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Efficient Evaluation of the Time-Harmonic Response in Central Loop
Electromagnetic Sounding
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Abstract—This work presents an efficient method that allows to accurately calculate the time-harmonic
vertical magnetic field generated at the center of a large current-carrying coil of wire positioned above a
layered ground. The method consists of evaluating the integral representation for the vertical magnetic
field by using a hybrid procedure. At first, the direct and ideal reflected fields are extracted from the
total magnetic field and expressed in explicit form. Then, the non-analytic part of the integrand of the
remaining contribution is replaced with a sum of partial fractions, obtained by using a rational function
fitting algorithm. Finally, the resulting sum of integrals is analytically evaluated and turned into a sum
of modified Bessel functions of the second kind. The obtained expression for the magnetic field is then
used to evaluate the voltage induced in a small receiving loop co-axial with the transmitting loop.

1. INTRODUCTION

Electromagnetic sounding is a well-known method of exploration of terrestrial areas, based on
interpretation of measurements of the voltage induced in the receiver of a transmitter-receiver loop
system [1–23]. In particular, information about the subsurface structure is acquired by solving the
inverse problem of searching for the layered earth model that best matches the measurement data.
Conventional iterative algorithms used for solving nonlinear inverse problems require the solution of a
number of forward problems within an optimization loop [2, 4, 18]. Hence, the efficiency of the inversion
procedure depends on that exhibited by the algorithm used for the calculation of the induced voltage
and the generation of the theoretical response curves. In geophysical applications, it is a common
practice to perform the measurements by positioning a small receiving loop at the center of a physically
large transmitting loop. Yet, in spite of the widespread application of this technique, the problem of
calculating the vertical magnetic field induced at the center of a large circular loop located above a
layered earth is still far from being solved, and a solution can be derived only under the assumptions of
single-layer ground and quasi-static field [10]. Except for that case, the radiated field and the voltage
induced in the smaller loop can only be computed numerically, by resorting to integration techniques
or simulations tools for solving EM boundary value problems [10, 23, 24].

This work presents an efficient hybrid analytical-numerical procedure for calculating the voltage
response of a central-loop EM sounding system located above a layered medium. The procedure provides
explicit expressions for the vertical magnetic field generated by the primary loop and the voltage induced
in the small receiving loop, which are not subject to simplifying assumptions and are valid in a wide
frequency range. The expressions are obtained starting from the decomposing the integral representation
for the vertical magnetic field along the axis of the loops into three terms, that is the direct field, the
ideal reflected field, and an additional correction term due to the imperfect conductivity of the ground.
After making explicit the first two terms, a least squares-based fitting procedure is used to generate a
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rational approximation, in pole-residue form, for the even part of the integrand of the correction term.
This leads to turn the original integral describing the correction term into a sum of known and tabulated
integrals. As a result, the vertical magnetic field and the voltage induced in the secondary loop are
expressed as combinations of exponential functions and modified Bessel functions of the second kind.

2. THEORY

The problem under study is depicted in Fig. 1. A large transmitting circular loop and a co-axial small
receiving loop are positioned at height h and d, respectively, above an N -layer lossy ground. The
dielectric permittivity, electric conductivity, and magnetic permeability of the nth layer of the medium
are indicated with εn, σn, and μn. The primary loop, with radius b, carries the sinusoidal current Iejωt,
and produces at the center of the secondary loop the vertical magnetic field [10, Eqs. (4.19), (4.88)]
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where Jν(ξ) is the νth-order Bessel function, and

un=
√

λ2 − k2
n, k2

n=ω2μnεn − jωμnσn, (2)

while Y0 and Ŷ1 are, respectively, the intrinsic admittance of free-space (zeroth layer) [10, Eq. (4.21)]
and the surface admittance at the air-ground interface [10, Eq. (4.23)]. The intrinsic admittance of the
nth layer of the medium is given by Yn=un/(jωμn) [10, Eq. (4.27)], and the surface admittance at the
upper boundary of the nth layer may be obtained from the recurrence relation [10, Eq. (4.25)]

Ŷn = Yn
Ŷn+1 + Yntanh(untn)
Yn + Ŷn+1tanh(untn)

, n=N−1, . . . , 1, (3)

with ŶN=YN , and where t1, t2, . . . , tN−1 are the thicknesses of the N−1 finite layers. The aim of this
work is to derive explicit expressions for Hz and the voltage induced in the receiving loop. To this goal,
we notice that the fraction in the integrand of the second integral in Eq. (4) may be rewritten in the
form
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(4)

which allows to decompose Eq. (4) into three terms, namely the direct field produced by the source
loop, the reflected field due to an ideal negative image, and a correction term. It reads
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Figure 1. Two horizontal co-axial loops above a layered ground.
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where the function Φ(ζ) is known and given by [25]

Φ (ζ) =
Ib

2

∫ ∞

0

e−u0ζ

u0
J1(λb)λ2dλ =

(1 + jk0r) Ib2

2r3
e−jk0r, (6)

with r=
√

b2 + ζ2. The last integral on the right-hand side of Eq. (5) may be evaluated after expressing
the fraction of the integrand, that is an even function of λ, in pole-residue form by means of a rational
approximation. In particular, the well-known least squares-based fitting procedure described in [26] can
provide the following representation [27, 28]
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with L being the order of the approximation. In virtue of Eq. (7) and the differentiation properties of
the Bessel functions, the last integral in Eq. (5) becomes∫ ∞
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and after applying the identity [25]∫ ∞
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with K0(ξ) being the zeroth-order modified Bessel function of the second kind, one obtains∫ ∞
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J1(λb)λ2dλ ∼= j
L∑

l=1

rl
∂

∂b
K0(

√
jplb) = −j

L∑
l=1

rl

√
jplK1(

√
jplb). (10)

