propagating in the
positive and negative z-direction to have different propagation constants. Although there is a plethora of
publications elaborating on the factorization of the classical even Kernels (referred to isotropic media),
there are only a few for non-even functions. To our knowledge the only general one is that of Fikioris et
al. [16], which handles a similar structure loaded with magnetized ferrite material. Their technique is
modified herein for the magnetized plasma loading. The authors in [16] manipulated the Kernel functions
and were able to extend the general factorization technique developed by Bates and Mittra [15], for
adapt even-functions. The extension of [16] was able to adapt this technique to non-even Kernels’
factorization. Herein, the Kernel G(λ) is first expressed in terms similar to [16] as:

G (λ) = g (λ) G1 (λ) G2 (λ) (19)

where

g (λ) = 2k0α
(
λ2 − εr1

)
(20)

G1 (λ) =
sinh (2k0upα)

2k0αup
(21)

G2 (λ) =
u0up

[λ2 − εr1 + λεr2u0] sinh (2k0upα) + εr1u0up cosh (2k0upα)
(22)

Namely, the original function G(λ) is written as a product of a usual even function G1(λ) and a
non-even G2(λ) similar to that of [16]. The Kernel function described by Eq. (22) involves a non-
even and non-reciprocal term λεr2 resulting from the plasma anisotropy. The ordinary even function
G1(λ) is factorized as in [10], while for the non-even function G2(λ) the Fikioris et al. technique [16]
is adopted. A comparison of the Kernels of the ferrite structure of [16], its dual and the one studied
herein is given in Table 1. The structure of Fikioris et al. [16] assumed a magnetized ferrite loading,
excited by a TEn0 mode. Although the dual structure transformed through the duality principle to that
of magnetized plasma loading, the involved boundaries become perfect magnetic conductors (PMC),
while the excitations is by TMn0 modes. On the contrary, herein we aim at structures printed on a
semiconductor substrate, which at cryogenic temperatures exhibit magnetized plasma properties when
biased by a DC magnetic field. Thus, the studied structure of Fig. 1(b) involves perfect electric conductor
(PEC), boundarie and the excitation by a TEM mode in order to allow for electrically thin substrates.
Indeed, the dual structure exhibits the same mathematical form as that of [16], and its Kernel could
be readily factorized as in [16]. However, the structure elaborated herein has a different first term in
the denominator of the non-symmetric function G2(λ). Hence, this factorization must be reestablished
following a similar mathematical approach as in [16]. Modes excited are of type E-modes, as described
in [9]. The lowest order surface mode is a TEM wave (λ =

√
εr1), similar to [12], with its behavior

affected by εr2 as described later in Tables 4 and 5.

3.1. Factorization of Even Function G1

As G1 is concerned, it is a meromorphic even function of λ and can be factorized almost by
inspection [14, Sec. 3-6(3), p. 91], leading to the factors G1(λ) = G1+(λ)G1−(λ):

G1 (λ) = G1 (0)
∏∞

n=1

(
1 +

λ

jγn

)
exp

(
+

jk0λ2α
nπ

)∏∞
n=1

(
1 − λ

jγn

)
exp

(
−jk0λ2α

nπ

)
(23)

which yields:

G1± (λ) =
√

G1 (0)
∏∞

n=1

(
1 ∓ λ

jγn

)
exp

(
∓jk0λ2α

nπ

)
(24)
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Table 1. Definition of variables and functions in Fikioris’ [16], and present problems.

Fikioris’ Problem Present Problem
Time Dependence exp(−jωt) exp(+jωt)
Anisotropic Entries μr, μr1, μr2, μr3, μreff εr, εr1, εr2, εr3, εreff

Incident Wave TEn0 Extra-Ordinary TEM
Infinite Axis Assumed

Independent Field
ŷ-axis ŷ-axis

Field Excited Components Hx,Hz, Ey Ex, Ez ,Hy

Propagation Constant u λ

Tangential Wavenumber Inside
Slab’s Material

τ2 up

Tangential Wavenumber
in Air Region

γ0 =
√

u2 − k2
0 u0 =

√
λ2 − 1

Transforming Variable β w

Waveguide Height d 2α
Functions A±, F,M±,K±, P A∓, F,M∓,K∓,X

Asymptotic Form of G1+ u− 1
2 e−

jud
π [1−γ−ln(−j ud

π )] λ− 1
2 e

jk0λ2α
π

[
1−γ−ln

(
jk0λ2α

π

)]

Asymptotic Form of G2
e−dusgn(Re(u))

μ1+(μ2
1−μ2

2)−μ2sgn(Re(u))

1
2
e−2k0λsgn(Re(λ))α

1+sgn(Re(λ))εr2+εr1

where γn = j

√
εreff − (

nπ
2α

)2 and G1(0) = sin(2k0α
√

εreff )

2k0α
√

εreff
= sinc(2k0α

√
εreff ).

From the above expression (24) the even symmetry as G1−(λ) = G1+(−λ) is justified. Using the
approximations of [14, Sec. 3.6.(3)], in order to define the asymptotic form of (24), Kernel function G1

is defined as:

G1+ (λ)|
|λ| → ∞

∼ λ− 1
2 exp

(
jk0λ2α

π

[
1 − γ − ln

(
jk0λ2α

π

)])
(25)

where γ = 0.57721 Euler’s constant.

3.2. Factorization of Non-Even Function G2

On the contrary, the factorization of G2 is much more complicated. Exactly as in the isotropic case [7],
a first difficulty arises from the open character of the present structure which is responsible for the
presence of a branch cut in the expression of G2 due to the double valued function u0. As a prerequisite
of this procedure, the factorization method developed by Bates and Mittra [15] is extended to the
present non-symmetric case. Note that the G2 term of the current work is similar but more complex
than the one studied by Fikioris et al. [16].

In the present non-symmetric Kernel problem, the same method developed by Fikioris et al. [16]
is applied. As mentioned in [15], the two (+) and (−) factors of G2 function can be represented by the
following expressions:

G2± (λ) =
√

G2 (0) exp
(

A± (λ) + hM± (λ) +
jk0h

2

)
(26)

G2 (0) =
√

εreff

jεr1 sin
(
2k0α

√
εreff

)
+ εr1

√
εreff cos

(
2k0α

√
εreff

) (27)

A± (λ) = ± 1
2πj

∫ +∞±jh

−∞±jh

λF (w)
w (w − λ)

dw, τ− < −h < τ < h < τ+ (28)
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F (λ) = hu0 + ln G2 (λ) (29)

The integration contour is depicted in Fig. 2, and h stands for the limit of Kernel function G2 in terms
of exp(−hk0λ) [14, p. 114], as λ tends to infinity, and functions M±(λ) denote the decomposition terms
on C+ and C− complex half domains. Because of the differences between the present non-symmetric
function G2 and the one studied in [16], each term in Eq. (26) should be defined explicitly. The above
definitions are encountered in the literature [14, 15], denoted in the opposite sense of j. This is due
to the opposite signs in the field time dependence assumed [19]. The correspondence of variables and
functions utilized in [16] to those employed herein are depicted in Table 1, in order to track the changes.

First the asymptotic behavior as of Kernel function G2 is studied, in order to identify factor h. So,

G2 (λ)|
|λ| → ∞

≈
1
2

e−2k0λsgn(Re(λ))α

1 + sgn(Re (λ))εr2 + εr1
∝ Cνe−k0λh (30)

with ν = 0 and h = 2α being the substrate thickness in Fig. 1. Functions M±(λ) denote the
decomposition terms defined through the relation:

k0u0 (λ) = M+ (λ) + M− (λ) (31)

Although Eq. (31) seems identical to that of [16] for γ0, there is a major difference due to the temporal
exp(−jωt) assumption therein. Thus, the correspondence to (+) or Im(λ) > 0 and (−) or Im(λ) < 0 is
interchanged.

After some algebraic manipulations working according to Noble [17, p. 21], Daniele [18, Ch. 1.3.1
p. 6], or Fikioris et al. [16], the decomposition yields:

M± (λ) =
k0u0

π
cos−1 (∓λ) =

k0u0

πj
ln (∓λ + u0) = ∓k0u0

2πj
ln

(
λ + u0

λ − u0

)
(32)

Its null argument is obtained setting λ = 0 in Eq. (32):

M+ (0) = M− (0) =
k0u0 (0)

2
(33)

As stated in [16] expressing λ and u0 in terms of distances ρ1 and ρ2 from branch points in a similar
sense to [16], in order to yield a more concrete representation of functions M+ and M−. The defined
angles ϕ1 and ϕ2 are in the opposite sense of [16] in order to retain Re(u0) ≥ 0 for the exp(+jωt)
temporal dependence. Writing the propagation constant as λ = r · exp(jθ) and recalling formulas
from [20, p. 80–81], the approach in [16] yields:

R± =
{

r2 + ρ1ρ2 ± 2r
√

ρ1ρ2 cos
(

ϕ1 + ϕ2

2
− θ

)} 1
2

(34a)

Ψ = tan−1

⎡
⎢⎢⎣

2r
√

ρ1ρ2 sin
(

ϕ1 + ϕ2

2
− θ

)
r2 − ρ1ρ2

⎤
⎥⎥⎦ (34b)

Decomposed functions M+ and M− are defined in Table 2 and compared with the respective ones
of [16]. Because functions A±(λ) in Eq. (28) are in a very complicated form and difficult to be evaluated,
the technique of integration by parts developed by Bates and Mittra [15] is adapted by Fikioris et al. [16],
for the non-symmetric case. This is also followed herein, since it leads to a more concrete form of G2±(λ).

