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Full Wave Analysis of Multilayered Cylindrical Resonator Containing
Uniaxial Anisotropic Media

Krzysztof Derzakowski*

Abstract—The method of evaluating the resonant frequencies of a multilayered cylindrical resonator
containing uniaxial anisotropic materials is presented. The detailed solution of Maxwell’s equations for
such a structure by means of the radial mode matching method is given. The results of calculations
using developed and launched computer program are given, and they are compared with those obtained
by other methods and with measurements. These results are in close agreement, which proves the
correctness of the method. The developed solution and the software program can be used to measure
the permittivity tensor of materials.

1. INTRODUCTION

The development of materials technology makes that newly created materials have previously
unattainable electrical properties. They are very quickly adapted to the fabrication and construction
of systems in the field of electronics. Dielectric materials produced and used in electronics have a wide
range of relative permittivity — from a few to a few thousands and the loss tangent — from a few to
10−7. These parameters may vary depending on the frequency as well as a function of the direction
(anisotropic materials) and the applied external electric field (ferroelectrics). The use of such materials
in electronics enforces the need for accurate knowledge of their electrical parameters. It is therefore
necessary to develop newer and better methods to measure these materials.

At microwave frequencies, for dielectric with a relative permittivity greater than 10, resonant
methods are most often used, in particular dielectric resonator method [1]. The advantage of this
method has very good accuracy to determine material parameters, and the measurements are easy. The
resonant frequency and Q-factor of the structure, which includes sample test material are measured
at once [2]. The material parameters are determined from the equations describing the resonance
conditions of the test structure. There are many ways to derive these equations; however, the most
accurate ones appear to be mode matching methods, either radial or axial.

In the literature there are numerous studies enabling the calculation of the resonant frequency of
the structure used in the measurement, but most commonly they involve a simple structure composed
of a small number of layers of material, for example: post dielectric resonator [3], microstrip line
structure [4], and the like. The most advanced solution relates to a multilayer dielectric resonator which
can contain up to 10 regions and 10 layers in each of them, but dielectrics included in the system are
described by scalar relative permittivity [5, 6].

It is possible to use any electromagnetic simulator, e.g., CST [7], QuickWave [8], HFFS [9], to
calculate the resonant frequency of a complex structure. However, each of these simulators uses
approximations of partial differential equations, so the accuracy of the calculations is limited. In 3D
simulators, the structure is meshed, and accuracy of the computations depends on the mesh size. Thus,
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the accuracy depends on the quantization of space. It can also depend on the quantization of time
(in FDTD), dispersion, round-off errors, etc. The computation time in some simulators may be much
longer than in the presented solution. The price of commercial electromagnetic simulators is also an
important factor, but it must be added that the 3D electromagnetic simulators can be used to any type
of structures, which is their main advantage.

In this paper, a solution employing the radial mode matching method for the multilayered resonator
containing materials with tensor permittivity, with assumed uniaxial anisotropy, is presented. Although
studies on the structure containing uniaxial anisotropic materials are presented in the literature, they
are related to simple structures [10–15]. In this work, a solution of the Maxwell equations for the
multilayered resonator, which may contain up to 20 regions and 20 layers of each of them, which is more
than exhaustive demand is presented.

2. THE SOLUTION OF BOUNDARY VALUE PROBLEM FOR THE RESONATOR
WITH ANISOTROPIC MEDIA

The simplified general structure of the multilayered dielectric resonator is shown in Fig. 1.

Figure 1. Multilayered dielectric resonator.

It consists of three regions I, II, and III with axial symmetry. The number of these regions can be
equal to a maximum of 20 in the developed program. The first region thus has a cylindrical shape, and
the next ones are rings. In each region there is a number of layers of material having different relative
complex tensor permittivities. The structure is enclosed by a metal cylinder whose radius R3 may be
infinite. The structure does not affect constant or slowly varies external magnetic field.

The solution of structure shown in Fig. 1 makes possible to determine the resonant frequency fo of
all modes and additionally corresponding components of the electromagnetic field.

The stated problem boils down to solving Maxwell’s equations for such a structure. Due to the
rotational symmetry of the analyzed structure, the Maxwell equations will be solved in a cylindrical
coordinate system.

Maxwell’s equations in each layer of each region can be written as (given the absence of charges
and currents sources): ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇× �E = −jω �B (1)
∇× �H = jω �D (2)
∇ · �D = 0 (3)
∇ · �B = 0 (4)

Taking into account the linearity and anisotropy of the media belonging to the resonator and the
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lack of magnetic properties, the following is obtained:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇× �E = −jωμo
�H (5)

∇× �H = jω ¯̄ε �E (6)
∇ · (¯̄ε �E) = 0 (7)
∇ · �H = 0 (8)

where: ¯̄ε =

[
εt 0 0
0 εt 0
0 0 εz

]
is a complex permittivity tensor of uniaxial anisotropic medium.

