
Progress In Electromagnetics Research M, Vol. 97, 77–86, 2020

Design Analysis of One-Dimensional Photonic Crystal Based
Structure for Hemoglobin Concentration Measurement
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Abstract—In this manuscript, a porous one-dimensional Photonic Crystal (1D-PhC) based sensor is
designed for bio-chemical sensing application (i.e., hemoglobin concentration). The alternate layers of
silicon are considered for design optimization, where the porosity is introduced to obtain the desired
index contrast value. The sensing capability of the proposed design is enhanced by modifying the
dispersion property of the structure. For this, a defect middle layer is deliberately introduced. The
number of layers, defect layer optical thickness, and porosity values are optimized to confine a defect
mode of desired wavelength. Finally, the detailed analysis of proposed structure is carried out. This
provides the average sensitivity of around 323 nm/RIU (0.05 nm/(g/L) along with considerably higher
Figure-of-merit (FOM) of 517 RIU−1.

1. INTRODUCTION

The biomarker detection is a major requirement for early detection of various bio-chemical analytes.
This involves development of highly sensitive devices those possess the capability to detect the minute
concentration of biomarkers. Optical sensors have emerged as prominent devices those are widely
employed for bio-sensing applications. This is because of their inherent advantages such as immunity
towards electromagnetic interference, fast response time and label-free detection [1, 2]. Numerous label-
free optical biosensors are proposed in the literature, in which Surface Plasmon Resonance (SPR) and
Interferometer based techniques are considered to be more prominent [3–7]. Additionally, integration of
PhC technology can further improve the device performance [8, 9]. This is because of its light guiding
and confinement abilities. This improves the light-matter interaction, hence very good sensitivity at
very small scale. The mentioned properties are widely explored and a number of PhC devices are
proposed for various sensing applications [10–17].

Haemoglobin (HB) is one of the most important constituents of blood, who can help in detecting
various dieses like thyroid dysfunction, diabetes and anaemia [18, 19]. Human blood is made of fix
proportion of HB and plasma, whose RI depends on concentration of HB. Thereby, utilizing the RI based
sensing mechanism, the HB concentration can easily be measured. A number of devices comprising 1D-
PhC are already proposed for RI based sensing and HB concentration measurement [20–23]. Authors in
Ref. [20] designed a ternary 1D-PhC waveguide structure for haemoglobin concentration measurement
(0 to 50 g/L) and reported a sensitivity of around 51.46 nm/RIU. Recently in 2020, Goyal et al. [21]
proposed a Bloch-surface-wave (BSW) based 1D-PhC structure in which a defect layer as a cover is
introduced for sensing purpose. The authors monitored the shift in coupling angle by infiltrating various
concentration of haemoglobin at the top air-dielectric interface and reported the average sensitivity of
around 69◦/RIU. Similarly, Hao et al. [22] proposed a superconductor material assisted 1D-PhC RI
sensor for HB concentration measurement. Authors, considered alternate layers of superconductor
and semiconductor materials to design the structure. This gives an average sensitivity of around
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6.85789 µm/RIU and 6.48073 µm/RIU at a temperature of 80 K and 134 K respectively. Authors
in [23] proposed an acoustic sensor using 1D-PhC and reported a sensitivity of around 3.314 MHz
for a HB concentration variation of about 0 to 14%. The SPR based sensor is also explored for HB
concentration measurement. Sharma et al. [24] designed a SPR based sensor that possesses the capability
to detect HB concentration and provides a 0.005◦ resonance angel shift for a 1 g/L HB concentration.
Researcher have also explored two dimensional (2D) PhC and PhC-fiber based techniques to detect
HB concentration [25, 26] but they are not widely used because of their complex design and fabrication
processes. The 1D-PhC structures can easily be fabricated using spin coating, dip coating or deposition
techniques. Additionally, electro-chemical etching can also be used to fabricate homo-junction 1D-PhC
structure. The most of the discussed 1D-PhC designs are made using hetero-structure that providing
scattering and reflection losses at the internal interfaces. These structures also possesses comparably
higher Full-width-half-maximum (FWHM), which directly affects the resolution and Figure-of-merit
(FOM) of the sensing device. However, designing homogeneous structure these losses can be minimized,
which results in improved sensitivity along with superior FOM and resolution.

