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Abstract—Nonlinear effect on optical properties of one-dimensional photonic crystal (1D-PC) of the
type (HL)n(LH)m(LLHH)k was investigated. It is an asymmetric hybrid Fabry-Perot resonator type
of 1DPC structure which is composed of linear (H layers) and nonlinear (L layers) materials. The linear
and nonlinear transmission spectra are graphically illustrated using a numerical approach based on the
Transfer Matrix Method (TMM). Results show the appearance of a Perfect Transmission Peak (PTP)
in the photonic band gap which makes the structure constitute a monochromatic filter. By analyzing
this PTP it is shown that the Full-Width at Half-Maximum (FWHM) depends not only on the number
of symmetry layers of the studied 1D-PC but also on the refractive index of the nonlinear layers. The
change of the refractive index (Kerr effect) causes a dynamically shift in the band gap including the
resonance peak. As a result, such a structure has the potential to be used for designing optical filters
and nonlinear optical devices.

1. INTRODUCTION

In recent years, the possibility of designing and controlling the optical properties of materials has shown
their capacity for more valuable applications in optoelectronic devices. An altercation within the optical
properties of the material will cause contrasts within the reactions of the electromagnetic waves and
can be seen within the optical transmission or reflection spectra.

Photonic crystals (PCs) are artificial dielectric structures in which the refractive index can be
modulated in one (1D), two (2D), or three dimensions (3D) on a scale comparable to the wavelength of
operation. The most important characteristic of a PC structure is the Photonic Bandgap (PBG) which
consists on a range of frequencies where the photon can be controlled and manipulated effectively [1, 2].
The simplest geometry of a PC is the one-dimensional photonic crystal (1DPC). It is known by the name
of Bragg mirror where the periodicity exists only in one dimension. It consists of a stack of alternating
layers having low and high refractive indices whose thicknesses satisfy the quarter-wave condition [3, 4].

1D linear PC has potential applications in various fields such as nanolaser [5], high-quality filter [6],
and tunable mirror [7]. Recently, it is used in sensing applications like gas sensing [8] and bacterial
contaminants sensing [9].

Lately, employing nonlinear elements in PCs opens up lots of new design opportunities. In
comparison to ordinary linear PC structures, many interesting phenomena have been demonstrated using
optically nonlinear components in PCs such as third-harmonic generation [10], four-wave mixing [11],
and optical bistability [12]. When non-linearity is incorporated into a photonic crystal, the light
propagation can be controlled dynamically [13], due to the intensity dependency of the refractive
index (Kerr effect). Kerr nonlinearity modifying the refractive index holds great importance due to
its suitability in ultra-fast devices.
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In this regard, one-dimensional nonlinear photonic crystals (1D-NLPCs) which consist of Kerr-
nonlinear materials (semiconductors, glasses, and polymers) [14], have been of specific interest to
researchers. They are used in promising applications in integrated optical devices such as low-threshold
optical limiting [15], short pulse compressors [16], all-optical switching [17], and all-optical diodes [18].

The aim of this work is the application of a numerical approach based on the Transfer Matrix
Method (TMM) to simulate the propagation of light through an asymmetric hybrid Fabry-Perot
resonator structure of the 1D-PC type. This structure includes both linear and nonlinear optical
layers. Then study the effect of the non-linearity (the Kerr effect) on the optical properties of this
structure. The application of this model for designing optical filters and nonlinear optical devices as
optical limiting, all-optical switching, and all-optical diode seems promising.

2. MODEL AND THEORY

The method that we introduce here for calculating the optical response of asymmetric quasiperiodic
1D-PC is the Transfer Matrix Method (TMM). Referring to Abeles method, we obtain the amplitude
of the electric fields of the incident wave E+

0 and the reflected wave E−
0 as a function of both the

transmitted and reflected electric field amplitudes within the mth layer [19–22]:(
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Here Cm is the transfer matrix defined as [23, 24]:
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The phase shift ϕm between the layers (m) and (m + 1) is expressed by [25]:

ϕ0 = 0; ϕm =
2π
λ

nmdmcos(θm) (3)

where λ defines the wavelength of the incident light in the vacuum, and nm, dm and θm are respectively
the refractive index, thickness, and refractive angle of the mth layer.

The Fresnel transmission and reflection coefficients are given by [26]. The total reflection and
transmission coefficients, which correspond to the amplitude reflectance r and transmittance t are given
by:

r =
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The quantities T11 and T21 are the matrix elements of the all product matrix Cm [26].
m+1∏

1

Cm =
(
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)
(6)

All the results in this work are given in normal incidence, so the transmittance T for both
polarizations TM and TE is the same.

3. RESULTS AND DISCUSSIONS

In the following numerical investigation, we choose to study a 1D asymmetric photonic crystal built
according to the structure (HL)n(LH)m(LLHH)k (Fig. 1). The materials and their parameters for the
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Figure 1. Schematic of 1D-PC structure with the asymmetric arrangement (HL)n(LH)m(LLHH)k.