Transforming (5 ÷ 8) using vector calculus and field properties in the medium, finally we obtain
two equations for the Ez and Hz components in the form:

1
r

∂

∂r

(
r
∂Ez

∂r

)
+

1
r2
∂2Ez

∂ϕ2
+
εz
εt

∂2Ez

∂z2
+ ω2μ0ε0εzEz = 0 (9)

1
r

∂

∂r

(
r
∂Hz

∂r

)
+

1
r2
∂2Hz

∂ϕ2
+
∂2Hz

∂z2
+ ω2μ0ε0εtHz = 0 (10)

The remaining components are determined from Eqs. (5) and (6). After solving these equations in a
cylindrical coordinate system and making transformations, we obtain:

∂2Eϕ

∂z2
+ ω2εoεtμoEϕ =

1
r

∂2Ez

∂z∂ϕ
+ jωμo

∂Hz

∂r
(11)

∂2Er

∂z2
+ ω2εoεtμoEr =

∂2Ez

∂z∂r
− jωμo

1
r

∂Hz

∂ϕ
(12)

∂2Hϕ

∂z2
+ ω2εoεtμoHϕ =

1
r

∂2Hz

∂z∂ϕ
− jωεoεt

∂Ez

∂r
(13)

∂2Hr

∂z2
+ ω2εoεtμoHr =

∂2Hz

∂z∂r
+ jωεoεt

1
r

∂Ez

∂ϕ
(14)

Equations (9) and (10) are solved separately in each layer of each of the regions by using the
method of separation of variables, and then the solutions are “stitched” on the borders of regions
(r = R1, R = R2), ensuring continuity of tangential components. Assuming that in Equation (9)
Ez(r, ϕ, z) = Re(r) ∗ Fe(ϕ) ∗ Ψ(z), we obtain a system of three equations depending only on single
variable each:

d2Fe(ϕ)
dϕ2

+m2Fe(ϕ) = 0 (15)

r2
d2Re(r)
dr2

+ r
dRe(r)
dr

+ (tr2 −m2)Re(r) = 0 (16)

d2Ψ(z)
dz2

+
(
k2
0εt −

εt
εz
t

)
Ψ(z) = 0 (17)

where: k2
o = ω2εoμo.

The solution of Equation (15) can be written as: Fe(ϕ) = a1 cos(mϕ + ϕo), where a1 and ϕ0 are
constants. Due to the required periodicity of the function Fe(ϕ) = a1 cos(mϕ + ϕo) value m must be
integer m = 0, 1, 2, ...

Equation (16) is for t > 0, the Bessel equation of the m-th order, and for t < 0, the modified Bessel
equation of the m-th order. Its solutions for t > 0 are Bessel functions of the first kind of the m-th order
— Jm(

√
tr) and Neumann functions (Bessel functions of the second kind) of m-th order — Nm(

√
tr).

And for t < 0 solutions of Eq. (16) are modified Bessel functions of the first kind of the m-th order
— Im(

√
tr) and the second kind of the m-th order — Km(

√
tr). It should be noticed that for the I-st

region taking into account the Neumann function is not justified physically.
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In each layer of the region, a permittivity is constant, and the solution of Eq. (17) is a set of
functions Ψn(z) that are a linear combination of trigonometric functions sin(vniz) and cos(vniz) type,
wherein:

v2
ni

= k2
oεt −

εti
εzi

tn (i = 1, 2, ...,M, n = 0, 1, 2, ...)

If ν2
ni
< 0, trigonometric functions should be replaced by the corresponding hyperbolic functions,

i.e., sinh(vniz) and cosh(vniz). Since functions Ψn(z) must be defined for the entire height of the region,
we must ensure appropriate conditions of continuity on the electrical walls and separation planes of the
various layers. These conditions are identical to those for the Ez component of the electromagnetic
field, i.e.,

ε−z Ψ−(li) = ε+z Ψ+(li) — step change on the border of separation of layers;
Ψ′(0) = Ψ′(L′) = 0 — the disappearance of the derivative on the surface of the metal planes

where: Ψ−,Ψ′−,Ψ+,Ψ
′+ — are values of the function Ψ and its derivative on the left and right hand

side of the border between layers, li =
i∑

p=1
hi (i — number of a layer).

The fulfillment of these conditions is reflected in the function Ψn(z) for the region. tn values for
which one can construct the desired function Ψn(z) must have appropriate values. These are called
eigenvalues of Eq. (17), and the corresponding functions are called eigenfunctions. All eigenvalues form
an infinite sequence of values decreasing.