G2± (λ) =
√

G2 (0) (1 ± λ)
ν
2 exp (jαk0 + 2αM±(λ) + A± (λ)) (35a)

or equivalently:

G2± (λ) =
√

G2 (0) (1 ± λ)
ν1
2

∏N

n=1

(
1 ∓ λ

η n±

)−1

exp (jαk0 + 2αM±(λ) + T± (λ)) (35b)

where G2(0) is defined by Eq. (27); A±(λ) is defined by Eq. (28); and ηn± denote the roots of the
equations [λ2 − εr1 ± λεr2u0] sinh(2k0upα) + εr1u0up cosh(2k0upα), respectively. Following a similar
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Table 2. Comparison of decomposed functions between plasma and ferrite [16], problems.

Structure Decomposition Function M+

Fikioris [16] Ferrite M+(λ) = 1
2πj

√
ρ1ρ2 e

j(ϕ1+ϕ2)

2

[
lnR+

R− + jΨ
]

Present Plasma M+(λ) = − 1
2πj

√
ρ1ρ2 e

j(ϕ1+ϕ2)
2

[
lnR+

R− + jΨ − j2π
]

Decomposition Function M−
Fikioris [16] Ferrite M−(λ) = − 1

2πj

√
ρ1ρ2 e

j(ϕ1+ϕ2)
2

[
lnR+

R− + jΨ + j2π
]

Present Plasma M−(λ) = 1
2πj

√
ρ1ρ2 e

j(ϕ1+ϕ2)
2

[
lnR+

R− + jΨ
]

procedure to [16], the +λεr2u0 is used for the positive functions, with the term −λεr2u0 for the negative
functions.

The above functions yield T±(λ) which is involved in Eq. (35) as [11, 15]:

T± (λ) =
∫ ∞

0
K±(w) ln

[
1 ± λ

(1 − w2)
1
2

]
dw (36a)

The function K+(w) can be defined as:

K+ (w) =
2α
π

+
1

2πj
(B+ (w) + B+ (−w)) ⇒

K+ (w) =
2α
π

+
1

2πj

H+

(√
1 − w2

)
G2

(
−√

1 − w2
)
− H+

(
−√

1 − w2
)

G2

(√
1 − w2

)
G2

(√
1 − w2

)
G2

(
−√

1 − w2
) (36b)

The functions B and H involved in Eq. (36b) are defined in [8, 14] and are evaluated as [11, 15]:

B± (w) =
H±

(√
1 − w2

)
G2±

(√
1 − w2

) (36c)

with
H

(√
1 − w2

)
=

d

dw

(
G2

(√
1 − w2

))
(36d)

Imposing λ = ±√
1 − w2 on Eq. (22) yields the term G2(±

√
1 − w2). A complicated mathematical

manipulation is needed for the evaluation of K± through Eq. (36c). The symbolic feature of
Mathematica [21] is employed, which after multiple “simplification” iterations yields the final expression
as:

B+(±w) =
{

j2αk0w
2τ0τp

(
1 − εr1 − w2±jεr2wτ0

)
cos (2αk0τp)

+
[
jτ0

[
w4 + (εr1 − 1) τ2

p − w2
(
τ2
p − εr1 + 1

)]±w3
(
εr2τ

2
0 + εr2τ

2
p + 2αk0εr1τ0τ

2
p

)]
sin (2αk0τp)

}
{
±wτ0τ

2
p

[±εr1wτp cos (2αk0τp) +
(±εr2wτ0 + jw2 + jεr1 − j

)
sin (2αk0τp)

]}−1

(36e)

where:
τp =

√
w2 + εreff − 1 and τ0 =

√
1 − w2 (36f)

The result for ν = 0 obtained in Eq. (30) is similar to [16]. On the opposite, ν1 in Eq. (35b) using
Mathematica [21] yields:

ν1 = lim
w→0

wB± (w) = 1 (36g)
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Negative (−) expressions of (36a)–(36f) yield the same with positive (+), except of an opposed sign in
front of εr2, resulting from the initial assumption of negative term −λεr2u0. Although Eq. (36d) is a
complicated expression as far as mathematical interpretation is concerned, it is however convenient for
numerical computation purposes. Substituting back to Eq. (35), the final expression for G±(λ) reads:

G± (λ) = (λ ∓√
εr1 ) (1 ± λ)

1
2

√
G (0)

∞∏
n=1

M∏
m=1

(
1∓ λ

jγn

)
(

1∓λ

η m±

)

· exp
[±j2k0λα

nπ
+ jαk0 + 2αM± (λ) + T± (λ) ± X(λ)

]
(37)

where G(0) = −2k0αεr1G1(0)G2(0) from Eq. (19).
The new term in Eq. (37), X(λ) is an entire function which must be included so as to ensure the

algebraic behavior of G±(λ) at infinity, (as |λ| → ∞). For this purpose, it is necessary to estimate its
asymptotic behavior, which is similar to [18, Ch. 1.3.1]:

G2+(λ)|
|λ| → ∞

≈ exp
(

j2αk0λ

π
ln (−2λ)

)
(38)

The entire function X(λ) yields:

X (λ) =
−jk0λ2α

π

[
1 − γ + ln

(
π

k0α

)
+

jπ

2

]
(39)

By means of Eqs. (37)–(39) and (36d)–(36f) as well as Eq. (32) the factorization of G has been fully
accomplished as:

G+ (λ) ≈ g+ (λ)G1+ (λ) G2+ (λ) and G− (λ) ≈ g− (λ)G1− (λ) G2− (λ) (40)

where:
g± (λ) =

√
2k0α

(
λ∓√

εr1

)
(41)

3.3. Solution of the Wiener-Hopf Equation

Returning back to Eq. (12) and substituting the factorized functions yields:

R+ (λ)
G+ (λ)

= G− (λ)L− (λ) − j̃i
+(λ)G− (λ) (42)

The last term of Eq. (42) must be decomposed to “positive” and “negative” functions S±(λ). As
explained in [9], this is essentially done by adding and subtracting the residue contribution at λ =

√
εr1,

and this is in accordance to [14, p. 94]:

j̃i
+ (λ) · G− (λ) = s− (λ) +S+ (λ) = j̃i

+ (λ) [G− (λ) − G− (λ =
√

εr1 )] + j̃i
+ (λ) · G− (λ =

√
εr1 ) (43)

The singularity λ = +
√

εr1 is in the lower λ-plane as justified by considering the dielectric losses in εr1

as:
λ =

√
εr1 =

[
ε′r1 (1 − j tan δ)

]1
2 = n′

1 − jn′′
1 (44)

Hence, Eq. (43) indeed removes this singularity from the lower λ-half plane ensuring the analyticity of
the “negative” term, while this pole is absorbed in the “positive” term as:

R̃+ (λ)
G+ (λ)

+ j̃i
+ (λ) ·G− (λ =

√
εr1 ) = G− (λ) L̃− (λ) − j̃i

+ (λ) · [G− (λ) − G− (λ =
√

εr1 )] = P̃ (λ) (45)

Notably, the assumption in Eq. (44) is valid in the frequency bands Ω < R and Ω >
√

R2 + 1 where
εr1 is positive, (Figs. 5–6 below). Outside this range εr1 becomes negative, while plasma permeability
remains positive, thus the wave ceases to propagate according to Eq. (12). Namely, even the incident
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wave becomes evanescent. According to Liouville’s theorem, the “positive” and “negative” terms as
Eq. (45) can be equal only within the common analyticity strip −α+ = τ− ≤ Im(λ) ≤ α− = τ+

illustrated in Fig. 2. Hence P̃ (λ) must be an entire function within that strip equal to a constant or
having a polynomial behavior. This is in turn defined by the edge condition along z = 0. An asymptotic
approximation of the involved functions (limf(z) for (z → 0)) indicates that j̃i

+(λ) varies as λ−1 and
G−(λ), G+(λ) ∝ λ

1
2 . Recall that field components Hy, Ex parallel to the edge at z = 0 tend to zero as

∝ z+ 1
2 as z → 0, while those normal to the metallic edge (Ex, Ez) tend to infinity as ∝ z− 1

2 . Thus, the
terms S̃+(λ) and S̃−(λ) are proportional to λ−1 and λ− 1

2 as z → 0. Overall, all terms in Eq. (45) tend
to zero as |λ| ⇒ ∞ corresponding to the edge condition z → 0. This means that the entire function
P̃ (λ) is identically zero, leading to the solution in the transformed domain:

R̃+ (λ) = −j̃i
+ (λ)G+ (λ) G− (λ =

√
εr1 ) (46a)

and

L̃− (λ) =
S̃− (λ)
G− (λ)

= j̃i
+ (λ)

[
1 − G−

(
λ =

√
εr1

)
G− (λ)

]
(46b)