In this paper, a homogeneous 1D-PhC design is proposed for bio-chemical sensing (haemoglobin
concentration) applications. The proposed structure is designed using 1D-PhC made of silicon material,
where refractive index contrast is managed by introducing porosity within different layers. Additionally,
a defect layer is deliberately introduced between two uniform structures. The inclusion of defect layer
modify the dispersion characteristics and leads to confinement of defect mode. The structural analysis
is carried out using transfer matrix method (TMM). The infiltration of varying HB concentration
affects the effective RI of defect layer. This results in confinement of defect modes of different
wavelengths. Therefore, estimating the variation in defect mode wavelength with respect to change
in analyte properties (concentration or refractive index), the HB concentration can be measured.
The proposed design provides an average FWHM, FOM and sensitivity of around 0.6 nm, 517 RIU−1

and 0.05 nm/(g/L) (or 323 nm/RIU) respectively. The achieved sensor performance parameters are
comparably much higher than the reported results in the literature. Additionally, the designed sensor
also possesses the capability towards developing integrated sensor platform.

2. STRUCTURE DESIGN PRINCIPLE

The proposed 1D-PhC structure is designed considering silicon (Si) as material using quarter-wave Bragg
stack. The physical and optical thicknesses of the Si are optimized to obtain a higher reflection centred
at a wavelength of λo. The schematic representation of a proposed binary multilayer PhC structure is
shown in Fig. 1. The structure comprises alternate layers of ‘B’ and ‘A’, having low RI (nL) and high
RI (nH) respectively. The structural symmetry is modified by deliberately introducing a defect layer
‘D’. The structure exhibits its periodicity (having Λ as the period) in the ‘z’ direction. The proposed
design is homogeneous towards ‘x’ axis. Thus, refractive index profile can be represented by

n (z) =
{

nL, 0 < z < dl

nH , dl < z < dl + dh
with n(z + Λ) = n(z) (1)

where the z axis is normal to the interface of multilayer structure, and dl & dh are the thicknesses of
two layers ‘B’ and ‘A’. The capping of microfluidic channel is carried out to ease the analyte infiltration.

The TE polarised wave of central wavelength λo is incident on the structure from substrate side.
Depending on the RI contrast and optical thicknesses, the structure will reflect some part of the incident
wave at every interface. Thus, the optical thickness and RI contrast are optimized to obtain overall
high reflection. Furthermore, defect layer (‘D’) properties are also modified to confine a defect mode
within layer ‘D’. Initially, the 1D-PhC structure possesses the form of substrate|(BA)N |D|(BA)N |air,
where ‘A’, ‘B’ and ‘D’ are different layers as discussed previously, and ‘N ’ corresponds to the number of
stacks. Additionally, θH , θL, and θd are angle of reflection from layers ‘A’, ‘B’ and ‘D’ respectively and
θa is the incident angle. The phase thicknesses within dielectric layers ‘A’ and ‘B’ can be calculated by
Equation (2).

δi = 2π
f

fo
Li cos(θi) (2)
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Figure 1. Schematic diagram of 1D-PhC structure. The structure possess ‘A’ and ‘B’ two alternate
layer with ‘D’ as defect layer.

where Li is the optical thickness of ith layers, normalized with central wavelength λo. Thus, infiltrating
the analytes of different refractive index will impact the optical thickness of the ith layer. This changes
the phase thickness hence shift in the confined defect mode wavelength. The structural analysis is
carried out using TMM method in which amplitude components of forward (An) and backward (Bn)
propagating plane waves are calculated using matrix method. The electric field amplitude in each layer
(i.e., layer n) is obtained by solving Maxwell equations and are given by [27]

