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Resonant High Quality Factor Translucent Lens/Monochromator
with Adjustable Focus for Electromagnetic Absorbance

Imaging of Micro-Biomolecules

Reza Dehbashi*

Abstract—Characterization of some biological materials relies on absorption imaging. In this paper, a
highly translucent flat two-layer structure as part of an imaging system called spectrometer is proposed
that has a very high numerical aperture (NA) and high quality factor (QF). The structure can be used
to identify micro-biological materials with previously known absorption rate, under single-wavelength
electromagnetic absorbance imaging. The proposed two-layer structure is composed of a double-near-
zero (DNZ) slab coupled to a high-index dielectric slab with a specific thickness. In DNZ materials,
both the permittivity and permeability are close to zero. The DNZ slab operates as a flat lens, and the
very high-index dielectric slab functions as a high QF monochromator that at the same time increases
NA of the lens without affecting translucidity of the two-layer structure. At the end, a transformation
optics (TO) based nonlinear lens is introduced that can be replaced as the DNZ layer. The focus of the
nonlinear lens can be tuned by tuning its material parameters.

1. INTRODUCTION

Materials with refractive indices less than one are mostly engineered metamaterials with exotic features
which are used in exotic applications like invisibility cloaks [1–3] and flat lenses [4, 5]. Those kinds
of materials whose refractive index crosses zero and gets negative values create negative refraction at
their interface with non-negative-index materials (i.e., the ordinary material available in the nature).
Negative-index materials for the first time were suggested to be used as electromagnetic flat lenses when
their refraction index is equal to −1 [5], then it was extended to applications like external cloaking [1].
The negative refraction has been explained for electron waves, as well [6].

Negative-index metamaterials, at the point where the refractive index crosses zero value, can be
used for applications like wave-shaping [7] and polarization control [8]. These materials are called
zero-index metamaterials. The zero-index materials have been experimentally realized from microwave
frequencies [9] to the visible spectrum [10]. A very specific type of zero-index metamaterials is double-
near-zero (DNZ) materials which are the focus of this paper. In DNZ materials, both the permittivity
and permeability are close to zero [11]. They have recently been used in applications like the size-
reduction of electromagnetic devices [12, 13]. In this paper, they are used as part of a proposed
lens/monochromator two-layer structure which can be employed for electromagnetic absorbance imaging
(EAI). There are some relative works on transmittance coefficient modulation based on meta-materials
and metasurfaces [14–16].

In this paper, this EAI as a type of spectroscopy is used to detect and identify the materials
with the previously known absorption rate, the parameter which is also called absorbance. Some
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micro-biomolecules are detectable by EAI. Three types of them are the focus of this research as
they highly interact with wave at some wavelengths of the light. These micro-biomolecules with high
absorbance are Deoxyribonucleic (DNA)/ribonucleic (RNA) [17, 18], Tyrosine/Tryptophan [19, 20], and
Cytochrome [21–24].

In the proposed two-layer structure, one layer performs as a lens (the DNZ layer), and the other
layer (high-index layer) has two roles. One role is to enhance the numerical aperture (NA) of the lens,
and the other role is to function as a high quality factor (QF) monochromator to highly reject the
wavelengths that interfere with the imaging. The wavelengths for detecting those biomolecules that are
targeted in this paper will be specified at the end of this paper.