The spectral functions R̃+(λ) and L̃−(λ) can be substituted back to the field expressions to yield their
spectral representation. However, the major difficulty is then encountered within the inverse Fourier
transform, necessary to extract the true field in the spatial domain. This task is elaborated in the next
section. Besides the field components, it is interesting to estimate the total current density Jsz(z < 0)
induced on the truncated conductor, (x = α, z < 0). This is readily given in Eq. (23) of our previous
work [9], which can be reformulated in the spectral domain as:

j̃t
− (λ) = Q (λ) R̃+ (λ) + j̃i

− (λ) (47)

The second term in the right-hand side is the “negative” spectral function representing the Fourier
transform of the current induced on the truncated conductor by the incident field, which is given in
Eq. (24) of [9] as:

j̃i
− (λ) = j

1
2π

(
λ +

√
εr1

) · exp (k0εr2α/
√

εr1 ) (48)

It is now obvious that the term Q(λ)R̃+(λ) represents the induced current density due to the scattered
field, (i.e., j̃s−(λ)). The kernel Q(λ) is already factorized as Q(λ) = 1

G(λ) = 1
G+(λ)G−(λ) . Thus,

substituting R̃+(λ) from Eq. (46a) yields the induced spectral total current density:

j̃t
− (λ) = −j̃i

+ (λ)

[
1 − G−

(
λ =

√
εr1

)
G− (λ)

]
+ j̃i

− (λ) (49)

Notably Eq. (49) resembles L̃−(λ) in Eq. (46b), but with a major difference that Eq. (46b) involves
only the fictitious current j̃i

+(λ) assumed at the plasma-air interface.
For the evaluation of the magnetic field within the plasma region, (−α ≤ x ≤ α), the Wiener-Hopf

solution is substituted back in Eq. (5a) through the coefficients of Eqs. (9)–(10) following the inverse
Fourier transform of Eq. (2). There are two important observations within this procedure. First, the
coefficients Bp(λ) and Cp(λ) include the product u0Ap(λ) = R+(λ), thus the branch-cut Im(u0) = 0
disappears, or there is not any contribution from the space wave (continuous spectrum) as expected.
The second point refers to the assumed fictitious TEM wave propagation, unattenuated beyond the edge
z = 0 toward z > 0. Thus, its field must be subtracted from the total field by its corresponding pole
contribution at λ =

√
εr1 as noted in Eq. (13). This means that the assumed fictitious current J+(z > 0)

at the plasma-air interface generates a virtual wave equal to the residue of Eq. (5a) at λ =
√

εr1. The
total induced current at the truncated conductor J t

sz(z < 0, x = α) is evaluated from the inverse Fourier
transform of Eq. (49) by integrating along C− of Fig. 2 closed in the upper λ-half plane. For radiation
purposes, it should be ensured that J t

sz should be identically at the plasma-air interface x = α, z > 0.
Indeed, functions G−(λ) and j̃i−(λ) are analytical in the lower λ-half plane when for z > 0 the contour
C+ (Fig. 2) is followed. However, Eq. (49) involves also the fictitious spectral current j̃i

+(λ) which has
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Figure 3. Poles and the integration path for the inversion of open geometry for z > 0. Positive-negative
forward-backward modes are indicated.

a pole at λ =
√

εr1 according to Eq. (14), thus in the lower λ-half plane. This means that the inversion
of Eq. (49) will indeed yield the assumed fictitious current at x = α, z > 0 as expected.

The path of integration along with the involved singularities for each one of the above cases is
illustrated in Fig. 3. These singularities include the branch-cuts (for the air region fields), the TEM
wave pole at λ = −√

εr1 for the parallel plane region, the fictitious pole at λ = +
√

εr1, the forward
surface and leaky wave poles at λ = anfs and λ = anfl, as well as the backward surface and leaky wave
poles at λ = anbs and λ = anbl.

Regarding the TEM wave reflection coefficient ΓTEM is estimated from the residue contribution
of the scattered magnetic field Hs

y of Eq. (5a) in the parallel plane region, (−α ≤ x ≤ α, z < 0) at
λ = −√

εr1. This is depicted below according to [9] as:

Hr
y = ΓTEM exp

(
−k0εr2x√

εr1
+ jk0

√
εr1z

)
and Er

x = − ζ0√
εr1

· Hr
y (50a)

with

ΓTEM =

Hy(ref )

∣∣∣∣∣ λ = −√
εr1, z = 0, x = α

HTEM
y(inc)

∣∣∣∣∣ z = 0, x = α

=

2πjRes
(
Hy(ref ) (λ

)
,−√

εr1

) ∣∣∣∣∣ z = 0, x = α

HTEM
y(inc)

∣∣∣∣∣ z = 0, x = α

= −G+

(
λ = −√

εr1

)
G−

(
λ =

√
εr1

)
8εr1

·
[
−2εr2

√
εr1 + εr1

√
εr1 − εreff coth

(
k0

√
εr1 − εreff α

)
+εr1

√
εr1 − εreff tanh

(
k0

√
εr1 − εreff α

) ]
(50b)

The far field especially in the case of unidirectional modes is elaborated in the next section.

3.4. Field Expressions in the Spatial Domain

The field expressions in the spectral domain can be readily obtained by substituting the Wiener-Hopf
solutions R̃+(λ) and L̃−(λ) back to Eqs. (5)–(10) for the plasma and air regions. However, the useful
quantities are the true field components and the induced current in the spatial domain. For this purpose,
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the inverse Fourier transform of Eq. (2) must be employed remembering that in order for the field to
vanish at infinity, (z → ±∞), the integration path must be closed in the lower λ-half plane to recover
the function for z > 0 domain, i.e., following C+ in Fig. 2. Likewise, for the negative z < 0 domain the
integration must be closed in the upper λ-half domain along C− in Fig. 2. Starting from the magnetic
field in the air region, (x ≥ α), Eqs. (2) and (7a) yield: The scattered field is determined by solving the
inverse Fourier transform integral of Eqs. (2a)–(b). Using Eqs. (5a), (6), (7a), (9), (10), (11), and (46a),
the solution referred to modal poles of the field problem results:

• air region, (x ≥ α):

Hs
y = −

∫
C±

R̃+ (λ)
u0

e−k0u0(x−α)e−jk0λzdλ, C+ for z ≥ 0, C− for z < 0 (51)

or in an alternative form setting Eq. (46a) to Eq. (51):

Hs
y =−je

k0εr2α√
εr1 G−

(
λ =

√
εr1

)
2π

∫
C±

G+ (λ) e−k0u0(x−α)e−jk0λz

u0

(
λ −√

εr1

) dλ, C+ for z ≥ 0, C− for z < 0 (52)

There is an important observation regarding Eq. (51). The positive function R̃+(λ) is analytic in the
upper λ-half plane where C− is closed for z < 0. Hence, the integral in Eq. (51) does not enclose any
pole singularities for z < 0, and the scattered waves propagating toward z < 0 are solely due to the
branch-cut integral u0 =

√
λ2 − 1 also included in Eq. (51). Namely, the field toward negative z in

air is composed only from the space wave or continuous spectrum, without any surface or leaky wave
contribution. Notably, this observation may not be general, but it may be valid only for the normally
incident TEM wave considered herein. The same conclusion applies for the transverse electric field Es

x
component according to Eq. (8). On the contrary, the axial scattered electric field Es

z seems to exist
only for z > 0 and being identically zero for the whole z < 0 half domain, as Eqs. (8) and (2) results to:

Es
z =

∫
C±

jζ0R̃+ (λ) e−k0u0(x−α)e−jk0λzdλ, C+ for z ≥ 0, C− for z < 0 (53)

Notably, the branch point u0 = 0 and the branch-cut Im(u0) = 0 are absent from the integrand in
Eq. (53). This result is also verified by Noble [17, p. 107], where the radiation from an open-ended
parallel plane waveguide is studied.

• plasma region, (−α ≤ x ≤ α):

Hs
y =

je
Ek0εr2α

√
εr1

4π
G− (λ =

√
εr1 )

{∫
C±

[
λεr2

cosh (k0upα)
+

εr1up

sinh (k0upα)

]

· cosh (k0upx)
(λ2 − εr1)

(
λ −√

εr1

) G+ (λ) e−jk0λzdλ +
∫

C±

[
εr1up

cosh (k0upα)
+

λεr2

sinh (k0upα)

]
sinh (k0upx)

(λ2 − εr1)
(
λ −√

εr1

)G+ (λ) e−jk0λzdλ

}
, C+ for z ≥ 0, C− for z < 0 (54)

Expression (54) results from setting Eqs. (46a), (15), (9), (10) to (5a), giving the magnetic field
expression inside the plasma slab region for −α < x < α, z > 0.