E (z, x) = Aneiknz + Bne−iknz (3)

Equation (3) is solved for every interface, and corresponding field amplitudes are calculated. For example
by applying the boundary conditions at first interface (layers 1 and 2), the solution of Equation (3) is
represented by Equations (4) and (5) (

A1

B1

)
= M12

(
A2

B2

)
(4)

with

M12 =

⎡
⎢⎢⎣

1
2

(
1 +

k1

k2

)
eik1dl

1
2

(
1 − k1

k2

)
e−ik1dl

1
2

(
1 − k1

k2

)
eik1dl

1
2

(
1 +

k1

k2

)
e−ik1dl

⎤
⎥⎥⎦ (5)

Therefore, for finite size multilayer structure having n number of dielectric layers, Equation (4) can be
generalized as (

An−1

Bn−1

)
= Mn

(
An

Bn

)
=

(
M1 M3

M2 M4

)(
An

Bn

)
(6)

3. SIMULATION RESULTS AND DISCUSSION

The proposed structure is designed by sandwiching a defect layer ‘D’ between two uniform 1D-PhC
structures. Initially, BK7 glass having refractive index 1.52 is considered as substrate to optimize the
proposed 1D-PhC structure, substrate|(BA)N |D|(BA)N |air. The bulk Silicon (Si) is considered as a
high (layer ‘A’) RI material whereas porous Silicon (P-si) having 50% porosity is considered as low
(layer ‘B’) RI material. This gives the RI of around 3.45 and 2.34 for Si and P-Si respectively [28, 29].
The structure is designed to provide the maximum reflectance around a central wavelength of 1550 nm.
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(a) (b)

Figure 2. Effect of increasing number of layers on reflection spectrum for (a) substrate|(BA)|N |Air
and, (b) substrate|(BA)N |D|(BA)N |Air structure. The structure is designed at 50% porosity having
dh = 112 nm and dL = 166 nm for central wavelength of 1550 nm.

Since the design is optimized to work at 1550 nm central wavelength thus, the imaginary RI or Si is
neglected in the analysis. This also alleviates analytes induced scattering loss. Additionally, the pore
size is also considered to be much smaller than the central wavelength [30].

The layers are organised in quarter-wave Bragg stack pattern. This provides the thicknesses of layers
‘A’ and ‘B’ of around 112 nm and 166 nm respectively. The numbers of layer in structure are optimized
to obtain the overall high reflectivity at the central wavelength of 1550 nm as shown in Fig. 2(a). This
clearly indicates that for N = 6 onward the reflectivity is more than 90%. Thus, six multilayer stacks
are considered as initial optimized parameters in this case. The inclusion of defect layer ‘D’ results in a
sharp dip in the reflection spectrum. Initially, the defect layer ‘D’ is considered to be equivalent to layer
‘B’ having same porosity, RI and thickness values. Fig. 2(b) shows the reflection spectrum of proposed
structure having a defect layer, where a sharp dip is due to the incorporation of the defect layer. The
FWHM of the dip depends of number of stacks. The structure substrate|(BA)N |D|(BA)N |Air confine
the defect mode at 1550 nm having 70% dip intensity. The calculated FWHM values of the defect
modes are around 12 nm, 6 nm and 2.5 nm for the corresponding number of stacks of N = 6, 7 and
8 respectively. Additionally, the confined defect mode wavelength can also by tuned to desired value
by changing the defect layer optical thickness (physical thickness or refractive index value). Fig. 3
represents the effect of changing layer ‘D’ physical thickness (dD) on confined defect mode wavelength
for various porosity values of 50%, 60%, and 70%, respectively.