The index of the DNZ materials is not perfectly equal to zero; therefore, they are not perfect
lenses. However, the high index value of the dielectric layer coupled to them can compensate this
imperfection. This will be elaborated in Section 4. It is shown that despite using a very high-index
value material in the structure, the entire two-layer structure is highly translucent under plane wave
illumination. Transparency of the proposed two-layer structure increases intensity of the radiated wave
toward the sample under the test without perturbing its performance as a lens/monochromator. In
addition, it is proved that the proposed structure has a high QF for the required wavelengths to detect
the biomolecules, targeted in this paper. The proposed structure is flat, as well. In the conventional
spectrometers, a bulky glass-based or gallium phosphide-based lens with a semi-spherical shape is used
to redirect the illuminated wave toward the sample spices [25, 26]. For them, the wave source should
be highly aligned at the center of the spherical (or concave and sometimes convex) lens. The source
alignment is not required for our proposed flat lens. Obviously, the proposed lens is also less bulky and
less heavy than the conventional curved glass made ones. Moreover, for the conventional EAI systems,
a separate part is needed as a monochromator to filter out all the unwanted wavelengths while the
monochromator is part of the flat lens in our proposed two-layer structure.

At the end, we present a transformation optics (TO) based lens that its directivity can be changed
depending on the parameter values of the obtained material. In practice, layers of graphene-based
structure can be used, and the material parameters can be tuned by voltage electrodes [27], then like
conventional glass-based microscopes, the focus of the light after the flat lens can be changed and tuned.

2. THE IMAGING MECHANISM

For EAI imaging, only a single wavelength is needed to image materials. In this paper, DNZ materials in
a two-layer structure are exploited as part of the imaging system. With the advances in the engineered
metamaterials, zero-index materials are realizable in practice, particularly, for EAI application where
the zero-index feature is only required for a single wavelength. Therefore, any material that both of its
constitutive parameters (i.e., permittivity and permeability) are close to zero at just one frequency is
suitable for this application. There are materials with zero-index property in the visible spectrum [28].
In the visible spectrum, the micro-biomolecules usually have high absorption in specific frequencies. This
characteristic is exploited to identify some biomolecules. With the advances within the last two decades,
it is possible to engineer the permittivity or permeability, independently, in a way that both cross the zero
value at the same wavelength. For instance, the nano-metallic rods or nano-fishnet structures at nano-
scale [29] or simply wires [30] can engineer the permittivity value. Split-ring resonators (SRRs) have
been used to engineer permeability [4, 29]. These types of near-zero-index structures can be engineered
to be a DNZ material, then can be used in our proposed two-layer lens/monochromator in this paper
to image micro-scale biological materials like different types of proteins which will be explained in more
details in Section 4.

When a wave passes through a material, it has a reflection and transmission. The reflection and
transmission coefficients can be used to identify under illumination materials. Fig. 1 shows these types
of imaging. Fig. 1(a) employs the reflection coefficient to identify the unknown material. The reflection-
based imaging can be used for medical imaging application, for instance, detecting melanoma in skin
cancer. Melanomas have high content of water, which makes them have high permittivity contrast
compared to the normal skin. This contrast can be detected by a probe that measures the reflected
wave from the skin (Type (a) in Fig. 1(a)). The same applies to some microscopic imaging systems
where the amplitude of the reflected signal is measured by a probe, and then, the shape or material
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Figure 1. (a) Reflection-based imaging. (b) Absorption-based imaging.

of the surface is obtained. This method relies on a high reflection to detect the imaged object, but
for the imaging required for this paper, the reflection level should be as low as possible to obtain high
transmission coefficient (the method shown in Fig. 1(b)). Therefore, we propose a two-layer imaging
structure that is transparent to the illuminated wave with minimum reflection of the wave for the plane
wave illumination. The analytical and numerical analysis to show the transparency of the structure for
plane wave illumination will be demonstrated in Section 3.

Figure 1(b) which is the focus of this paper shows an absorbance-based imaging or EAI system which
relies on the transmission coefficient of the wave, called absorbance. A directive wave is illuminated
to a sample with a specific thickness, and the amplitude of the transmitted wave is measured on the
other side of the sample. To obtain a directive illumination, a lens with a high NA is required, and our
proposed two-layer structure provides that high NA.