Poles involved in the field expressions of Eqs. (52) and (54) can be either refer to those on the lower
or upper complex half domain represented in Fig. 2, as Eqs. (52), (54) dictate, in order to evaluate field
for z > 0 or z < 0 sub-spaces respectively. Surface wave poles are on the real axis (Fig. 3), and the
integration contour has to be indented in the vicinity of these poles, in order the radiation condition to
be satisfied.
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3.5. Far Field Calculation

Whenever one attempts to estimate the radiation from a structure, it is expected that the radial field
components will vanish. Thus, in general the field components are transformed to a spherical coordinate
system when a three-dimensional structure is examined. But herein the structure under study is a two
dimensional one, and it could be considered as a radiating aperture at −α < x < α, z = 0 extending
to infinity along the ŷ direction. Hence, a transformation from cartesian (x, y, z) to cylindrical (ρ, θ, ŷ)
may be sought as:

x − α = ρ sin θ, z = ρ cos θ; ρ =
√

(x − α)2 + z2, θ = tan−1 [(x − α) /z] (55a)

With this transformation a vector �A = x̂Ax + ŷAy + ẑAz = ρ̂Aρ + θ̂Aθ + ŷAy, and the relations read:

Aρ = Az cos θ + Ax sin θ, Aθ = −Az sin θ + Ax cos θ, Ay = Ay (55b)

As depicted in Eqs. (7) and (8), the scattered field in the air regions exhibits the components,
(Hs

y , Es
x, Es

z), which after the transformation in Eq. (53) will turn to Hs
y , Es

ρ, E
s
θ . Thus, the magnetic field

is retained as an Hs
y while the radial electric field Es

ρ is expected to vanish in the far field approximation,
(Es

ρ → 0 when ρ → ∞). Thus, a far field of Hs
y(ρ, θ) and Eθ(ρ, θ) is sought through the transformation

in Eq. (55b) and ρ �. Since a plane wave is expected in the far field, we may restrict the calculations
to Hs

y(ρ, θ), and the electric field can be estimated through the characteristic impedance as Es
θ = ζ0H

s
y .

As a first step, the transformation in Eq. (55a) is utilized in Eq. (51) to yield:

Hs
y =

∫
C±

R̃+ (λ)
u0

e−k0u0ρ sin θe−jk0λρ cos θdλ, C+ for z ≥ 0, C− for z < 0 (56)

Asymptotic evaluation of integrals as the above of Eq. (56) is well established through the steepest
descent approximation, e.g., Felsen & Marcuvitz [19, Ch. 3] is employed in order to remove the branch-
cut, from the normalized wavenumber λ = βz

k0
− j αz

k0
to a complex domain ϕ = ϕr + jϕi as:

λ = cos ϕ, u0 =
√

λ2 − 1 = j
√

1 − λ2 = j sin ϕ and dλ = − sin ϕdϕ (57)

Following Eq. (57), the original integration path C is transformed to the steepest descent path
SDP, which is different for each observation angle θ. As usual the SDP crosses the original path across
ϕr axis at the saddle point ϕr = θ. Since θ is defined from θ = 0 to θ = π, two corresponding SDP paths
are depicted as LSDP and USDP, which are illustrated in Fig. 13. The SDP and the original path are
connected at the infinity, and the singularities enclosed-captured are the same enclosed in the original
path C± of Fig. 2. Thus, as angle θ scans from 0 to π all pole singularities included between LSDP and
USDP contribute to the radiation at some angle θ. The contribution of these poles to the integral is
accounted through their residues. The contribution along SDP is approximated by the standard saddle
point approximation [17], to yield the space wave or continuous wave spectrum contribution, which for
Eq. (56) reads:

Hy =

√
k0

2πρ
e

k0εr2α√
εr1

1(
cos θ −√

εr1

)G+ (cos θ)G− (λ =
√

εr1 ) e−jk0ρ+j π
4 (58)

or similarly

Hy = k0

√
α

πρ
e

k0εr2α√
εr1 G1+ (cos θ)G2+ (cos θ)G− (λ =

√
εr1 ) e−jk0ρ+j π

4 (59)

The above complex modes contribute to the field as it is stated by Felsen for e+jωt

dependence [19, Ch. 5], since they are positioned (Fig. 12), in the #4 quadrant, (Re(λ) = βz/k0 > 0 and
Im(λ) = −αz/k0 < 0). A careful examination of Table 3 and Figs. 12–13, as well as the characteristic
equation Q(λ) = 0, reveals that for k02α = 0.3 and Ω = 0.15, the first surface wave mode is always
excited, but it is “captured” by the SDP at the observation angle, (saddle point) θ = θ1s = 12◦.
Likewise, the higher order surface modes are captured at: θ = θns = 63◦. In a similar manner, the first
leaky mode (βz/k0 < 1) is captured at: θ = θ1l = 0.2◦.
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4. NUMERICAL RESULTS

4.1. Excited Modes

The analytical study presented in the previous sections can be exploited in a plethora of magnetized
solid state plasma substrates. A general approach adopted by Seshadri et al. [10] considers an arbitrary
normalized substrate thickness (k02α), but herein we focus on electrically thin structures. For this
problem to be meaningful the existence-propagation of the incident TEM wave in the parallel plane
waveguide must be ensured. From Eq. (12) its propagation in the z-direction requires εr1 to be positive,
since its magnetic permeability is also positive (μ = μ0). Furthermore, the properties of the waves
excited in the grounded substrate regions (z > 0) are affected by the plasma effective dielectric constant
εreff as denoted by Eq. (5b), which will in turn identify the surface and leaky modes. Hence, the
elements of the permittivity tensor εr1, εr2, εr3, and εreff given in Eq. (3) versus the normalized frequency
Ω = ω/ωp are illustrated in Figs. 5–6, which tend to infinity at Ω = R or zero.

An insight into the scattering phenomena occurring when the extra-ordinary TEM wave is incident
at the aperture (at z = 0) defined by the upper conductor (x = α, z ≤ 0) is illustrated in Fig. 4. From
a qualitative point of view, rays are emanating from the aperture toward all possible directions both
towards the positive z > 0 area as well as toward the parallel plane area z < 0. The latter constitute
waves guided in a parallel plane waveguide, from which only the TEM wave exhibits constructive
interference (propagation) due to the small thickness of the plasma layer, while all higher order modes

Table 3. Characteristics of modes regarding normalized propagation constant and its transform to
complex angle domain.

k02α = 0.3, R = 0.5 λ = βz/k0 − jαz/k0 ϕ = ϕr + jϕi

βz/k0 αz/k0 ϕr (degrees) ϕi (degrees)

Proper Surface Modes
1.026 0 0 −13.04
2.4699 0 0 −85.14

−1.00405 0 180 5.15

Improper Modes
Leaky 0.902 11.97 85.71 182.21

Improper Complex 1.107 21.743 87.086 216.249
1.156 31.956 87.929 238.259

Figure 4. Qualitative insight into the scattered waves at the aperture (z = 0) defined by the truncated
conductor (at z ≤ 0, x = α): sky or space waves, leaky waves and surface waves.
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(a) (b) (c) (d)

Figure 5. Plasma tensor entries (a) εr1, (b) εr2, (c) εR3 and (d) εreff as a function of the normalized
frequency Ω for R = 0.5 < Ω1 (R < 1). Dashed blue lines denote H0ŷ, (R = −0.5), bias, whereas
continuous blue lines −H0ŷ bias, (R = 0.5) [10, p. 531].

(a) (b) (c) (d)

Figure 6. Plasma tensor entries (a) εr1, (b) εr2, (c) εr3 and (d) εreff as a function of the normalized
frequency Ω for R = 1.2 > Ω1 (R > 1). Dashed blue lines denote +H0ŷ bias, (R = −1.2), whereas
continuous blue lines −H0ŷ bias, (R = 1.2) [10, p. 531].

are evanescent. Regarding the rays toward positive z, emanating at angles θ < θcrit these are diffracted
at the plasma air interface, and their main energy part propagates away towards the air region as
space or sky wave. Their propagation within the plasma layer is affected by its characteristics, but
in the air region they propagate at free space-air wavenumber k0. Notably, their axial propagation
constant βz = k0 sin θS takes continuously all values 0 ≤ βz ≤ k0, thus their contribution must be
accounted for via integration (branch-cut integral). Most of the corresponding reflected waves undergo
destructive interference, since they do not fulfill the guided wave conditions defined by the grounded
plasma layer characteristic equation Q(λ) = 0 as in Equation (16). However, some specific rays (possibly
only one) reflected at θ < θcrit with βz < k0 may fulfill Eq. (16) exhibiting constructive interference
or mode guidance withing the plasma layer, and these constitute the leaky waves. These undergo
multiple diffractions at the plasma air interface, and at each one a significant amount of their energy
leaks away toward the air region (x > α) at an angle θL (Fig. 4). Their important difference from
the sky wave radiation is that their axial propagation constant is complex, and it is identical within
the plasma and the air region, as a result of the phase-matching condition at x = α interface. Hence,
the nature of leaky waves and their capability to leak radiate energy is governed by their effective
dielectric constant defined as εLW

reff = (βz/k0)2 = Re(λ)2 = λ2
r, also βLW

z = kplasma cos θLW. When
εLW
reff becomes negative, these waves cannot propagate, nor they can radiate energy. Rays emanating

at angles greater than the critical (θS ≥ θcrit), they undergo “total” reflection at the interface x = α
(explicitly, their amplitude is exponentially decreased in the air region, evanescent), and most of them
exhibit destructive interference in the plasma region. These may be interpreted as high order evanescent
waves of the grounded plasma slab. But again, some of them fulfill the characteristic Equation (16)
becoming propagating surface waves. Their axial propagation (βSW

z = kplasma cos θSW) is greater than
free space wave number (βSW

z ≥ k0) and is identical in the air and plasma regions due to phase matching
at the interface x = α. In the ordinary dielectric substrate case, their transverse phase constant is
zero (βSW

x = Im(u0) = 0), and they are exponentially vanishing away from x = α as e−k0u0x (where
u0 = u0r > 0 and real). However, in the grounded plasma case u0 becomes complex, thus yielding
to propagation or energy leakage away from x = α toward the air region. But, in order for them
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Table 4. Summary of properties in different frequency ranges for R < 1 [10, 12].