Completely analogously, one can solve Eq. (10), assuming an Hz component of the form:

Hz(r, ϕ, z) = Rn(r) ∗ Fn(ϕ) ∗ Φ(z).

Finally a system of three equations of a single variable is obtained:

d2Fn(ϕ)
dϕ2

+m2Fn(ϕ) = 0 (18)

r2
d2Rn(r)
dr2

+ r
dRn(r)
dr

+ (λr2 −m2)Rn(r) = 0 (19)

d2Φ(z)
dz2

+ (k2
0εt − λ)Φ(z) = 0 (20)

Equations (18) and (19) are solved identically to Eqs. (15) and (16), but in Eq. (19) the argument will
be equal to

√
λr.

Differences between the solution of Eq. (20) and the solution of Eq. (17) due to different boundary
conditions are fulfilled by the components Hz and Ez. Function Φn(z), fulfilling the same conditions as
Hz must be:

- continuous on the boundary separating layers: Φ−(li) = Φ+(li)
- satisfy the requirement to disappear on the surfaces of metal plates: Φ(0) = Φ(L′)

where: Φ−,Φ′−,Φ+,Φ′+ — are values of a function Φ and its derivative on the left and right hand sides
of the boundary.

Thus components Ez and Hz can be represented as:

Ez(r, ϕ, z) = A cos(mϕ+ ψo)Ψn(z)Bm(
√
tnr) (21)

Hz(r, ϕ, z) = B sin(mϕ+ ϕo)Φn(z)Bm(
√
λnr) (22)

where: B(x) — is the Bessel function.
Other field components are calculated from Eqs. (11)–(14). When these equations are solved,

variables r and ϕ should be treated as parameters. Each of these equations (assuming that Ez �= 0 and
Hz �= 0) can be written as an inhomogeneous equation of the second order in the following form:

∂2G(r, ϕ, z)
∂z2

+ k2
0εt(z)G(r, ϕ, z) = P (r, ϕ, z) (23)
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The function P (r, ϕ, z) is known, calculated using the formulas for components Ez and Hz and
dependencies in Eqs. (15), (16), and (17) (right hand side) of the following form:

P (r, ϕ, z) = P1(r, ϕ)ξΨn(z) + P2(r, ϕ)ξΦn (z) (24)

where — depending on the solved equation (11÷14) — ξΨn(z) means a function εt(z)Ψn(z) or Ψ′
n(z), and

ξΦn(z) functions Φn(z) or Φ′
n(z). These functions are determined by Equations (15)–(17) substitution

depending on the components Ez(r, ϕ, z) and Hz(r, ϕ, z). For example, for Equation (11), Equation (23)
takes the form:

∂2Eϕ(r, ϕ, z)
∂z2

+ k2
oεt(z)Eϕ(r, ϕ, z) =

1
r

∂2Ez(r, ϕ, z)
∂z∂ϕ

+ jωμo
∂Hz(r, ϕ, z)

∂r
(25)

Substituting Ez(r, ϕ, z) and Hz(r, ϕ, z), and performing simple transformations, we obtain:

∂2Eϕ(r, ϕ, z)
∂z2

+ k2
0εt(z)Eϕ(r, ϕ, z) = −1

r
Am sin(mϕ+ ψ0)Ψ′

n(z)Bm(
√
tnr)

+jωμ0B
√
λn sin(mϕ+ ϕ0)Φn(z)B′

m(
√
λnr) (26)

Hence:

P (r, ϕ, z) = −1
r
Am sin(mϕ+ ψo)Ψ′

n(z)Bm(
√
tnr) + jωμoB

√
λn sin(mϕ+ ϕo)Φn(z)B′

m(
√
λnr)

P1(r, ϕ) = −1
r
Am sin(mϕ+ ψo)Bm(

√
tnr),

P2(r, ϕ) = jωμoB
√
λn sin(mϕ+ ϕo)B′

m(
√
λnr)

and ξΨn(z) = Ψ′
n(z), ξΦn(z) = Φn(z).