Sometimes the samples are not in solid forms; therefore, they should be dissolved in a liquid. In
this case, the moles/litre of the solution must be known. Comparing the measured absorbance with the
previously known absorbance for different materials, the sample under the test can be identified. For
the liquid form samples, the Lambert-Beer law is applied to identify the sample. For this application,
the principal components of an EAI system, called spectrophotometer, are shown in Fig. 2. In Fig. 2,
our proposed two-layer structure will be used as the lens/monochromator block. The structure provides
high NA by directing a wide angle wave to the test sample. High NA provides high resolution, as well.
Therefore, the proposed two-layer structure due to its very high NA can provide very high resolution
for some applications in which resolution is very important, as well. However, there is a limit for the
resolution provided by the proposed structure. The reason is that to our best knowledge, the highest
frequency that a material could have near-zero index feature experimentally is for electromagnetic
waves at visible spectrum. Therefore, the proposed two-layer structure cannot be used for applications
that work beyond the visible spectrum. For example, the two-layer structure cannot be used for
crystallography where the shapes of the biomolecules like proteins are obtained. Proteins are very
big molecules; however, they are not big enough to be detected by any lens yet. Their sizes are in the
order of 1 nm which is far smaller than the diffraction limit for the visible spectrum, and as discussed
before, no near-zero index material has been reported yet in that wavelength. Hence, crystallography,
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Figure 2. Principal components of a spectrometer to characterize biological species using their
absorption rate and Lambert-Beer law [19].

as it is reported in [19], should still rely on X-ray radiation at wavelengths around 0.5 to 3 A◦ to extract
the shape of the biomolecules from the computationally analyzed diffracted rays, or it should use non-
lens microscopy techniques like atomic force microscopy (AFM) that a laser beam can detect even 1A◦
movement of a nano-size probe moving on the surface of the imaged object. Therefore, the proposed
structure cannot image the shape of the biomolecules, and it is only for detecting their type. For that
purpose, high NA is required.

High NA for the proposed two-layer structure is due to the DNZ layer where intrinsically provides
high NA/resolution. It is also due to the very high index value (n) of the second layer in our proposed
two-layer structure. The resolution is conventionally limited by diffraction limit of 0.61λ0 (λ0 is the
wavelength in the free space), while the proposed structure functions are beyond that limit, as the
minimum detectable distance for lenses is proportional to 0.61λ0/n [31], where n is the material index.
Therefore, by having a high n, high NA is provided, as NA is inversely proportional to the minimum
detectable distance (NA ∝ n/0.61λ0). More details will be explained in Section 4.

3. ANALYSIS OF THE PROPOSED LENS/MONOCHROMATOR UNDER
PERPENDICULAR ILLUMINATION (IDEAL SCENARIO)

In this section, behavior of wave for the two-layer structure is analytically and numerically studied when
the structure is illuminated by a plain wave, normal to the layers.
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3.1. Analytical Analysis

It has been proved that the field inside a DNZ material is uniform [12, 13]. To analytically analyze
that, assume that the electric field inside a near zero slab with volume Vd is Ēd (Fig. 3). Then, the
corresponding magnetic field is obtained by:

H̄d = (1/iωμ0μd)∇× Ēd (1)

In the above equation μd ≈ 0. Therefore, the electric field Ēd must be constant inside the entire DNZ
slab (volume Vd) to have a finite value for Hd.

Figure 3. The entire DNZ slab has a constant electric field upon incident of fields with any polarization.
For TE and TM polarized waves, the same happens if the material is MNZ and ENZ, respectively.

Therefore, Maxwell-Ampere law can be applied in a DNZ region when the wave behavior is analyzed.
Maxwell’s equations and Maxwell-Ampere law are used to derive transmission coefficient of our proposed
two-layer structure, shown in Fig. 4.

Assume that a z-polarized (electric field in the Z-direction) plane wave illuminates the structure.