Ω εr1 εr2 εreff Lowest Order Surface Wave
0 < Ω < R + − − Lower Conductor

R < Ω < Ω1 − + − Evanescent
Ω1 < Ω < Ω2 − + + Evanescent
Ω2 < Ω < Ω3 + + − Upper Conductor
Ω3 < Ω < ∞ + + + Upper Conductor

Table 5. Summary of properties in different frequency ranges for R > 1 [10, 12].

Ω εr1 εr2 εreff Lowest Order Surface Wave
0 < Ω < Ω1 + − − Lower Conductor
Ω1 < Ω < R + − + Lower Conductor
R < Ω < Ω2 − + + Evanescent
Ω2 < Ω < Ω3 + + − Upper Conductor
Ω3 < Ω < ∞ + + + Upper Conductor

to propagate their effective dielectric constant must be positive εSW
reff = (βSW

z /k0)2 = λ2
r > 0, (where

λr = Re(λ)). Overall, in the plasma case herein we expected radiation from sky wave, leaky waves,
but also from complex surface waves. Evidence for these characteristics is also provided by Seshadri et
al. [10] as well as Felsen [19, p. 869]. Explicitly, Seshadri [10] points out that space wave can provide
radiation on every εreff = εrq/εr1 range defined in Eq. (3). It is also stated by Felsen [19, p. 869] that
“real energy may be extracted by the surface waves”, even in the cases of an outer anisotropic region.
In the present case, complex surface modes provide radiation, especially in low frequency zones, as they
radiate “practically unattenuated” (as stated by Seshadri [10]), in the air region, depended on their
residue strength. This happens, since their purely “real” propagation constant λ tends to unity [10].
Leaky modes’, (βLW

z /k0 < 1), radiation mechanism depends only on their position on steepest descent,
(SDP), plane [24, Part II, Appendix of Ch. 21].

The defined frequency regions for the two cases when R > 1 or R < 1 are depicted in Tables 4
and 5, respectively. Of particular importance is the range Ω → 0 where unidirectional waves are
observed [10, 11]. Observing Figs. 5–6, it is obvious that there are frequency bands where the entries of
the permittivity tensor, and εreff become negative as:

0 < εreff < 1 for Ω1 < Ω < 1 and Ω3 < Ω < +∞ (60a)
1 < εreff < +∞ for 1 < Ω < Ω2 (60b)
−∞ < εreff < 1 for < Ω < Ω1 and Ω2 < Ω < Ω3 (60c)

where

Ω1 =
−R +

√
R2 + 4

2
, Ω2 =

√
R2 + 1, Ω3 =

R +
√

R2 + 4
2

(60d)

Older works on magnetized plasma, e.g., [10, 12] examined only the effects of surface waves; however
nowadays it is necessary to investigate leaky waves as well. Since the magnetized plasma tensor is
complicated, it is a good idea to utilize the case of ordinary dielectric substrate as a guide to identify
the condition for a leaky wave to exist. It is well understood, in dielectrics, that surface waves become
leaky for frequencies below their cut-off, (turn-on). The first surface wave has zero cut-off, thus for a
leaky wave to exist the substrate must support at least the second (or any higher) surface wave. The
condition for the excitation of the second surface wave is, e.g., Pozar [25, p. 144]:

k02α ·√εreff − 1 ≥ π ⇒ k02α ·√εreff − 1 ≥ π (61)
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The supported waves are classified by Seshadri and Pickard [10], into four cases. These are also
elaborated in our previous works [13], using the present symbolism and discriminating the leaky wave
regimes. They are further identified as “Type-1” and “Type-2”, and a summary of their characterization
is depicted in Table 6 based on λ. Notably, all cases are solutions of the characteristic Equation (16),
Q(λ) = 0 for different parameters (Table 6).

Table 6. Classification of modes, supported by a grounded magnetized plasma slab [10, 13].

Case u0 up Characterization
1 λ2 ≤ 1, λ2 ≤ εreff j|u0| j|up| Improper Complex (βz/k0 > 1) or Leaky (βz/k0 < 1)
2 λ2 ≤ 1, λ2 ≥ εreff j|u0| |up| Improper Complex (βz/k0 > 1) or Leaky (βz/k0 < 1)
3 λ2 ≥ 1, λ2 ≤ εreff |u0| j|up| Proper Surface (βz/k0 > 1)
4 λ2 ≥ 1, λ2 ≥ εreff |u0| |up| Proper Surface (βz/k0 > 1)

As noted in [10] and further in [13], there are no real roots (poles) in cases-1 and -2. These complex
roots represent “improper modes”, which under certain condition may yield useful “leaky waves”. On
the contrary, cases-3 and -4 with |λ| = |βz/k0| ≥ 1 support two types of surface waves. Type-1 surface
waves exist in the range 1 < Ω <

√
1 + R2 exhibiting a cut-off (turn-on) frequency at Ω > 1, while they

are always forward (by means of up · ug > 0). Obviously, λ2
r > 0 (Fig. 7) in all the examining frequency

range. The same observation occurs later for leaky waves, also. So, term εr1 is needed to be positive
(in order incident TEM wave to propagate), for the modes to be excited. Thus, they propagate inside
the structure. When examining their dispersion curves these are expected to become leaky waves at
frequencies below their turn-on. Type-2 surface waves that exist in the range 0 < Ω <

√
1 + R2 do

not have a low frequency cut-off and may present sub-ranges with “backward” behavior (by means of
up · ug < 0). For ordinary dielectric substrates εreff > 1 their zero cut-off would prohibit them from
transforming to leaky waves. However, for the magnetized plasma the negative permittivity entries
and the possibility of εreff < 1 generates leaky and improper surface waves sub-zones. Certain Type-2
surface waves present a unidirectional behavior propagating towards positive ẑ and concentrated along
the plasma-air interface (x = α) or propagating towards negative ẑ direction and concentrated along the
bottom grounded metallic screen (x = −α) [10]. This is justified by Eq. (12) which yields a dependence:

Unidirectional forward surface wave : Hy ∝ e
k0εr2(x−α)√

εr1 · e−jk0
√

εr1·z (62a)

for 0 < Ω <
√

1 + R2 it is εr2 < 0 and εr1 > 0 but as Ω → 0, εr2 → −∞ restricting the field around
x = α interface.

On the contrary, waves in the plasma region propagating towards negative z behave as Eq. (62b),
thus concentrating around x = −α at very low frequencies Ω → 0.

Unidirectional reverse surface wave : Hy ∝ e
−k0εr2(x+α)√

εr1 · e+jk0
√

εr1·z (62b)

The dispersion curves of the two types of surface waves (Type-1, Type-2) are illustrated in Fig. 7(a) for
an electrically thin substrate in the range of k02α = 0.1 to 1 versus normalized frequency Ω, while the
gyromagnetic frequency is varied in Figs. 7(b), (c).

For the classical proper surface waves (Fig. 7), where λ = βz/k0 > 1, the transverse propagation
constant u0 =

√
λ2 − 1 = u0r is purely real and plotted in Fig. 8(a) as a function of frequency for

the indicative substrate thickness k02α = 0.1. Next in Fig. 8(b), the phase constant λ = λR = βz/k0

for surface modes is examined versus the normalized frequency Ω, in order to reveal the ranges where
forward or backward propagation occurs.

As explained in the literature [24, Part II], modes with purely real wavenumbers are named surface
modes, either proper, or improper. However, for plasma loaded structures most of the discrete modal
spectrum consists of complex waves [23, 24, 26, 27]. Recalling the well-known properties of “pole
contributions [19, Ch. 5], only modes positioned on #2, or #4 quadrants (Fig. 11) contribute to the
field. Special attention should be given on complex poles of #4 quadrant, which consist of pole-solutions
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(a) (b) (c)

Figure 7. (a) Dispersion curves for (a) Type-1 and Type-2 surface waves for R = 0.5 in the range of
k02α = 0.1 to 1, (b) Type-2 surface waves in the range of R = 0.5 to 1.2. (c) Type-1 surface waves in
the range of R = 0.5–1.2.

(a) (b)

Figure 8. (a) Transverse wavenumber of the surface waves for k02α = 0.1. Continuous curves denote
Type-2, whereas dashed curves Type-1 modes. (b) Surface modes’ dispersion curves of βz/k0 versus
normalized frequency Ω for a substrate thickness value k02α = 0.1 and R = 0.5.