Finally, use of Eq. (10) together with Eq. (6) into Eq. (5) provides an explicit expression for the Hz-field,
that is
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and under the assumption that the receiving loop is both electrically and physically small (small loop
approximation), the voltage induced in it may be expressed as [10]
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3. NUMERICAL RESULTS

The validity of Eqs. (11) and (12) is tested through comparison of their outcomes with the data provided
by Gaussian numerical integration of Eq. (1), performed by using Quadpack library contained in the
Slatec mathematical libraries. First, the proposed expressions are used to calculate the amplitude-
frequency spectra of the central vertical magnetic field and the voltage response of a source-receiver
system placed on the surface of a two-layer soil (h=d=0), constituted by an alluvial fill, 4m in thickness,
covering a bedrock terrace (ε1=ε2=10 ε0, σ1=100 mS/m, σ2=1mS/m, μ1=μ2=μ0). The large source loop
carries 1A of current, and its radius is taken to be equal to 10 m. On the other hand, the radius of
the small loop, co-planar and co-axial with the former, is 50 cm. The order L of the approximation in
Eq. (7) is taken as a parameter and, for any fixed value of it, the corresponding set of pole-residue pairs
results from a procedure that consists of repeatedly applying the fitting algorithm in [26], until the root
mean square (RMS) relative error of the approximation in Eq. (7) falls below the tolerance of 10−4.
The results of the computation are depicted in Figs. 2 and 3, where, in particular, the induced voltage
per unit current is referred to as the mutual impedance of the loops. The plotted curves show that, as
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Figure 2. Amplitude of the vertical magnetic
field against frequency.
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Figure 3. Mutual impedance of the two loops
against frequency.

L grows up, the frequency spectra arising from Eqs. (11) and (12) approach the corresponding trends
provided by Gaussian quadrature, and that perfect agreement is obtained when L=30. Agreement is not
obtained at the price of a considerable time cost. In fact, on a single-core 2 GHz processor, the average
computation time taken by the fitting-algorithm described in [26] to generate the required 30 pole-
residue pairs is slightly less than 3 s, while 7.6 s are taken by Gaussian quadrature of Eq. (1) to produce
the results depicted in Fig. 2, and this implies that the proposed approach is advantageous in terms of
time cost with respect to numerical integration procedures. Figs. 2 and 3 also tell us that for L<30
the proposed method does not succeed in providing sufficiently accurate results. This aspect is further
investigated in Fig. 4, which illustrates the relative error of the outcomes of Eq. (11) plotted in Fig. 2, as
compared to numerical integration data. As can be noticed, when L=22 or L=26 the relative error is in
general non-negligible. In particular, it is higher than 10% in a wide frequency range, even if significant
reductions are observed for frequencies higher than 1MHz. Instead, when L=30 the error is almost
always smaller than 1%, and beyond 1MHz it dramatically decreases as frequency is increased, down to
10−6 at 10 MHz. It should be observed that increasing L improves the computational accuracy because
it breaks down the RMS relative error of the approximation in Eq. (7). In fact, repeated application of
the algorithm in [26] allows to obtain average RMS errors equal to about 5.6 · 10−5 for L=22, 7.4 · 10−6

for L=26, and 3.2 · 10−9 for L=30. This means that, for any considered value of L, we are able to
approximately predict the final computational accuracy, by checking whether the corresponding RMS
error of Eq. (7) is smaller than, comparable to, or larger than 10−9. Moreover, Fig. 4 also suggests that
at lower frequencies and, hence, for smaller values of the wavenumbers, higher values of L are required
in order to minimize the RMS error of Eq. (7) and achieve accurate results. The same happens when
the electrical conductivities of the layers are reduced, since the reduction leads to smaller values of the
wavenumbers. Finally, Fig. 5 shows a set of theoretical response curves that may be used for interpreting
previously recorded on-site measurements data. The curves come from applying Eq. (12) with L=30,
under the hypothesis that the dimensions of the antennas and their positions are the same as in the
previous example. Here, it is assumed that ε1=ε2=10ε0, σ1=10 mS/m, μ1=μ2=μ0, and d1=1 m, while
the conductivity contrast σ2/σ1 is taken as a parameter, which is usually done to make it possible real
data interpretation. As pointed out by the plotted curves, increasing the conductivity contrast has the
effect of moving the amplitude-frequency spectrum of the mutual impedance between the source and
the receiver downwards. In particular, a significant degree of dissimilarity is observed among the four
plotted spectra of the mutual impedance, this implying good resolution of the EM sounding technique,
which increases the chances to determine the real electrical conductivity of the bottom-most layer.
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Figure 4. Relative error of (11) as compared to
numerical integration.
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Figure 5. Mutual impedance against frequency,
with σ2/σ1 taken as a parameter.

4. CONCLUSIONS

This work has presented a method for efficiently evaluating the time-harmonic vertical magnetic field
produced at the center of a large loop antenna positioned above a layered ground. After extracting
the direct and ideal reflected fields from the integral representation for the vertical magnetic field,
the non-analytic part of the integrand of the remaining integral term has been replaced with a rational
function obtained by using a well-known fitting algorithm. Then, the resulting sum of integrals has been
converted into a sum of modified Bessel functions of the second kind. Performed numerical tests have
confirmed that the obtained expression for the vertical magnetic field converges to the exact solution to
the problem and that it is advantageous in terms of time cost over numerical integration procedures.
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