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The Maxwell Stress Tensor and Electromagnetic Momentum

Artice Davis1, * and Vladimir Onoochin2

Abstract—In this paper, we discuss two well-known definitions of electromagnetic momentum, ρA and
ε0[E×B]. We show that the former is preferable to the latter for several reasons which we will discuss.
Primarily, we show in detail—and by example—that the usual manipulations used in deriving the
expression ε0[E×B] have a serious mathematical flaw. We follow this by presenting a succinct derivation
for the former expression. We feel that the fundamental definition of electromagnetic momentum should
rely upon the interaction of a single particle with the electromagnetic field. Thus, it contrasts with the
definition of momentum as ε0[E × B] which depends upon a (defective) integral over an entire region,
usually all space.

1. INTRODUCTION

The correct form of the electromagnetic energy-momentum tensor has been debated for almost a century.
A large number of papers have been written [1], some of which concentrate upon a single particle
interaction with the electromagnetic field in free space [2, 3]; others discuss the interaction between a field
and a dielectric material upon which it impinges [4]. In works which discuss the Minkowski-Abraham
controversy, the system considered is usually on the macroscopic level. On this level, singularities
caused by point charges cannot be treated. We show that neglecting the effect due the properties of
classical charges creates difficulties which cannot be resolved within the framework typically discussed
by textbooks on classical electrodynamics [5].

Our present concept of electromagnetic field momentum density has two interpretations:

(i) As ε0[E × B], the scaled Poynting vector.
(ii) As A, the vector potential.

There have been many papers and books written which advocate one of these interpretations as opposed
to the other (see [1, 2, 5, 6]), but no consensus seems to have been reached. This paper was written
to expose several fundamental shortcomings with the first interpretation and to offer an important and
(we believe) definitive argument in favor of the second.

Let us begin by considering the Lorentz force

Fq = qE + qv × B. (1)

We extend this formula to the case of an infinitesimal element of a distributed test charge, assuming
that a differential volume has an equivalent charge dq = ρdτ , where ρ is the charge density and dτ the
differential element of volume, and that it moves rigidly along a trajectory such that its instantaneous
velocity is v. Thus, we will assume that the force on a differential element of charge is

dF = ρdτE + ρdτv × B. (2)
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The force per unit volume of charge is, therefore,

f =
dF
dτ

= ρE + ρv ×B. (3)

We will now present the “usual” development of the Maxwell stress tensor. Such a development is
presented in many textbooks on classical electrodynamics, but we will follow the one by Griffiths [5].

2. DERIVATION OF THE MAXWELL STRESS TENSOR

Consider the Lorentz force Equation (3) and use Maxwell’s equations to write

f = [ε0∇ · E]E +
[

1
μ0

∇× B− ε0∂tE
]
× B

= [ε0∇ · E]E − 1
μ0

B× [∇×B] − ε0∂t [E × B] + ε0E × ∂tB

= [ε0∇ · E]E − 1
μ0

B× [∇×B] − ε0∂t [E × B]

−ε0E × [∇× E] . (4)

We now call upon the well-known vector identity

g × [∇× g] = ∇
[
g2

2

]
− [g · ∇]g, (5)

and add the zero-valued function [∇ ·B]/μ0 to obtain

f = ε0[∇ ·E]E +
1
μ0

[∇ · B]B −∇
[
ε0E

2

2
+
B2

2μ0

]
+ ε0 [E · ∇]E +

1
μ0

[B · ∇]B − ∂t [E × B] . (6)

Consider the ith component:

fi = ε0[∂jEj ]Ei +
1
μ0

[∂jBj]Bi − ∂i

[
ε0E

2

2
+
B2

2μ0

]
+ ε0[Ej∂j ]Ei

+
1
μ0

[Bj∂j ]Bi − ε0∂t[εijkEjBk], (7)

which we can rewrite as

fi = ∂j

[
ε0EiEj +

1
μ0
BiBj −

(
ε0E

2

2
+
E2

μ0

)
δij

]

−∂t [εijkEjBk] = ∂jTij − ∂t [εijkEjBk] . (8)

Tij are the components of a second order tensor — a 3 × 3 matrix — called the Maxwell stress
tensor:

Tij = ε0EiEj +
1
μ0
BiBj −

[
ε0E

2

2
+
B2

2μ0

]
δij. (9)