(a) (b)

Figure 9. Dispersion curves of complex E modes of (a) phase and (b) attenuation constant vs frequency
for k02α = 1 and R = 0.5 for complex modes in the range Ω = 0 to 1.118. In the above figs. Ω1 = 0.78,
Ω2 = 1.118 and Ω3 = 1.28.

of G2+(λ). Searching for these complex modes, we try to classify them according to criteria imposed
by the literature [22, 24, 26, 27]. Complex modes can be distinguished from their Re(u0r) as proper
(Re(u0r) > 0) or improper (Re(u0r) < 0). Each of them can be distinguished further, as fast (βz/k0 < 1)
or slow (βz/k0 > 1) waves [22, 24]. The axial propagation constant (βz/k0) versus frequency for the
first complex modes is shown in Fig. 9 for a thick substrate k02α = 1 and R = 0.5. It is observed that
all of them exhibit possibly leaky wave bands (λr < 1), as well as surface wave zones (λr > 1). The
next question is how these modes behave for different substrate thickness k02α = 0.1 to 1.2, and this
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(a) (b)

Figure 10. Dispersion curve (R = 0.5) of the first complex mode for various values of thickness k02α:
(a) phase constant, (b) attenuation constant. Horizontal dashed lines indicate βz/k0 = ±1. In the
above figs. Ω1 = 0.78, Ω2 = 1.118 and Ω3 = 1.28.

is illustrated in Fig. 10 for the first leaky mode. In Fig. 10(a), the phase constant βz/k0 is examined
versus the substrate thickness k02α in order to reveal the thickness at which higher order improper
surface and leaky waves are excited.

In order to classify these modes, their transverse propagation constant u0 in the air region must
be examined as in Fig. 10. Recall that the assumed dependence is ∝ e−k0u0x = e−k0u0rxe−jk0u0ix for
u0 = u0r + ju0i. First, the radiation condition at infinity is fulfilled for u0r > 0 which according to
Fig. 10(a) is true for Ω > 0.9 for k02α = 0.6, whereas for larger values of substrate thickness remains
negative. Since the phase constant is positive (u0i > 0 propagation toward +x̂), as shown in Fig. 10(b),
these are unexpected waves propagating both toward positive ẑ and x̂ or along the substrate and away
from the structure. This is a unique feature of magnetized plasma and is due to positive but less than
unity 0 ≤ εreff ≤ 1 in the same band Ω1 < Ω < 1. As μr = 1 in this band, the index of refraction
(neff < 1) is less than unity, and thus the excited waves are not bound to the plasma substrate, but
instead they propagate (leak) away (toward +x̂). This refractive phenomenon is expected to maximize
“leakage” when the refractive index becomes unity (neff = 1, εreff = 1), as the substrate becomes
transparent. Surface waves are expected to have a zero phase constant u0i = 0 in the lossless case or to
propagate inwards (toward −x̂), as u0i < 0 for x > 0 to feed plasma losses in the lossy case, e.g., Tamir
& Oliner [4–6]. Thus Fig. 10 does not include any ordinary proper surface waves. On the other hand,
leaky waves are expected to violate the radiation condition or u0r < 0, but for ordinary substrates,
(εreff > 1) the normalized phase constant in the axial direction should be less than unity or to behave
as fast waves (up > c0). Examining Figs. 10–11, it is observed that most of the range 0 < Ω < Ω1

supports leaky waves but for substrate thickness k02α > 1.2. For thinner substrates, there is a sub-
band of slow waves (βz/k0 > 1), but these are propagating toward the positive transverse direction

(a) (b)

Figure 11. Depiction of transverse propagation constant u0 of the first complex mode when
k02α = 0.1, 0.2, 0.3, 0.6, 1 and 1.2: (α)u0r , (b) u0i, versus normalized frequency Ω.
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as u0i > 0. Observing the results of Figs. 10–11 in the range Ω ≤ 0.9 and Ω > Ω2 = 1.118 complex
modes remain always improper, whereas in the range 0.9 ≤ Ω ≤ Ω2 these modes are transformed into
proper complex. The presence of these modes, especially in magnetized plasma slabs has been noticed
in [24, Part II, p. 180–181], and several discussions of their physical meaning have been presented by
Oliner and Tamir in [6]. However, according to Figs. 10–11 they appear in frequency bands where εr1

becomes negative (εr1 < 0), and they are excluded from the present research.

4.2. Field Expressions in the Spatial Domain

In the preceding sections, the field expressions are established in the spectral domain. In order to get
usable results, these must be transformed to the spatial domain through the inverse Fourier transform
of Eq. (2b). Since this inversion scheme involves a branch cut and different type pole singularities, these
must be depicted in the complex z-plane in order to carry out the necessary integration. As explained
before, the analysis will be restricted in the frequency range where εr1 is positive (εr1 > 0) to ensure
wave propagation in the exciting parallel plane waveguide, according to Eq. (12). Hence the range
R < Ω < Ω2 is excluded (Tables 4, 5) where surface waves become evanescent, and their contribution
to radiation is negligible. One must also keep in mind that reversing the direction of the biasing static
magnetic field from +ŷ to −ŷ causes ωc and R to change sign (Eq. (3b)), and this reflects to a sign change
in εr2 according to Eq. (39) which is depicted in Fig. 5. Besides that, Seshadri [10] and Johansen [12]
emphasize that the sign of εreff defines the behavior of surface waves. For lower frequencies surface
modes and space wave govern total radiation [5], whereas for higher frequencies leaky wave contribution
or space wave radiation is expected to dominate [28].

In view of the above task, the singularities for three indicative frequencies Ω = 0.01, 0.15, and
1.24 are depicted in the complex λ = 0 plane (Fig. 12) for plasma with R = ωc

ωp
= 0.5 (bias −H0ŷ),

which according to Eq. (60d) corresponds to Ω1 = 0.781, Ω2 = 1.118 and Ω3 = 1.28. A relatively thin
substrate is considered k02α = 0.3 or 2α = 0.0477λ0. Observing Fig. 10(a), for both cases k02α = 0.3
there is a low frequency leaky wave range |βz/k0| < 1 as well as a high frequency one between Ω1 and
Ω3 (Ω1 < Ω < Ω3). However, a closer look at their axial attenuation (αz/k0) constant Fig. 10(b) reveals
that it is only beyond k02α ≥ 0.3 that this attenuation αz/k0 becomes viable. Explicitly, Fig. 10(b)
illustrates a cut-off phenomenon namely that the first leaky wave is turned on for k02α ≥ 0.3. This is
expected from regular dielectric substrates’ experience, since at thicker substrates high order surface
waves occur, which become leaky below their cut-off frequency. However, when a leaky mode does
not exist its axial phase constant (βz/k0) should vanish, or the propagation constant tends to become
purely real. The strange behavior here at the very low frequencies (βz/k0) still exists for k02α < 0.3 as

(a) (b)

Figure 12. Integration contours in the complex λ-plane. Propagation constants are depicted for
electrical thickness k02α = 0.3 when (a) R = 0.5 and (b) R = 1.2.
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(a) (b)

Figure 13. Pole locations on the steepest descent angle plane when R = 0.5 for electrical length
k02α = 0.3 when (a) R = 0.5 and (b) R = 1.2. Extreme upper and lower steepest descent paths are
indicated with dashed cyan lines, whereas original integration path with solid cyan line.

shown in Fig. 10(a). This unexpected behavior seems to be caused by the negative values of εr2, εr3 and
εreff in this frequency range (Figs. 5–6), but the explicit analysis goes beyond the scope of this article.
A second case is also considered for k02α = 0.3 for R = 1.2 in order to examine the frequency range
Ω1 < Ω < R for R > 1. The integration contour depicted in Fig. 11 can be directly exploited for the
calculation of the scattered (Equations (51)–(54)) near and far fields in the z > 0 region, while for the
reflection coefficient and the field in the z < 0 region the contour must be closed in the upper λ-half
plane as in Fig. 2. As noted, the pole contribution including the reflected TEM wave will be estimated
from their residue contribution. For the near field, a numerical integration along the λR = Re(λ) axis
must be carried out, usually employing a Romberg quadrature scheme, but excluding poles which are
encountered through their Cauchy principal value (half residue). The incident TEM wave is denoted as
a dot marker plus a triangle marker on it, in Figs. 12–13.

The steepest descent approximation is employed for the far field calculation. For this purpose the
usual sin() or cos() transformation from the complex λ = λr + jλi plane to ϕ = ϕr + jϕi is performed
wherein the branch-cut is removed as [19]: λ = λr + jλi = cos ϕ = cos ϕr cosh ϕi − j sin ϕr sinhϕi. The
original integration path (P ) along with the pole singularities of Fig. 12 cases is illustrated in Fig. 13.
For the far field approximation, the integration path-P is deformed to its steepest descent counterpart,
(SDP) which intersects the real axis at the saddle point ϕr = θ, which is the observation angle. The
SDP contour is closed by connecting it to the original path-P at infinity. From the radiation condition,
the section at infinity has zero contribution, and the integration along P is equal to the integration
along SDP plus the residue contributions from the poles enclosed between P and SDP (shaded area in
Fig. 12). Notably, when a pole is close to either SDP or P but outside the shaded region, this must
be “avoided” by drawing a small semicircle, but this still has a significant contribution to the integral
equal to its Cauchy principal value (half residue). This contribution is accounted in [24, Part II], as
well as by Ostner et al. [22]. What is of particular interest is to encounter the pole singularities that
contribute to the integral when a radiation pattern is sought. For this purpose, the SDP paths for the
two end-limiting observation angles θ = 0◦, 180◦ are drawn in Fig. 13 as LSDP and USDP, respectively.
The cross-shaded region between them encounters all poles that will be captured. It is observed that
both surface and leaky wave poles are encircled therein; however, improper complex wave poles (λr > 1)
are outside this region [22].