H and L layers were chosen by Zhukovsky and Smirnov [27], where TiO2 was used for the H layers and
polydiacetylene 9-BCMU for the L layers. Their linear refractive indexes are respectively nH = 2.3 and
nL = 1.55. It should be noted that the nonlinear refractive index of the layer L depends on the electric
field intensity and is given by nNL

L = nL · (1 + χ(3)|E|2/2) with χ(3) being the susceptibility or the Kerr
coefficient [28].

The optical thicknesses of H and L layers were restricted by the quarter wavelength condition, i.e.,
nHdH = nLdL = λ0/4, in which λ0 is the reference wavelength and is taken to be λ0 = 572 nm in
numerical calculations. The well-known simple and powerful Transfer Matrix Method is employed to
obtain the transmittance spectrum through the proposed structures.

3.1. Linear Properties of the Structure

In this part, we investigate the linear properties of the 1D-PC structure (HL)n(LH)m(LLHH)k. It
should be noted that all the layers are linear. We start by studying the influence of the iteration numbers
n, m, and k on the transmission spectrum to optimize them. In Fig. 2, we plot the transmission spectrum
as a function of the normalized frequency (ω/ω0) and n for some values of m and for k = 2 in order to
find the optimal numbers of iterations which give a perfect transmission peak.

From Fig. 2, we can see the appearance of a resonance peak in the middle of the Photonic Band
Gap (PBG). The intensity of the transmitted frequency takes different values for each m and n, and the
maximum intensity of the peak is obtained when n and m are equal. These results are demonstrated
in Fig. 3.

Assuming n = m = j, the transmitted peak keeps the same position exactly at ω = ω0 for different
iterations j (see Fig. 4). This structure can constitute a monochromatic filter: the appearance of this
single Perfect Transmission Peak (PTP) is due to the symmetric part of the structure (HL)j(LH)j .
Further studies revealed this result [29–31].

The results obtained in Fig. 5(a) show the effect of the increase in the number of iterations j on the
Full-Width at Half-Maximum (FWHM) of the resonance peak for the structure (HL)j(LH)j(LLHH)k.
We note that when the repeated number j increases, the FWHM decreases, and the quality factor Q
increases (see Fig. 5(b)).

As it is known, the quality factor Q depends on the FWHM of the transmission peak. In addition,
it makes it possible to quantify the “quality of a filter”: indeed, when Q is high, the peak becomes finer
which makes it more significant in terms of its reliability. Moreover, the filter becomes selective. In our
case, Q is maximum for j = 9 (44 layers). Indeed, for this iteration value we have an important quality
factor Q = 5882.35 and a narrow FWHM, Δ(ω/ω0) = 0.00017. According to these optical properties of
the resonance peak, our structure can be used as an optical filter.

Furthermore, the existence of these PTPs in asymmetric structures is promising in designing
nonreciprocal optical devices such as nonlinear all-optical diodes. This result is revealed by many
works [32–35]. Indeed, a spatially asymmetric light localization associated at resonance induces a
nonreciprocal nonlinear optical response, while perfect transmission ensures that reflection losses remain
small.
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(a) (b)

(c) (d)

Figure 2. Transmitted spectrum versus ω/ω0 and n, for k = 2 and for (a) m = 4, (b) m = 5, (c) m = 6
and (d) m = 7.
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Figure 3. Transmitted peak’s intensity Ipeak versus number of iterations n, for m ∈ [4, 9] and k = 2.
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Figure 4. Linear transmission (LT) spectrum as a function of ω/ω0 and j, for k = 2.
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Figure 5. Variation of (a) FWHM and (b) the quality factor Q for different repeated number j.

3.2. Nonlinear One-Dimensional Structure

After studying the linear properties of the 1D structure (HL)n(LH)m(LLHH)k and showing that it
presents a monochromatic filter of good quality, we investigate, in this part, the effect of nonlinear
optical properties, precisely the impact of third-order optical non-linearity on the resonance peak and
the PBG. We assume that a Kerr nonlinearity with χ(3) = 2.5 × 10−5 cm2/MW is present in all low
refractive index layers.

3.2.1. Non-Linearity Effect of Layers L

Firstly, the field intensity and iteration number k are fixed respectively at I = 50 MW/cm2 and k = 2.
In Fig. 6(a), we represent the intensities of the peak for different values of m and n. The results

show that the intensity of the peak becomes maximum when j is less than or equal to 6 assuming
n = m = j. These results are demonstrated in Fig. 6(b).
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Figure 6. (a) Transmitted peak’s intensity versus n, for m ∈ [2, 9], k = 2, and input intensity
I = 50 MW/cm2. (b) Maximum peak intensity as function of j.

For the selected value of input intensity, the PBG and peak position are slightly shifted towards
ω/ω0 = 0.982 and remain constant for the different values of j (see Fig. 7). This shift is in good
agreement with the works of Maksymov et al. [36], Bhargava and Suthar [37], and Meng et al. [38].