We see that it is symmetric because Tji = Tij for any choice of the indices i, j. Using dyadic notation,
we write this tensor in the form

T = Tijeiej (10)

and define its divergence by

∇ · T = ek∂k · Tijeiej = ∂kTijδkiej = ∂iTijej. (11)

Since T is symmetric, we can rewrite this as

∇ ·T = [∂iTji] ej = [∂jTij] ei. (12)

Therefore, we can rewrite Equation (7) as

f = ∇ · T − ε0∂t [E × B] . (13)
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Equation (13) is the force per unit volume on a distributed charge. Focusing on a differential
element having volume dτ , we can write the force on it as

df = ∇ ·T dτ − ε0∂t [E × B] dτ. (14)

Now suppose that we want to find the force on a charge distributed over a region R. We merely integrate
the preceding equation over this region, getting

F =
∫

R
∇ · Tdτ − ε0

∫
R
∂t [E × B] dτ. (15)

Note that we are only considering the net force on the charge in the region R. Any self forces are
internal to R and serve only to distort the region.

3. CRITIQUE OF THE CONVENTIONAL FIELD MOMENTUM INTERPRETATION

The usual derivation typically proceeds like this. If T satisfies the conditions for applying the divergence
theorem for a region R, we can write the first integral in the form∫

R
∇ · Tdτ =

∮
∂R
dS · T =

[∮
∂R
TijdSi

]
ej, (16)

where ∂R is the boundary of R. Using this result in Equation (15) we find that the net translational
force on the region R is

F =
∮

∂R

dS · T − ε0

∫
R
∂t [E × B] dτ. (17)

Letting

F = ma =
dPmech

dt
(18)

and

ε0

∫
R
∂t [E × B] dτ =

d

dt

[
ε0

∫
R

E × Bdτ
]

=
dPem

dt
, (19)

we can rewrite Equation (17) in the form

d (Pmech + Pem)
dt

=
∮

∂R
dS · T. (20)

Equation (19) defines the classical electromagnetic field momentum.
Now, the argument continues, if the fields constituting T approach zero fast enough at infinity,

then we can imagine the region R to expand to be all space, and the surface integral is zero. We are
left with

d (Pmech + Pem)
dt

= 0. (21)

We then see that conservation of the total momentum, namely mechanical momentum plus
electromagnetic momentum, holds.

There are a number of things wrong with this typical argument (and the associated definition of
field momentum) which we will now discuss.

(i) The conditions for application of the divergence theorem do not apply. If we investigate a typical
term in the stress tensor, we see that one component in that term is ε0∂j [EiEj ] and Ei = −∂iφ−∂tAi.
Thus, if we assume for simplicity that ∂tAi = 0 we see that we must compute ∂j [∂iφ∂jφ] (with no
sum implied on j. Let us take as an example a single charge q′ located at r′ which generates E.
Then we have φ = q′/(4πε0R) where, as usual, R = |r− r′| and r is the point at which the field is
to be computed. Then

φ =
q′

4πε0R
. (22)
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Dropping the constant factors, we see that we must compute (with no sum implied on j)

∂j

[(
∂iR

−1
) (
∂jR

−1
)]

= ∂j

[(
−R−2xi − x′i

R

)(
−R−2

xj − x′j
R

)]

= ∂j

[
R−6

(
xi − x′i

) (
xj − x′j

)]
= −6R−8

(
xi − x′i

) (
xj − x′j

)2 +R−6δij
(
xj − x′j

)

+3R−6
(
xi − x′i

)
= −

6 (xi − x′i)
(
xj − x′j

)2

R8
+

4 (xi − x′i)
R6

. (23)

We see, therefore, that the integrand of the surface integral has a singularity of order 1/R5 due
to the term ∂iEi ∼ 1/R3 multiplied by the term Ei ∼ 1/R2. Thus, we cannot legitimately reason
that the surface integral extending to infinity is zero. For this reason the divergence theorem does
not apply [7]. But this means that we must interpret the first integral in Eq. (15) as another force,
and hence the time derivative of another component of momentum.

(ii) The interpretation of field momentum as the integral over all space is not an adequate depiction
of momentum — which one ordinarily thinks of relative to a particle or finite volume of matter in
space.