The particular solution of the differential Equation (23) is the following function:

G(r, ϕ, z) =
εz
εt

1
tn
P1(r, ϕ)ξΨn(z) +

1
λn
P2(r, ϕ)ξΦn (z) (27)

what can be proved by substituting this function to Eq. (23).
The electromagnetic field distribution in each region can be represented as an infinite linear

combination of all radial waveguide modes Eα
mn and Hα

mn (where α = I, II, ...,XX), so the components
of the electromagnetic field can be written as:

E(α)
z (r, ϕ, z) =

∞∑
i=0

[
a

(α)
i Jm

(√
t
(α)
i r

)
+ b

(α)
i Nm

(√
t
(α)
i r

)]
Ψ(α)

i (z) cos
(
mϕ+ ψ

(α)
i

)
(28)

H(α)
z (r, ϕ, z) =

∞∑
i=1

[
c
(α)
i Jm

(√
λ

(α)
i r

)
+ d

(α)
i Nm

(√
λ

(α)
i r

)]
Φ(α)

i (z) sin
(
mϕ+ ϕ

(α)
i

)
(29)

E(α)
ϕ (r, ϕ, z) =

∞∑
i=1

jωμ0√
λ

(α)
i

[
c
(α)
i J ′

m

(√
λ

(α)
i r

)
+ d

(α)
i N ′

m

(√
λ

(α)
i r

)]
Φ(α)

i (z) sin
(
mϕ+ ϕ

(α)
i

)

−
∞∑
i=0

m

rt
(α)
i

ε
(α)
z

ε
(α)
t

[
a

(α)
i Jm

(√
t
(α)
i r

)
+b(α)

i Nm

(√
t
(α)
i r

)]
· Ψ′(α)

i (z) sin
(
mϕ+ψ(α)

i

)
(30)

H(α)
ϕ (r, ϕ, z) =

∞∑
i=1

m

rλ
(α)
i

[
c
(α)
i Jm

(√
λ

(α)
i r

)
+ d

(α)
i Nm

(√
λ

(α)
i r

)]
Φ

′(α)
i (z) cos

(
mϕ+ ϕ

(α)
i

)

−
∞∑
i=0

jωεoε
(α)
z√

t
(α)
i

[
a

(α)
i J ′

m

(√
t
(α)
i r

)
+ b

(α)
i N ′

m

(√
t
(α)
i r

)]
Ψ(α)

i (z) cos
(
mϕ+ ψ

(α)
i

)
(31)
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E(α)
r (r, ϕ, z) =

∞∑
i=0

1√
t
(α)
i

ε
(α)
z

ε
(α)
t

[
a

(α)
i J ′

m

(√
t
(α)
i r

)
+ b

(α)
i N ′

m

(√
t
(α)
i r

)]
Ψ

′(α)
i (z) cos

(
mϕ+ ψ

(α)
i

)

−
∞∑
i=1

jωμom

rλ
(α)
i

[
c
(α)
i Jm

(√
λ

(α)
i r

)
+ d

(α)
i Nm

(√
λ

(α)
i r

)]
Φ(α)

i (z) cos
(
mϕ+ ϕ

(α)
i

)
(32)

H(α)
r (r, ϕ, z) =

∞∑
i=1

1√
λ

(α)
i

[
c
(α)
i J ′

m

(√
λ

(α)
i r

)
+ d

(α)
i N ′

m

(√
λ

(α)
i r

)]
Φ

′(α)
i (z) sin

(
mϕ+ ϕ

(α)
i

)

−
∞∑
i=0

jωεoε
(α)
z m

rt
(α)
i

[
a

(α)
i Jm

(√
t
(α)
i r

)
+ b

(α)
i Nm

(√
t
(α)
i r

)]
Ψ(α)

i (z) sin
(
mϕ+ψ(α)

i

)
(33)

where: (α) = I, II, ...,XX — an index of the region,

a
(α)
i , b

(α)
i , c

(α)
i , d

(α)
i — are complex constants, the amplitudes of different types of field

ψ
(α)
i , ϕ

(α)
i — constants, and J ′

m(x) = dJm(x)
dx and N ′

m(x) = dNm(x)
dx .

Due to the negligible value of higher terms of the series, the summation can be limited to a finite
number of terms N . In the first region, the coefficients of the functions Nm must be equal to zero since
lim
x→0

|Nm(x)| = ∞.

4N unknown coefficients cIi , c
II
i , d

II
i , c

III
i (i = 1, 2, ..., N) and 4(N + 1) coefficients aI

i , a
II
i , b

II
i , a

III
i

(i = 0, 1, 2, ...N) have to be determined. They are determined through ensuring the continuity of
the tangential components of the field on the borders of regions. For the three regions, the following
conditions are obtained:

EI
z (R1, ϕ, z) − EII

z (R1, ϕ, z) = 0 (34)

HI
z (R1, ϕ, z) −HII

z (R1, ϕ, z) = 0 (35)

EI
ϕ(R1, ϕ, z) − EII

ϕ (R1, ϕ, z) = 0 (36)

HI
ϕ(R1, ϕ, z) −HII

ϕ (R1, ϕ, z) = 0 (37)

EII
z (R2, ϕ, z) −EIII

z (R2, ϕ, z) = 0 (38)

HII
z (R2, ϕ, z) −HIII

z (R2, ϕ, z) = 0 (39)