Figure 7. Nonlinear transmission (NLT) spectrum according ω/ω0 and j for k = 2.

For the 1D NLPC, the shift of the band structure can be explained using Scalora et al.’s
approach [39]. Indeed when Kerr nonlinearity is introduced in the PCs, the value of the refractive
index changes which results in a dynamic shift of the forbidden band and the resonance peak. This
process is the basis for intensity-driven optical limiting and all-optical switching. In these devices, the
refractive index is changed by a high-intensity incident beam to dynamically control the transmission
of light. Under this condition, the optical limiting is achieved by modifying the incident intensity while
the all-optical switching requires an additional strong pump beam to control the switching of a weak
probe signal tuned to the band gap region [36, 37].
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Figure 8. Variation of (a) FWHM and (b) the quality factor Q according to j for the 1D NLPC
structure.

In Fig. 8, we represent the effect of the increase in the number of iterations j on the FWHM
Δ(ω/ω0) of the resonance peak and the quality factor Q. In comparison with the linear case, we find
that the FWHM also decreases as a function of j, but it takes larger values (it is still narrow) than the
linear case which gives a lower quality factor; for example for j = 6, we have Q = 307, and in the linear
case we have Q = 431.

Considering j = 6, we have a perfect resonance peak with narrow FWHM Δ(ω/ω0) = 0, 00319,
and the structure has low number of layers (32 layers). Therefore, we can define the optimal
numbers of iterations j = 6 and k = 2. In the rest of this work, the studied structure becomes
(HL)6(LH)6(LLHH)2.

3.2.2. Effect of the Field Intensity

In this part, we will study the effect of the field intensity on the optical properties of the chosen structure.
For this we represent in Fig. 9 the transmission spectrum of the chosen 1D photonic crystal in the linear
regime (LT) (solid curve) and in the nonlinear regime (NLT) (dashed curve). In the nonlinear case, the
results are presented for different values of input intensity I.

Increasing the electric field intensity I inside the layers having a low refractive index with nonlinear
response changes their refractive index. According to Table 1 and Fig. 9, we notice that the bandgap
width (ΔPBG) is decreased by increasing I, while the FWHM of the resonance peak is increased. So the
FWHM depends not only on the number of symmetry layers of 1D-PC but also on the refractive index
of the nonlinear layers.

Table 1. The effect of the field intensity on the resonance peak and the bandgap width.

Field intensity I (MW/cm2) FWHM ΔPBG Peak position Bandgap position

0 237 0.359 1 0.821 to 1.180

50 341 0.338 0.943 0.814 to 1.152

80 493 0.308 0.939 0.805 to 1.115

100 609 0.283 0.913 0.797 to 1.081
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Figure 9. Linear (solid curve) and nonlinear transmission spectra (dashed curves) for
(HL)6(LH)6(LLHH)2 structure with different input intensities.

It can also be noted that if I is low (I = 15 MW/cm2), the NLT peak is very close to the linear regime
(LT). However, if I is high, the bandgap including the resonance peak alters and shifts dynamically
towards lower normalized frequencies. This shifting is in good agreement with the results of Kumar et
al. [40].

The dynamic shifting of the PBG or the resonance peak can produce optical bistability phenomena
as proved in the references [12, 41, 42].

According to the above statements, the intensity of the incident light is one of the important
parameters that can affect the nonlinear transmittance through the structure.

So given all the above, our model can be used as an optical filter due to the PTP, also in nonlinear
optical devices like all-optical diodes, optical limiting, and all-optical switching. In addition, because
of the spatially asymmetric configuration of the structure and the PTP, it just requires an anisotropic
field intensity distribution inside the layers, and it will act as all-optical diode. Optical limiting and
all-optical switching can be achieved by the dynamic shift of the PBG or the resonance peak.

4. CONCLUSION

In conclusion, we have studied the linear and nonlinear optical properties of the asymmetric one
dimensional structure (HL)n(LH)m(LLHH)k. We have shown that for n = m = j the linear
transmission spectra of the structure contain a Perfect Transmission Peak in the middle of the forbidden
bandgap. This PTP is due to the symmetric part of the structure (HL)j(LH)j which constitutes a
monochromatic filter. In the nonlinear case, we have noted a dynamically shift in the position of the
PBG and the resonance peak towards lower frequencies. This shifting is due to the Kerr effect which
is a promising nonlinearity as it means the change of the refractive index of material in response to the
applied electric field. Then we have fixed j = 6 and k = 2 which gives a minimum number of layers (32
layers). We have demonstrated that the optical properties of the PBG and the resonance peak depend
on the input field intensity I.

Our asymmetric 1D system exhibits both a perfect transmission peak in the linear regime and
a bandgap shift in the nonlinear regime. In this study as valuable results, we find that our model
is suitable for different applications as optical filters, all-optical diode, optical limiting and all-optical
switching.
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