It is noteworthy to mention that for dD = dL, the structural parameters are optimized to confine
the central wavelength of 1550 nm at every porosity. This results in the thicknesses of layer ‘B’ of around
166 nm, 184 nm, and 207 nm (having dh = 112 nm) for the corresponding porosity of around 50%, 60%
and 70% respectively. Therefore, for the defect mode thickness of dD = dL, the designed structure
confines defect mode at the same central wavelength 1550 nm (central wavelength) for all porosities.
However, increasing defect layer thickness to 1.2dL, the proposed structure confine defect mode at
1600 nm, 1610 nm and 1619 nm for the corresponding porosities of 50%, 60% and 70% respectively.
Changing dD from its original value (dL) to 1.6dL changes the defect mode wavelength of around 9%,
11% & 13% for the porosity of 50%, 60% and 70% respectively.

Figure 4 represents the sensing capability of the proposed structure for different porosity values of
50%, 60% and 70% respectively. The defect layer in infiltrated with various analytes of changing RI of
1.1, 1.2, 1.3 and 1.4 and this provides the wavelength shift in confined defect mode. Fig. 4(a) shows the
sensing capability of proposed structure at 50% porosity and exhibits an average sensitivity of around
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Figure 3. The effect of changing defect layer ‘D’ (dD) thickness on defect mode wavelength for different
porosity values.

133 nm/RIU. Similarly, Fig. 4(b) and Fig. 4(c) show the sensing capability of proposed structure for
the porosity of 60% & 70% and exhibits an average sensitivity of around 186 nm/RIU and 261 nm/RIU
respectively. Finally, Fig. 4(d) provides a detailed comparisons of above mention results. It is clear from
Fig. 4(d) that increasing the porosity provides a larger shift in confined defect mode wavelength hence
better sensitivity. Increasing the porosity can further improves the sensitivity but it is not considered
as it makes the structure fragile. Therefore, in the rest of the paper, porous 1D-PhC cavity structure
having 70% porosity and seven bilayers is considered for haemoglobin concentration analysis. The
mentioned results are summarized in Table 1.

Table 1. Sensitivity comparison at three different porosity values.

Porosity nh nL dh (nm) dL (nm)
Defect mode Wavelength

for air Analyte
Average

Sensitivity (nm/RIU)
50% 3.45 2.34 112 166 1550 nm 133
60% 3.45 2.11 112 184 1550 nm 186
70% 3.45 1.87 112 207 1550 nm 261

3.1. Bio-Chemical (HB) Sensing Analysis

The refractive index (RI) of haemoglobin is measured by many groups, and their findings are
reported [31, 32]. Barer et al. provided the concentration dependent RI of HB by considering oxygenated
HBas shown in Equation (7) [33],

nhb = α0 + αC (7)

α0 = 1.3245 +
8.4052 × 103

λ2
− 3.9572 × 108

λ4
− 2.3617 × 1013

λ6
(8)

C is the HB concentration (g/L), nhb the RI of HB, α0 the RI of solvent & given in Equation (8),
λ the central incident wavelength (measured in nm), and α = 0.193 mL/g the specific refraction
increment [34, 35]. The haemoglobin RI increases along with its concentration. That further
affects the effective RI of defect layer, hence change in confined defect mode wavelength. This
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Figure 4. Sensing proficiency of proposed 1D-PhC at different porosities of (a) 50%, (b)
60%, (c) 70% and (d) combined comparison at all porosities. The structure is designed in
substrate|(BA)N |D|(BA)N |Air configuration.

defect mode wavelength is monitored to measure the concentration of haemoglobin. Considering
Equations (7) and (8), the sensing capability of proposed structure is investigated to find the
haemoglobin concentration. Fig. 5 represents the HB concentration dependent variation on confined
defect mode wavelength.

The haemoglobin concentration is varied from 0 g/L to 200 g/L with the step of 40 g/L. The
structure confines the defect modes having different wavelengths of 1634 nm, 1636 nm, 1638 nm, 1640 nm,
1642 nm and 1644 nm for the corresponding haemoglobin concentration of 0 g/L, 40 g/L, 80 g/L, 120 g/L,
160 g/L, and 200 g/L respectively. It is clear that at every increase in concentration, the defect mode
wavelength is red shifted, whereas the FWHM is almost constant to a value of 0.6 nm. The performance
parameters of the proposed design, i.e., sensitivity (S), FWHM, and Figure-of-merit (FOM) are also
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Figure 5. The effect of varying HB concentration
on the defect mode wavelength.