EII
ϕ (R2, ϕ, z) −EIII

ϕ (R2, ϕ, z) = 0 (40)

HII
ϕ (R2, ϕ, z) −HIII

ϕ (R2, ϕ, z) = 0 (41)

In the case of a finite number of terms fulfilling the conditions of equality is impossible for all
z and ϕ. Therefore, these coefficients are determined from the condition that the mean square error
(functional) component of the difference on either side of the boundary reached the minimum value.
The corresponding functionals have the form (here written for the three regions):

F1 =
∫
S

∣∣EI
z (R1, ϕ, z) − EII

z (R1, ϕ, z)
∣∣2ds (42)

F2 =
∫
S

∣∣HI
z (R1, ϕ, z) −HII

z (R1, ϕ, z)
∣∣2ds (43)

F3 =
∫
S

∣∣EI
ϕ(R1, ϕ, z) − EII

ϕ (R1, ϕ, z)
∣∣2ds (44)

F4 =
∫
S

∣∣HI
ϕ(R1, ϕ, z) −HII

ϕ (R1, ϕ, z)
∣∣2ds (45)
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F5 =
∫
S

∣∣EII
z (R2, ϕ, z) − EIII

z (R2, ϕ, z)
∣∣2ds (46)

F6 =
∫
S

∣∣HII
z (R2, ϕ, z) −HIII

z (R2, ϕ, z)
∣∣2ds (47)

F7 =
∫
S

∣∣EII
ϕ (R2, ϕ, z) − EIII

ϕ (R2, ϕ, z)
∣∣2ds (48)

F8 =
∫
S

∣∣HII
ϕ (R2, ϕ, z) −HIII

ϕ (R2, ϕ, z)
∣∣2ds (49)

Functionals achieve these minimum values if and only if their derivatives with respect to unknown
coefficients are equal to zero (Rayleigh-Ritz method).

For example, functional F1 can be written as:

F1 =
∫
S

∣∣EI
z (R1, ϕ, z) − EII

z (R1, ϕ, z)
∣∣2ds =

2π∫
0

L′∫
0

∣∣EI
z (R1, ϕ, z) − EII

z (R1, ϕ, z)
∣∣2 dzdϕ (50)

wherein the integral should be extended to the entire cylindrical surface on which the matched fields
are from different regions. Assuming designation:

g(ϕ, z) = EI
z (R1, ϕ, z) − EII

z (R1, ϕ, z) one can write :

g(ϕ, z) =
∞∑
i=1

aI
i Jm

(√
tIiR1

)
ΨI

i (z) cos
(
mϕ+ ψI

i

)

−
∞∑
i=1

[
aII

i Jm

(√
tII
i R1

)
+ bII

i Nm

(√
tII
i R1

)]
ΨII

i (z) cos
(
mϕ+ ψII

i

)
Substituting

a′i = aI
i Jm

(√
tIiR1

)
and b′i = aII

i Jm

(√
tII
i r

)
+ bII

i Nm

(√
tII
i r

)

g(ϕ, z) =
∞∑
i=1

a′iΨ
I
i (z) cos

(
mϕ+ ψI

i

) − ∞∑
i=1

b′iΨ
II
i (z) cos

(
mϕ+ ψII

i

)
and

g(ϕ, z) =
∞∑
i=0

a′iΨ
I
i (z) cos

(
mϕ+ ψI

i

) − ∞∑
i=0

ΨII
i (z)

[
cos(mϕ)b′i cos(ψII

i ) − sin(mϕ)b′i sin(ψII
i )

]
Substituting c′i = b′i cos(ψI

i ), d′i = b′i sin(ψI
i )

g(ϕ, z) =
∞∑
i=0

a′iΨ
I
i (z) cos

(
mϕ+ ψI

i

) − ∞∑
i=0

ΨII
i (z)

[
c′′i cos(mϕ) − d′i sin(mϕ))

]
After differentiation with respect to c′i:

∂F1

∂cIi
=

∂

∂cIi

∫
S

|g(ϕ, z)|2 ds = 2
∫
S

g(ϕ, z)
∂g(ϕ, z)
∂cIi

ds

∂F1

∂c′i
= 2

∫
S

g(ϕ, z)ΨII
i (z) cos(mϕ) ds = 0
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and with respect to d′i:

∂F1

∂dI
i

=
∂

∂dI
i

∫
S

|g(ϕ, z)|2 ds = 2
∫
S

g(ϕ, z)
∂g(ϕ, z)
∂dI

i

ds

∂F1

∂d
′
i

= 2
∫
S

g(ϕ, z)ΨII
i (z) sin(mϕ) ds = 0

In a similar way, one can proceed with other functionals.
After calculating the integrals with respect to variable z in the range of 〈0, L′〉, one obtains