Figure 4. The proposed two-layer structure which consists of a DNZ layer and a high-index dielectric
slab. The whole structure is transparent to electromagnetic waves with certain wavelengths under
normal incidence.
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The fields on the left side are in the following form:
x < 0 :

El
z = E0(e−jk0x + Rejk0x)

H l
y = k0E0(e−jk0x − Rejk0x)/(ωμ0)

(2)

where k0 is the wave number in the free space, and R is the reflection coefficient.
In the dielectric region, the fields are:

0 < x < d1 :

Ed
z = E0(A1e

−jk1x + A2e
jk1x)

Hd
y = k1E0(A1e

−jk1x − A2e
jk1x)/(ωμ1)

(3)

On the other side of the structure, the fields are as:
d2 < x :

Er
z = TE0e

−jk0(x−d2)

Hr
y = k0TE0e

−jk0(x−d2)/(ωμ0)

(4)

After applying the boundary conditions and using Maxwell-Ampere law, one can derive the
transmission coefficient as:

T = 4/((2 − k0μ1/k1μ0 − k1μ0/k0μ1)e−jk1d1 + (2 + k0μ1/k1μ0+k1μ0/k0μ1)ejk1d1) (5)

Using the derived equation for T , for the total transmission, the following equation is derived:

f0 = p/(2d
√

ε1μ1) (6)

where f is the frequency of the incident wave where transparency occurs, and p is an integer number.
The parameters ε1 and μ1 are the constitutive parameters of layer two (the high-index dielectric layer).

From Eq. (4), for the thickness dielectric of 0.75λ, the entire two-layer structure for dielectric
values of 64 and 100 is transparent. Transparency for these values are verified by numerical results and
presented in Section 3.2.

3.2. Numerical Analysis

For the proposed two-layer structure, from the previous section’s formulations, it is obtained that for
dielectric values of 64 and 100, total transmission occurs, while for values of 58.7 and 106, the wave
is highly blocked by the structure. These analytical results are vitrified by the simulation results,
obtained from a Finite Element (FEM) based electromagnetic (EM) simulator, shown in Figs. 5 and 6.
In the simulations, it is assumed that a z-polarized plain wave illuminates the two-layer structure. As
illustrated, the wave is not perturbed when the dielectric slab has permittivity values of 64 and 100.

Figure 7 shows the total transmission for two arbitrary thicknesses of DNZ slab when the
permittivity value of the dielectric slab is 64. The physical insight for this phenomenon can be explained
as follows.

At the beginning of Section 3.1, it is discussed that the fields inside the DNZ slabs are uniform,
independent of the thickness of the slab. The simulations also show that the field inside the slab is
uniform, and the wave passes across the slab in an instant. The reason is that the phase velocity which
is equal to (ε2μ2)−1/2 is close to infinity when ε1 and μ1 are close to zero. Therefore, the thickness of
the slab does not influence the total transmission effect as the speed of wave is so high that the wave
can pass through the slab with any thickness, instantly.

It is noted that for these simulations, loss has been considered very low as near-zero-index materials
can have very low loss at their zero-index point. The reason is as follows.

Experimental results show that in wave-matter interaction, there is a point where usually the
medium gradually starts to become lossy. It is shown that the point is the beginning of being lossy;
therefore, the material has very low loss at that point.

Another study that shows zero-index materials with very low loss is presented in [32]. It shows that
a striped pattern of two materials with permittivities equal to 2.65 and 7 can create a near-zero-index
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Figure 5. (a) Total transmission for a slab with
ε1 = 63.9 and thickness of 0.75λ0 beside a DNZ
slab with arbitrary thickness. (b) Most of the
signal is reflected for ε1 = 58.7.

(a)

(b)

Figure 6. (a) Total transmission for a slab with
ε1 = 99.9 and thickness of 0.75λ0 near a DNZ slab.
(b) Most of the signal is reflected for ε1 = 105.9.

(a)

(b)

Figure 7. Total transmission through the proposed two-layer structure for two different arbitrary
thicknesses of DNZ slab.

structure at a specific wavelength. At the point where the permittivity crosses the zero value, the loss
is very low (almost zero).