Figure 6. Effect of increasing HB concentration
on defect mode wavelength.

analysed and shown in Equation (9) [36–38],

S =
Δλ

ΔC
=

Δλ

Δn

FOM =
S

Δλ1/2

(9)

where Δλ and ΔC are the change in HB concentration and change in defect mode wavelength, and
Δλ1/2

is the FWHM. All these parameters are analysed and given in Table 2.

Table 2. Calculated performance parameters for the proposed sensor structure.

C ΔC
Δn

λd Δλd Δλ1/2 S FOM
(g/L) (nm) (Δλ/Δn) (Δλ/ΔC) (RIU)−1

0 - - 1634 - 0.6 - - -
40 40 0.004 1636 2 0.6 500 0.05 833
80 80 0.012 1638 4 0.65 333 0.05 512
120 120 0.022 1640 6 0.65 272 0.05 418
160 160 0.031 1642 8 0.65 258 0.05 396
200 200 0.039 1644 10 0.6 256 0.05 426

It is evident from Table 2 that the defect mode wavelength changes from 1634 nm (CHB = 0 g/L)
to 1644 nm (CHB = 200 g/L) for the structural porosity of 70%, having six number of bilayers. Fig. 6
represents the effect of increasing HB concentration of defect mode wavelength. The graph shows the
almost linear variation, thus slope of the curve provides the average sensitivity (S = Δλ/ΔC), which
terms to be around 0.05 nm/(g/L) or 323 nm/RIU (S = Δλ/Δn). Similarly, the FWHM of the proposed
design comes around 0.6 nm, which is comparably better than recent reported results [22, 23, 39]. This
gives an overall high FOM of around 517 RIU−1.

Equation (10) represents the linear fitting of Fig. 6, which represents the HB concentration
dependent defect mode wavelength. Thus, Equation (10) can be used to determine the HB concentration
(C).

Defect Mode Wavelength (λd) = 0.05C + 1634 (10)
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Additionally, the RI of blood can also be calculated by considering appropriate composition of
haemoglobin (RBC) and plasma. The same is represented by Equation (11).

nblood = nhb × fhb + n0 × f0 (11)

where fhb and f0 are the volume fraction of haemoglobin and solvent respectively. Thereby, considering
appropriate filling factors fhb and f0, its concentration can also be estimated directly from the blood
sample. Table 3 represents the comparison of obtained results of designed 1D-PhC cavity structure with
recently reported results.

Table 3. The comparison of proposed design with recent reported results.

Sensitivity FWHM (nm) FOM (RIU)−1 Year Reference
69◦/RIU 0.00508 - 2020 21

51.46 nm/RIU - - 2019 20
0.005◦/g/L - - 2019 24
195 nm/RIU - - 2020 40
333 nm/RIU - 16.66 2020 41

0.05 nm/(g/L) and 323 nm/RIU 0.6 517 Proposed Proposed

4. CONCLUSION

A porous silicon based 1D-PhC cavity structure is designed for bio-chemical (haemoglobin concentration)
sensing applications. The porosity is introduced to obtain the required index contrast value. The
analysis depicts that the inclusion of a defect layer within two symmetrical 1D-PhC structures can
confine a defect mode. Additionally, the defect mode wavelength can also be tuned by varying the
porosity of the structure. The detailed performance analysis of the optimized structure is carried out.
This gives an FWHM of around 0.6 nm with considerably improved sensitivity of around 0.05 nm/(g/L)
or 323 nm/RIU. The linear dependency of HB concentration to defect mode wavelength facilitates the
proposed 1D-PhC cavity structure to detect the HB concentration.
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