K = 8N + 4 expressions:

2 cos(mϕ)

[
K∑

i=1

wnixi cos ηi

]
+ 2 sin(mϕ)

[
K∑

i=1

wnixi sin ηi

]
(51)

2 cos(mϕ)

[
K∑

i=1

wnixi sin ηi

]
+ 2 sin(mϕ)

[
K∑

i=1

wnixi cos ηi

]
(52)

where: n = 1, 2, ...,K, K = 8N + 4 and [xi] = [aI
i , c

I
i , a

II
i , b

II
i , c

II
i , d

II
i , a

III
i , cIII

i ], [ηi] =
[ψI

i , ϕ
I
i , ψ

II
i , ϕII

i , ψ
II
i , ϕ

II
i , ψ

III
i , ϕIII

i ].
Equations (51) and (52) after being multiplied by cos(mϕ) or sin(mϕ) are integrated with respect

to the variable ϕ in the range of 〈0, 2π〉 and equated to zero. Leaving aside the irrelevant factor of 2π
for m �= 0 and 4π for m = 0, the resulting equation can be represented in the following form:

W̃

⎡
⎢⎢⎣

x1 cos η1

x2 cos η2

...

xK cos ηK

⎤
⎥⎥⎦ = 0 (53)

W̃

⎡
⎢⎢⎣

x1 sin η1

x2 sin η2

...

xK sin ηK

⎤
⎥⎥⎦ = 0 (54)

Elements wni (n = 1, 2, ...,K) constituting the matrix W̃ are given in Table 1 for the three regions and
Table 2 for the two regions.

The solutions of these systems of homogeneous equations, having the same coefficients matrix,
differ by an unrestricted constant q, i.e.: qxi cos ηi = xi sin ηi

Since xi �= 0, then q = sin ηi

cos ηi
= tgηi, so all q = sin ηi

cos ηi
= tgηi must be equal in amount, i.e., ηi = ηo

for i = 1, 2, ...,K. Finally, the equation, from which one can calculate the unknown coefficients, can be
written as follows:

W̃

⎡
⎢⎢⎣
x1

x2

..

xK

⎤
⎥⎥⎦ = 0 (55)

This system has a nonzero solution if and only if its determinant is equal to zero:

det W̃ = 0 (56)

The matrix W̃ has, for the three regions, the size of K = 8N + 4 and a form of Eq. (57):

W̃ =

[
Ũ (1) Ũ (2) Ũ (3) Ũ (4)

Ũ (5) Ũ (6) Ũ (7) Ũ (8)

]
(57)
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Table 1. Elements of W matrix for three regions.

l = 1 l = 2 l = 3

v
(1,l)
ni

n, i = 0, 1, 2, ...
Jm(

√
tIiR1)·

〈ΨI
i ,Ψ

II∗
n 〉

Jm(
√
tII
i R1)·

〈ΨII
i ,Ψ

II∗
n 〉

Nm(
√
tII
i R1)·

〈ΨII
i ,Ψ

II∗
n 〉

v
(3,l)
ni

n = 1, 2, 3, ...
i = 0, 1, 2, ...

−m
R1tIi

Jm(
√
tIiR1)·

〈εI
z

εI
t
Ψ

′I
i ,Φ

II∗
n 〉

−m
R1tII

i
Jm(

√
tII
i R1)·

〈εII
z

εII
t

Ψ
′II
i ,ΦII∗

n 〉

−m
R1tII

i
Nm(

√
tII
i R1)·

〈εII
z

εII
t

Ψ
′II
i ,ΦII∗

n 〉

v
(4,l)
ni

n, i = 0, 1, 2, ...

ωεo√
tIi
J ′

m(
√
tIiR1)·

〈εIzΨI
i , ε

I∗
z ΨI∗

n 〉

ωεo√
tII
i

J ′
m(

√
tII
i R1)·

〈εII
z ΨII

i , ε
I∗
z ΨI∗

n 〉

ωεo√
tII
i

N ′
m(

√
tII
i R1)·

〈εII
z ΨII

i , ε
I∗
z ΨI∗

n 〉
v
(6,l)
ni

n, i = 1, 2, 3, ...
Jm(

√
λI

iR1)·
〈ΦI

i ,Φ
I∗
n 〉

Jm(
√
λII

i R1)·
〈ΦII

i ,Φ
I∗
n 〉

Nm(
√
λII

i R1)·
〈ΦII

i ,Φ
I∗
n 〉

v
(7,l)
ni

n, i = 0, 1, 2, ...