The next section explains the detection of three types of micro-biomolecule proteins using
the proposed two-layer monochromator lens, since they highly interact with wave at three specific
wavelengths.
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4. DETECTION OF THREE TYPES OF MICRO-BIOMOLECULES

The proposed two-layer structure, as the lens/monochromator part of spectrometers is shown in Fig. 8.
As shown, a lamp illuminates light which potentially has a broad spectrum from fL to fH . However,
for the application targeted by this paper, only one frequency is required as the desired frequency (fD).
The proposed lens/monochromator filters out all the undesired wavelengths and keeps fD. The layer
that contributes to the filtering as the monochromator is the high-index slab layer in which its thickness
from Eq. (6) is determined by:

d = pλ0/
√

εr (7)

where p is an integer value, λ0 the desired wavelength at free space, and εr the dielectric constant of
the monochromator. It will be shown that the monochromator has sufficient QF to distinguish the
required wavelength, needed to detect biomolecules listed in Table 1. To our best knowledge, the listed
biomolecules in the table are the only ones that can be detected by their absorbance rate, because they
highly interact with electromagnetic waves in the visible spectrum range [16].

Table 1. The required thickness for a monochromator for different biomolecule types (εr1 = 64).

Biomolecule type
Nucleotides, e.g.,

DNA/RNA [14, 15]
Tyrosine/Tryptophan

[16, 17]
Cytochrome

[18–20]
Absorption wavelength

(nm)
260 280 400

Required thickness for
monochromator, obtained
from Eq. (7) (unit: nm)

16.25, 32.5, . . . 17.5, 35, . . . 25, 50, . . .

As shown in Fig. 8, the monochromatic light is redirected by the two-layer structure to the sample
in cuvette with a path length l. A portion of the light absorbed by the sample is then measured and
known as absorbance (A). Absorbance parameter A is calculated from the intensity of the illuminating
monochromatic wave (I) and the intensity of transmitted wave, passed through the sample cuvette (I):

A = log(I0/I) (8)
Then, Lambert-Beer law is used to calculate extinction coefficient (ε) from the measured absorbance
parameter (Fig. 2):

ε = cl/A (9)

where c is the moles/liter of the material, dissolved in a liquid. The extinction coefficient obtained by
the absorption rate can be used to detect the biomolecules with previously known extinction coefficient.
Therefore, by measuring the parameter A and then ε, one can detect and identify the type of some
biomolecule species.

All the micro-biomolecules, listed in Table 1, are the examples that can be detected by the proposed
two-later structure with the specifications provided in the table for the two-layer structure. To our best
knowledge, these are the main proteins that have high absorbance in the visible range.

As mentioned before, in the structure, DNZ layer operates as a lens. The other layer with high-
index dielectric value is required as the complementary medium to the DNZ layer to increase its NA.
This layer also has an independent role which is a monochromator. The dielectric layer by redirecting
the inclined waves to the desired direction which is close to the normal axis of the lens’s surface interface
increases the NA. For ideal DNZ slabs (where n equals zero), the outgoing wave is always normal to the
interface, independent of the direction of incident wave; however, due to non-zero values of permittivity
and permeability of non-ideal DNZ slabs, the wave is deviated from the normal axis at the interface.
A high-index slab after the lens can correct this deviation and redirect the wave close to the normal
axis. It has been illustrated in Figs. 7 and 8. The phenomenon can be explained from the Snell’s law
of diffraction, as well:

n1 · sin(θ1) = n2 · sin(θ2) (10)
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Figure 8. The proposed flat lens/monochromator, illuminated by a lamp. The frequency spectrum of
the source is within fL to fH . The desired frequency is fD.