(iii) We note that even if one ignores the aforementioned failure of the divergence theorem to be
applicable, there is yet another problem. We cannot simply bring the partial derivative outside the
second integral in Eq. (19) because the region is moving; that is, we have R = R(t). The exchange
of differentiation and integration becomes a more complex issue, and yet one thinks of the force
on a particle or body as being the total derivative of momentum with respect to time — not as a
partial derivative.

4. A TWO PARTICLE EXAMPLE: A PARADOX.

Our conventional derivation of the stress tensor is presented in many textbooks, but it is too schematic
in nature — too abstract — and for this reason the flaws in the derivation which we have remarked on
are overlooked. To further illustrate this, let us consider a system of two equal charges of opposite sign
with the positive charge fixed and the negative charge rotating around the positive one. If the linear
velocity of the rotating charge is small (v � c) then we are able to use the Darwin approximation [8].
Doing so, we find that the sum of the forces in this system is [9]

∑
l

Fl = F+ + F− =
∫

R
ρ−E+dτ +

∫
R
ρ+E−dτ =

q2

4πε0r2
− q2

4πε0r2

(
1 +

v2

2c2

)
= − q2v2

8πε0c2r2
, (24)

which is clearly nonzero. The forces in this system are determined only by the electric fields —
the magnetic components are zero. This means that the terms involving ε0 [E × B] are zero. (We
are assuming that all fields are bounded, that is they approach zero fast enough for convergence of
the integral.) Therefore, the surface integral of the Maxwell tensor is equal to zero if the surface of
integration is a sphere of infinitely large radius — despite the fact that there are clearly unbalanced
forces in this system.

5. A BETTER DERIVATION OF FIELD MOMENTUM

We start with the classical Lorentz force law in Eq. (1) for a particle moving along a trajectory given
by r = g(t) with corresponding velocity v(t) = ġ(t). Thus, we obviate all those assumptions regarding
differential elements of charge and subsequent interpretation in terms of fields alone. In invoking the
Lorentz force formula, we are assuming that it is only the instantaneous velocity that is important, not
the acceleration, etc. We write

f(t) =
d

dt
[mv] = qE + qv(t) × B = −q∇φ− q∂tA + qv(t) × [∇× A

]
. (25)
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Now use the identities
v(t) × [∇× A

]
= ∇[

v · A] − [
v(t) · ∇]

A (26)

and
d

dt
A = ∂tA +

[
v · ∇]

A (27)

to write
v(t) × [∇× A

]
= ∇[

v(t) ·A]
+ ∂tA − d

dt
A. (28)

Using this result in our force equation gives
d

dt
[mv(t)] = −q∇φ+ ∇[v(t) ·A] − q

d

dt
A. (29)

Rearranging, we get
d

dt

[
mv + qA

]
= −q∇[

φ− v(t) ·A]
. (30)

This has the form
dp
dt

= −q∇[
ψ

]
, (31)

where the momentum is
p = mv + qA (32)

and the velocity dependent potential is
ψ = φ− v ·A. (33)

Thus, if one believes in the original Lorentz force equation then the field momentum must be given by
qA. We feel that this derivation† is much more logical and rigorous than the conventional one leading
to the field momentum in terms of the integral of E × B.

The use of this form of the EM momentum gives a simple explanation of the ‘paradox’ explained
above. Since the negative charge rotates in a circular orbit with the constant angular speed ω, its linear
velocity is v = ωr, and the EM momentum, limited to the region occupied by the charge, is

PEM =
∫

τch

ρAdτ = q+A =
1

4πε0
q2v
2c2r

where the expression for the vector potential in the Darwin approach

A = q
v + (v · n̂) n̂

8πε0c2r

is used (Equation (65.6) of [10]). Then for the system of two charges

dA
dt

=
q

8πε0c2r
dv
dt

=
qn̂

4πε0r2
v2

2c2

and with accuracy to 1/c2 the law of the total momentum conservation is fulfilled
2∑

l=1

Fl + q
dA
dt

= 0 . (34)

As one can see, the Maxwellian form of the EM momentum, Pem = qA, allows one to explain the
fulfillment of total momentum conservation even in the case of the absence of the magnetic component
of the Lorentz force.

Finally, we are able to conclude that the explanations of some paradoxes based on the use of the
Poynting-Poincaré form of the EM momentum (see, for example, [9]) should be reconsidered since this
form of Pem does not provide the fulfillment of the total momentum conservation.

† Our derivation is similar to that given by Semon and Taylor [3].
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