ωμo√
λI

i

J ′
m(

√
λI

iR1)·
〈ΦI

i ,Φ
II∗
n 〉

ωμo√
λII

i

J ′
m(

√
λII

i R1)·
〈ΦII

i ,Φ
II∗
n 〉

ωμo√
λII

i

N ′
m(

√
λII

i R1)·
〈ΦII

i ,Φ
II∗
n 〉

v
(8,l)
ni

n = 1, 2, 3, ...
i = 0, 1, 2, ...

m
R1λI

i
Jm(

√
λI

iR1)·
〈Φ′I

i , ε
I∗
z ΨI∗

n 〉
m

R1λII
i
Jm(

√
λII

i R1)·
〈Φ′II

i , εI∗z ΨI∗
n 〉

m
R1λII

i
Nm(

√
λII

i R1)·
〈Φ′II

i , εI∗z ΨI∗
n 〉

l = 6 l = 7 l = 8

v
(1,l)
ni

n, i = 0, 1, 2, ...
Jm(

√
tII
i R2)·

〈ΨII
i ,Ψ

III∗
n 〉

Nm(
√
tII
i R2)·

〈ΨII
i ,Ψ

III∗
n 〉

Pm(
√
tIII
i R2)·

〈ΨIII
i ,ΨIII∗

n 〉
v
(3,l)
ni

n = 1, 2, 3, ...
i = 0, 1, 2, ...

−m
R2tII

i
Nm(

√
tII
i R2)·

〈εII
z

εII
t

Ψ
′II
i ,ΦIII∗

n 〉

−m
R2tII

i
Jm(

√
tII
i R2)·

〈εII
z

εII
t

Ψ
′II
i ,ΦIII∗

n 〉

−m
R2tIII

i
Pm(

√
tIII
i R2)·

〈εIII
z

εIII
t

Ψ
′III
i ,ΦIII∗

n 〉

v
(4,l)
ni

n, i = 0, 1, 2, ...

ωεo√
tII
i

J ′
m(

√
tII
i R2)·

〈εII
z ΨII

i , ε
II∗
z ΨII∗

n 〉

ωεo√
tII
i

N ′
m(

√
tII
i R2)·

〈εII
z ΨII

i , ε
II∗
z ΨII∗

n 〉

ωεo√
tIII
i

P ′
m(

√
tIII
i R2)·

〈εIII
z ΨIII

i , εII∗
z ΨII∗

n 〉
v
(6,l)
ni

n, i = 1, 2, 3, ...
Jm(

√
λII

i R2)·
〈ΦII

i ,Φ
II∗
n 〉

Nm(
√
λII

i R2)·
〈ΦII

i ,Φ
II∗
n 〉

Qm(
√
λIII

i R2)·
〈ΦIII

i ,ΦII∗
n 〉

v
(7,l)
ni

n, i = 0, 1, 2, ...

ωμo√
λII

i

J ′
m(

√
λII

i R2)·
〈ΦII

i ,Φ
III∗
n 〉

ωμo√
λII

i

N ′
m(

√
λII

i R2)·
〈ΦII

i ,Φ
III∗
n 〉

ωμo√
λIII

i

Q′
m(

√
λIII

i R2)·
〈ΦIII

i ,ΦIII∗
n 〉

v
(7,l)
ni

n = 1, 2, 3, ...
i = 0, 1, 2, ...

m
R2λII

i
Jm(

√
λII

i R2)·
〈Φ′II

i , εII∗
z ΨII∗

n 〉
m

R2λII
i
Nm(

√
λII

i R2)·
〈Φ′II

i , εII∗
z ΨII∗

n 〉
m

R2λIII
i
Qm(

√
λIII

i R2)·
〈Φ′III

i , εII∗
z ΨII∗

n 〉

where for R3 finite: Pm(
√
tIII
i r) = Nm(

√
tIII
i R3)Jm(

√
tIII
i r) − Jm(

√
tIII
i R3)Nm(

√
tIII
i r) and

Qm(
√
λIII

i r) = N ′
m(

√
λIII

i R3)Jm(
√
λIII

i r) − J ′
m(

√
λIII

i R3)Nm(
√
λIII

i r), and for R3 infinite:

Pm(
√
tIII
i r) = Km(

√
tIII
i r), and Qm(

√
λIII

i r) = Km(
√
λIII

i r).
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The matrices Ũ (l) (l = 1, 2, 3, 4, 5, 6, 7, 8) have the size of (4N + 2)(2N + 1) each. The matrices Ũ (4)

and Ũ (5) are the matrices with zero elements, and the remaining matrices are in the form of:

Ũ (l) =

⎡
⎢⎢⎢⎣
ṽ(1,l) ṽ(5,l)

ṽ(2,l) ṽ(6,l)

ṽ(3,l) ṽ(7,l)

ṽ(4,l) ṽ(8,l)

⎤
⎥⎥⎥⎦

All elements of matrices ṽ(2,l) i ṽ(5,l) are equal to zero. The non-zero elements of matrices are shown in
Table 1.