where n1 and n2 are the refractive indices of DNZ and high-index dielectric slabs, respectively. The
angles are depicted in Fig. 10. If n1 was zero, the angle θ2 would have been zero, too, which means
that for a perfect zero-index slab, the wave on the right side is normal to the interface, regardless of the
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material of the right side (n2). However, for a DNZ slab, n1 is not exactly equal to zero. Therefore,
if θ1 is high, due to an oblique incidence, to achieve a close to zero value for θ2, n2 should be high.
For instance, if n1 = 0.1 and sin(θ1) = 0.9 (θ1 = 65 degrees), and the other side is free space (n2 = 1),
then from Eq. (10), the outgoing wave is inclined with angle θ2 = 5◦. By replacing the free air with
a high-index material with n2 = 8 on the right side of the DNZ lens, θ2 equals 0.6◦ which is almost
normal to the interface (highly directive wave). The two-layer structure can even work for point sources
like light emission diodes (LED), as the two-layer structure can redirect highly oblique rays, as well, as
it is concluded from Eq. (10) and explained in the above example and also illustrated in Fig. 9.

Another benefit of using high-index material as the monochromator is that, from Eq. (7), it reduces
the thickness of the required monochromator. However, there is a limit for the value of refractive index
of the monochromator. For very high values, the monochromatic performance of the layer becomes
very sensitive to small variation of the thickness of the dielectric slab, caused by manufacturing
errors. Therefore, ultra high-index materials are not suitable for the monochromator. Despite that,
theoretically, very high value of dielectric index can incredibly increase the NA of the DNZ lens and at
the same time highly reduce the thickness. An example of a high dielectric value material with almost
zero loss in the nature is distilled water with dielectric constant of 81.

Another benefit of DNZ slab as the lens is that the total reflection on its interface never occurs.
The condition of total reflection which is also known as critical angle for free-air/DNZ slab is obtained
by equating reflection coefficient equal to unity:

| cos(θc) − 1|/| cos(θc) + 1| = 1 (11)
where θc is the critical angle. From Eq. (11), it is obtained that θc = 90◦. Therefore, for the angles
between 0 and 90◦, the total reflection never occurs which means that there is no critical angle for the
interface. The critical angle equation, presented in [30], also verifies the above conclusion when intrinsic
impedances for interface of two materials are considered equal and when the transmission angle to the
second interface is considered as 90◦.

As an example application of the two-layer structure, Table 1 shows the biomolecules that can be
detected with the specified thickness for the high-index layer with specifications obtained from Eq. (7).
Thickness of the DNZ layer is not important, as it is shown in simulation results in Fig. 7, since it
has no effect on the performance of the two-layer structure. It is noted that for the materials listed
in Table 1, the molar extinction coefficient (ε) is already known. That is why the biomolecules listed
in the table can be identified by EAI, as explained earlier. For instance, at 260 nm, ε of a common
micro-biomolecule known as nucleotide is as [14, 15]: ε260 = 15, 400.
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Constituents of Deoxyribonucleic (DNA) and ribonucleic (RNA) as nucleotides, named at Table 1,
can be detected as they highly interact with the wave of wavelength 260 nm with previously known
extinction coefficient. These nucleotides contain genetic information. The EAI system of Fig. 8 can also
be used to detect proteins, as most proteins have high absorbance at 280 nm wavelength. For instance,
two aromatic amino acids, tyrosine and tryptophan have absorbance values of 6 and 1.5 at 280 nm at
PH6, respectively [16, 17]. Cytochromes are another type of micro-biomolecules with strong absorption
at 400 nm, due to the high iron content in their structure [18–20].