4.3. Unidirectional Waves

It was as early as 1964 that Seshadri and Pickard [10] justified the existence of a special type
of unidirectional surface waves. Their energy is found to concentrate either on the plasma-air or
plasma-metal interfaces while they propagate toward the positive and negative −ẑ directions (Fig. 1),
respectively. Notably, these waves occur for low frequency (Ω ∼ 0) as the frequency increases or
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with increased plasma thickness (k0α ↑), and unidirectional complex waves could be excited as well.
A similar situation has already been examined in a recent work of Gangaraj and Monticone [29],
who indeed encountered unidirectional leaky waves. Herein, both surface and complex unidirectional
waves are observed and must be accounted in the near or far field evaluation. Unidirectional modes
propagating toward +ẑ have their energy concentrated in the air-plasma interface (upper surface),
and they radiate significantly. On the opposite, unidirectional modes that propagate in the negative
−ẑ direction along the grounded surface are extremely rapidly attenuated inside the plasma, thus not
affecting total radiated field [10].

4.3.1. Unidirectional Surface Waves

The reasoning for the grounded magnetized plasma to support unidirectional surface waves is already
explained and justified in Section 4.1. The forward propagating unidirectional mode for Ω = 0.01 and
R = 0.5 thickness k02α = 0.1 and normalized axial propagation constant λ = 1.00013 is shown in
the upper side (plasma air), interface in Fig. 13 with solid line blue curve. Changing the direction of
the DC biasing magnetic field H0 causes reversion of the gyromagnetic frequency, (ωc). Unidirectional
modes comprise poles of function G2+(λ). From insight in Fig. 3 and the works of [9, 10], only positive
forward (poles λpfs of Fig. 3 with velocities up · ug > 0) and negative backward waves (poles λnbs of
Fig. 3 with velocities up ·ug < 0) contribute to the field. Thus, positive unidirectional modes propagate
in the range Ω → 0 (λ = 1.00013,Ω = 0.01), whereas unidirectional backward modes appear in the
range 1 < Ω < Ω2 (λ = −3.4,Ω = 1.052) (Fig. 7). As illustrated in Fig. 14, this reverse propagating
modal energy is concentrated on the ground plane on the plasma surface x = −α. In both cases, the
energy concentration is denoted by the integral of Poynting Vector �P = −1

2Re(ExH∗
y ) · ẑ representing

the propagating power density through the transverse cross-section [10]. These modes are also depicted
by arrows on the dispersion curves of Figs. 7, 10, and 11.

(a) (b)

Figure 14. (a) Normalized, (to its maximum), power concentration over the transverse x-axis as a
function of α, either on bottom, (dashed lines), or upper, (solid lines), surface for the proper surface,
(blue curve), and leaky, (green curve), unidirectional modes. (b) Leaky mode radiation pattern is also
presented in air region.

4.3.2. Unidirectional Complex Waves

As stated in [10], the unidirectional surface waves “become unidirectional leaky when the plasma
thickness becomes finite”. Notably, as explained in Section 4.1 only high order surface waves below
their cut-off (turn-on) condition may become leaky with normalized axial propagation constant λ < 1.
An example of unidirectional leaky waves for Ω = 1.1195 is marked in the blue curve of Figs. 10–11, and
its power density is illustrated in Fig. 13 with green line curve. The normalized propagation constant for
the forward propagation (restricted around x = +α) is λ = 0.021− j0.519. Reverse propagating modes
are those in #3 quadrant (Fig. 12) [10]. Obviously from Fig. 9, they propagate in the range 1 < Ω < Ω2.
Notably, the forward propagating mode (λ = 0.021 − j0.519,Ω = 1.1195) yields energy leakage in the
air region as depicted in Fig. 14; however, the reverse (λ = −0.055 − j0.548,Ω = 1.112) propagating
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mode (dashed green line curve) cannot leak energy since it is bounded by the infinite ground plane. In
the former case, the angle of maximum energy leakage-radiation is given by Jasik [30, Ch. 16, p. 16-7],
as:

θ=cos−1
(
βz/

√
β2

z + β2
ρ

)
=cos−1

(
λr/

√
λ2

r + u2
0i

)
=cos−1

(
0.021/

√
0.0212 + 1.12652

)
= 88.9◦ (63)

The contributions of both surface and leaky waves poles to the near and far field evaluation are accounted
for, through their residues.

4.4. Radiated Field

The far field generated by the structure of Fig. 1 is composed of the space or sky wave resulting from
the integration around the branch cut (Figs. 3 or 12) and the propagating surface and leaky as well as
complex surface waves’ contributions accounted by their residues.

4.4.1. Space Wave Radiated Field

The space wave or the branch cut integral will be elaborated first for validation reasons, since this is also
available by Seshadri & Pickard [10]. The power density of the radiated field is given by the Poynting
vector S(θ) which for the plane wave in the far field is written as (where ρ̂ is the radial unit vector in
the xz-plane of Fig. 1 and θ is identical to ϕ as defined in [10]):

s (θ) =
1
2

Re
{
ρ̂ · �E (ρ, θ) × �H∗ (ρ, θ)

}
=

1
2

Z0 |Hy (ρ, θ)|2 =
1
2

Z0S̄(θ) (64)

The resulting normalized space wave power density S̄(θ) is presented in Fig. 15 versus the angle
θ defined from the ẑ-axis (θ = 0◦ enfire, θ = 90◦ broadside) for the case R = 2.0 and Ω = 1 also
considered in [8]. Although a magnetic line source oriented along the ŷ-axis is considered in [10], the
normalized radiation patterns of Fig. 15 are found to be identical for different substrate thickness.
For the verification presented in Fig. 15, both positive (+) and negative (−) G2 functions are needed,
in order to construct the G2 function of Seshadri [10]. This can be explained by observing that the
structure of Fig. 1 is also equivalent to a magnetic line source along-ŷ with an equivalent magnetic
current density �Meq = −(−ẑ) × x̂Ei

x = ŷEi
x, where Ei

x is the electric field of the incident TEM-wave
from Eq. (12).

In Fig. 16 the radiation pattern of Hy(θ) is plotted for four different values of gyromagnetic
frequency R. Recall that Hy(θ) is defined in Eq. (52) and finally in Eq. (59) as a product of the
even function and non-even function. It is observed from Figs. 16(a)–(b) that the even term remains
independent from changes of gyromagnetic frequency R, and only the non-even term varies. Hy field
receives its peak value at the lowest value of frequency R, e.g., R = 0.5. In Fig. 17 the radiation pattern
Hy(θ) is plotted for four different values of the substrate’s thickness k02α versus the observation angle.
Separate representations are given for the even Kernel function in Fig. 17(a), the non-even Kernel
function in Fig. 17(b), and as a product of the two of them in Fig. 17(c). In the radiation pattern of

Figure 15. Space wave radiated energy flow S̄(θ) with respect to observation angle assuming R = 2
and Ω = 1, compared against Seshadri [10].
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(a) (b) (c)

Figure 16. Space wave radiation pattern of |Hy| field’s space wave as a product of the Kernel functions:
(a) even Kernel function, (b) non-even Kernel function and (c) product of two functions in polar
coordinates for four different values of gyromagnetic frequency at frequency Ω = 1, considering plasma
thickness k02α = 0.1.

(a) (b) (c)

Figure 17. Space wave radiation pattern of |Hy| field’s space wave as a product of the Kernel
functions (a) even Kernel function, (b) non-even Kernel function and (c) product of two functions
in polar coordinates for six different values of plasma slab thickness at frequency Ω = 1, considering
gyromagnetic frequency R = 2.

non-even Kernel, which includes plasma anisotropy in Fig. 17(b), there is always a broad maximum near
the broadside direction, a null in the end-fire direction, and in between, sharply defined peaks whose
number increases with the thickness k02α. Fig. 17 reveals that for small substrate thickness the even
part G1 is almost uniform across θ, and the observed maxima in the radiation are due to the non-even
part G2. As the substrate thickness increases the even part G1 starts to form lobes but presenting a
maximum at end-fire. However, this disappears in the total field, due to the corresponding nulls of G2.