As listed in Table 1, the closest required wavelengths for micro-biomolecule detection are 260 and
280 nm. They are fraction of 0.93 of each other. Fig. 11 shows transmission coefficient of the proposed
two-layer, obtained from Eq. (5), when the refraction-index of the second layer is 8. As it is shown, if
the desired wavelength for the monochromator is 280 nm, and the parameter |T | drops 25% for the next
required wavelength, i.e., 260 nm. Therefore, the monochromator has sufficient QF to distinguish the
wavelengths required for identifying/detecting biomolecules listed in Table 1. It is again noted that based
on our research and best knowledge, the biomolecules listed in Table 1 are the main biomolecules that
can be detected, using EAI. Therefore, the wavelengths mentioned in the table are the only wavelengths
that can interact with biomolecules and therefore can be used for our proposed EAI system.

Figure 11. Transmission coefficient vs. frequency for the two-layer structure with ε1 = 64 and dielectric
thickness of d1 = 0.75λ (λ is the wavelength in free space).

It is noted that, in practice, if the working frequency of the DNZ is not matched with the obtained
frequency of Eq. (6) and deviates from that, the two-layer structure cannot function very well.

5. NON-LINEAR TRANSFORMATION OPTICS BASED LENS WITH HIGHLY
ADJUSTABLE DIRECTIVITY

TO is a technique of producing materials that can manipulate electromagnetic waves in a desired
way [1, 3, 5]. Initially the technique was used to design invisibility cloaks [5]. In this section, we
introduce a TO-based nonlinear lens whose directivity can be tuned. This lens can be used as the DNZ
layer in the previously proposed two-layer structure. If the parameters of the proposed nonlinear lens
are tuned, then like conventional glass-based microscopes, the focus of the light after the flat lens can
be changed and tuned. In practice, the constitutive parameters of materials like graphene can be tuned
by using voltage electrodes and then by tuning the values of the voltage electrodes [31]. Such materials
can be employed for the proposed nonlinear lens.

To generate the nonlinear lens using TO, mapping functions are needed. The proposed mappings
are shown in Fig. 12 which are as follows:

0 → 0 (12a)
d1 → d2 (when d2 → 0) (12b)
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Figure 12. The mappings to obtain material parameters of the proposed non-linear lens with adjustable
directivity using transformation optics.

The reason for choosing the transformation mappings in Eq. (12) is that in an ideal case, the slab
is a linear zero-index material. For this case, wave instantly travels from one side of the slab to the
other side. Therefore, it is like that the wave is mapped from one side to the other side (d1 → d2).
In addition, the transformed space must be matched with the outside material. For that reason, the
mapping of (11a) is applied [1, 3]. Moreover, the parameter d2 → 0 makes the wavenumber zero, which
is essential to creating a near-zero slab in the linear case. The following transformation function can
implement the above mappings:

f(x′) = (dn
2/dm

1 ) x
′m

d2 → 0
n > m, m = 1, 2, 3

(13)

(a) (b)

(c) (d)

Figure 13. The non-linear lens with different values for parameters of (m, n, d2) under illumination
with a point source adjacent to the lens.
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For m = n = 1, the lens is a linear type (DNZ material). After applying the function in Eq. (12)
to the wave equation when illuminating source is a z-polarized transverse magnetic (TMz) plane wave
and from the TO theory, the material parameters of the transformed space is derived as:

εx = μz =
d

n/m
2√

d1

(
n

m

)(
n

m
− 1

)x1− n
2m

d2 → 0
n > m, m = 1, 2, 3

(14)

Figure 13 shows the function of the produced material with different parameters. As it is shown, the
wave front has different directivities for different parameter values of the proposed nonlinear lens.

6. CONCLUSION

In this paper, a flat two-layer structure is introduced that can be used in electromagnetic absorbance
imaging to detect and identify micro-biomolecules with previously known absorbance. The structure
functions as a lens and as a monochromator at the same time. As a flat lens, it has a very high
numerical aperture. As a monochromator, it functions as a high quality factor bandpass filter that
only allows the desired wavelength to be passed. Finally, a nonlinear lens is introduced which can be
replaced as the lens layer. The directivity of the nonlinear lens can be adjusted by tuning its material
parameters. Analytical and numerical results about the performance of the proposed structure are in
good agreement.
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