4.4.2. Total Radiated Field — Poles Contribution

Leaky modes, with significant contribution in total radiation, are those with βz > αz [22, 24, 28, 31].
Indeed, they contribute in a two-maxima split beam [31], because of the symmetry of their solutions
(±kpz). However, in the present problem the anisotropic electric permittivity tensor results in a lack
of poles’ symmetry (Fig. 12). As illustrated in Figs. 12–13, surface and leaky wave poles are captured
by the integration path, besides the space wave (branch cut integral). Among the tested thickness of
Figs. 10–11, k02α = 0.3 is chosen, as it is the only one where leaky modes with viable losses appear.
|Hy| component is depicted initially performing saddle point method on the integrand G1+G2+ (blue
curve). Next, residues are evaluated from Eq. (52) (red or green curve in Fig. 18). Finally, total field
is evaluated by adding to the residue contribution the full form of space wave in Eq. (59). Modal
contribution is evaluated through Three frequencies are chosen: #1) Ω = 0.15, R = 0.5 < 1, #2)
Ω = 0.65, R = 1.2 > 1 and #3) Ω = 1.24, R = 0.5 < 1 that cover all the examined range of Tables 4–5.
The radiation pattern in the first case is presented in the Fig. 18(a) where one may observe that this
is dominated by space wave, while in the second case (Fig. 18(b)), surface wave dominates. On the
contrary for the high frequency case at Ω = 1.24, the surface wave disappears; the space wave beam



Progress In Electromagnetics Research B, Vol. 88, 2020 145

(a) (b) (c)

Figure 18. Normalized total radiated far field |Hy| for slab’s electrical length thickness k02α = 0.3
including space wave and the modal contribution: (a) Ω = 0.15, R = 0.5, (b) Ω = 0.65, R = 1.2, (c)
Ω = 1.24, R = 0.5.

becomes stronger; and the first leaky wave with a pole λ = 0.985− j0.486 is captured with a significant
contribution as shown with red curve in Fig. 18(c).

4.4.3. Near Field

In order to get a view in the near field, the integration along the original path depicted in Fig. 13 must
be carried out. Instead of performing a numerical integration along the real axis, the closed path C±
is again considered resulting in branch cut integral and the residue contribution of the enclosed poles.
However, in this case the branch cut integral (space wave) cannot be approximated by the steepest
descent, and it must be performed numerically. Indeed, Mathematica [21] is utilized for this purpose,
and the two cases k02α = 0.3 studied in Fig. 18 are considered again but for a small distance k0ρ = 0.05
and 1.5. So, the G1+G2+ terms of Eq. (56) are evaluated through performing numerical integration.
A third larger distance k0ρ = 1.5 is also considered. These results are illustrated in Fig. 19. In the
low frequency case Ω = 0.65 shown in Fig. 19(a), the total field is similar to the radiated one with
dominance of the surface wave, but the small space wave is now almost isotropic. Likewise, in the high
frequency Ω = 1.24 case Fig. 19(b) the only difference is the isotropic form of the space wave. In the
near field, the intensity is mainly governed by the poles’ contribution. This is in accordance to Tamir
and Oliner [27, Sec. 3], who noticed that the intensity in near field is mainly owed to the presence of
leaky or surface wave poles, not to space wave. Observing the field at a larger distance k0ρ = 0.5 the
space wave starts to become directional as in the far field situation. Finally, at distance k0ρ = 1.5
the produced field exhibits the far field behavior, as it is concluded from a direct comparison between
Figs. 18–19.

Since it is considered necessary both by Fikioris et al. [16] and by Bates and Mittra [44], the field
component Ez should be evaluated both in the far field and in near field, in order for the boundary
value conditions to be verified. Thus, the total radiated far field Ez is plotted in cartesian axes following
Eqs. (8), (37), and (59) as depicted in Fig. 20. The near field axial component Ez is also plotted at

(a) (b) (c)

Figure 19. Near field for electrical length k02α = 0.3 and distance k0ρ = 0.05 to 1.5, including space
wave contribution: (a) Ω = 0.15 and R = 0.5, (b) Ω = 0.65 and R = 1.2, (c) Ω = 1.24 and R = 0.5,
when leaky wave is excited.
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(a) (b) (c)

Figure 20. Total axial electric field Ez: Space wave far field with corresponding near field as inset at
Ω = 0.15: (a) k02α = 1 and R = 0.5, (b) k02α = 0.3 and R = 1.2, (c) k02α = 0.6 and R = 0.5.

the interface x = α and over the truncated upper conductor to ensure the related boundary condition.
Indeed, the real part of near field Ez (inset) is zero for z < 0 (upper plane of parallel plane waveguide at
x = α), and non-zero for z > 0 (air-plasma interface x = α), verifying the boundary conditions for the
tangential electric field components. Also, the far field component Ez vanishes at the endfire (θ = 0◦
or 180◦) direction expressing a similar behavior to the respective electric field component in the similar
structures of [16] or [44]. Thus, the essential boundary conditions are satisfied, acting as a verification
to the methodology elaborated herein.

4.4.4. TEM Wave Reflection Coefficient

We recall at this point that the incident TEM wave yields a scattering field including higher order
modes around the aperture at z = 0. However, at a distance of about a quarter TEM wavelength away
from the edge toward the parallel waveguide region (z < 0 in Fig. 1), all these higher order modes
vanish, and only the reflected TEM wave exists. The related reflection coefficient is defined in Eq. (50).
This is evaluated for a gyromagnetic frequency corresponding to R = 0.5 and three different substrate
thicknesses k02α = 0.15, 0.2, and 0.3, and the results are presented in Fig. 21(a).

A very strange situation is observed at three frequencies Ω = 0, R,Ω2 where the reflected field
vanishes. Observing Figs. 5–6, this condition corresponds to infinite εr1 → ∞, εr2 → −∞, εr3 → −∞ at
Ω = R and infinite εreff at Ω = 0, Ω2. On the contrary, a total reflection occurs in the band Ω = R to
Ω2. From Figs. 5–6, it is again observed that this virtual short circuit situation corresponds to εr1 < 0
and εr2 > 0. These phenomena are of particular interest in practical applications and require further
exploration. Also, the phase of the reflection coefficient is depicted in Fig. 21(c) where it is observed that
it becomes zero throughout the frequency range of Ω from R up to Ω2. Explicitly, this range corresponds
to the frequency region where εr1 becomes negative (Fig. 4(a), Table 5), or the incident TEM wave in
Eq. (50a) becomes evanescent. This means that both incident and reflected waves are exponentially
damped [12]. Thus, reflection coefficient exhibits null argument, becoming purely real [32, p. 169], and
the ratio of these damped waves’ amplitudes at the edge (z = 0, x = α) is depicted in Fig. 21(a) for the

(a) (b) (c)

Figure 21. Reflection coefficient of the incident TEM wave vs normalized frequency Ω: (a) R = 0.5,
(b) R = −0.5 and (c) argument (R = 0.5).
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range R < Ω < Ω2. Notably, the phase of the TEM radiation coefficient is an important quantity as it
can be exploited in patch antennas printed on magnetized plasma substrate in order to estimate their
resonance conditions, e.g., [33]. The reflection coefficient when the dc bias is reversed is illustrated in
Fig. 21(b). Similar phenomena are observed in this case, which are in accordance with the dielectric
constant behavior in Fig. 5 and Table 4. Reverse bias causes opposite sign to εr2 (Fig. 5(b)), but it
retains the same sign in εr1. Thus, differences between Figs. 21(a) and (b) are expected, since the
reflection coefficient is not an even function.

5. CONCLUSIONS AND DISCUSSION

An extended Wiener-Hopf technique has been employed to analyze and evaluate the guiding and
radiating properties of an anisotropic plasma-loaded, parallel plate waveguide with a truncated upper
plate. The anisotropy of the plasma arises from a biasing constant magnetic field parallel to the edge
of the truncated upper plate. The analysis is restricted to the normal incidence of the extra-ordinary
TEM wave propagating in the parallel plane region, and thus only TM type waves are excited. Due to
the non-reciprocal nature of the structure, the kernel of the Wiener-Hopf equation is non-symmetrical,
and its factorization is not established. There is only one similar publication by Fikioris et al. [16],
elaborating on magnetized ferrites. Herein, their approach is extended to the magnetized plasma case.
Important nonreciprocal and unidirectional phenomena are involved as a result of the magnetized plasma
anisotropy. The main goal of factorizing the Wiener-Hopf kernels for the open geometry problem is
achieved herein. The far field as well as the near field of the structure is extensively studied, including
the contribution of proper surface, improper leaky modes, and complex surface wave as well as the
unique unidirectional waves. Significant changes of the operational characteristics of the structure can
be achieved by varying the intensity of the biasing magnetic field. This fact implies certain important
practical application of the guiding or radiating structure.

Both the theory and numerical results are validated against the few available publications. In
the factorization, a detailed comparison of the present effort with the work of Fikioris et al. [16] on
tunable ferrite structures was presented. There the various similarities and differences were enlisted and
taken into consideration. The new terms were fully justified, treated accordingly, and their meaning
and consequences were addressed. It was also verified that in any case the factorized kernel and the
unfactorized one give identical values. In the numerical implementation Eq. (53) was checked to comply
with the near field boundary condition of zero tangential electric field on the upper truncated metal
conductor. Furthermore, the present results were successfully compared with available published results
from the open literature [10]. The validations against Seshadri and Pickard [10] works have confirmed
the present theory for both the excited modes as well as for the sky-space wave radiation. As a further
check, it was verified that the near field results obtained through numerical integration match the far
field results estimated by steepest descent, as the distance from the structure is increased. The space as
well as the total radiation pattern was also qualitatively compared against Johansen’s [12] results. The
qualitative feature results from the fact that although the Johansen’s structure seems similar it assumes
uniform plasma space beyond the truncated edge.
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