In a case of two regions, matrix W̃ has a size of K = 4N + 2 and a form:

W̃ =
[
Ũ (1) Ũ (2)

]
The matrices Ũ (l) (l = 1, 2) have the same form as above, and the elements of the matrix ṽ(2,l) are
presented in Table 2.

Table 2. Elements of W matrix for two regions.

n\i l = 1 l = 2

v
(1,l)
ni

n, i = 0, 1, 2, ...
Jm(

√
tIiR1) · 〈ΨI

i ,Ψ
II∗
n 〉 Pm(

√
tII
i R1) · 〈ΨII

i ,Ψ
II∗
n 〉

v
(3,l)
ni

n = 1, 2, 3, ...,
i = 0, 1, 2, ...

−m
R1tIi

Jm(
√
tIiR1) · 〈εI

z

εI
t
Ψ

′I
i ,Φ

II∗
n 〉 −m

R1tII
i
Pm(

√
tII
i R1) · 〈εII

z

εII
t

Ψ
′II
i ,ΦII∗

n 〉

v
(4,l)
ni

n, i = 0, 1, 2, ...
ωεo√

tIi
J ′

m(
√
tIiR1) · 〈εIzΨI

i , ε
I∗
z ΨI∗

n 〉 ωεo√
tII
i

P ′
m(

√
tII
i R1) · 〈εII

z ΨII
i , ε

I∗
z ΨI∗

n 〉

v
(6,l)
ni

n, i = 1, 2, 3, ...
Jm(

√
λI

iR1) · 〈ΦI
i ,Φ

I∗
n 〉 Qm(

√
λII

i R1) · 〈ΦII
i ,Φ

I∗
n 〉

v
(7,l)
ni

n, i = 0, 1, 2, ...
ωμo√

λI
i

J ′
m(

√
λI

iR1) · 〈ΦI
i ,Φ

II∗
n 〉 ωμo√

λII
i

Q′
m(

√
λII

i R1) · 〈ΦII
i ,Φ

II∗
n 〉

v
(8,l)
ni

n = 1, 2, 3, ...,
i = 0, 1, 2, ...

m
R1λI

i
Jm(

√
λI

iR1) · 〈Φ′I
i , ε

I∗
z ΨI∗

n 〉 m
R1λII

i
Qm(

√
λII

i R1) · 〈Φ′II
i , εI∗z ΨI∗

n 〉

where: for R3 finite: Pm(
√
tII
i r) = Nm(

√
tII
i R2)Jm(

√
tII
i r) − Jm(

√
tII
i R2)Nm(

√
tII
i r)

and Qm(
√
λII

i r) = N ′
m(

√
λII

i R2)Jm(
√
λII

i r) − J ′
m(

√
λII

i R2)Nm(
√
λII

i r), and for R3 infinite:

Pm(
√
tII
i r) = Km(

√
tII
i r), and Qm(

√
λII

i r) = Km(
√
λII

i r).

From Eq. (56) one can determine the complex resonant pulsation with any accuracy and calculate
unknown coefficients corresponding to the distribution of the electromagnetic field. For N = ∞, the
solution is exact, and for N finite accuracy of the solution and the convergence of the method is
dependent on N and increases with N . In practice, it is enough to use N = 5 ÷ 10.

On the basis of this solution, a computer program has been developed and implemented that allows
the calculation of the resonator made up of 20 regions with 20 layers each. In this case, the matrix has
a size of K = 76N + 38. In general, for M regions K = (M − 1)(4N + 2).
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3. EXAMPLES OF OBTAINED RESULTS

Based on the above theoretical solution, a computer program has been developed and implemented to
calculate a resonance frequency of all modes in the resonator containing multilayered media with uniaxial
anisotropy. The correctness of the developed program was checked by making a series of calculations
and comparing with results obtained by other methods, from other authors and measurements.

Table 3 shows a comparison of the results obtained by means of the program developed by the
author and the published data [10, 12].

Table 3. Comparison of resonant frequencies of structures obtained by means of different methods and
measurements.

Sample Mode TM01δ EH11δ HE11δ TE01δ HE210

1

fo [GHz]
Publication [12]

7.339 8.827 9.121 9.720 -

fo [GHz]
Measurement

7.275 8.797 9.009 9.714 -

fo [GHz]
Described metod

7.339 8.828 9.121 9.719 -

2

fo [GHz]
Publication [12]

10.664 9.841 12.153 10.704 -

fo [GHz]
Measurement

10.577 9.795 12.138 10.706 -

fo [GHz]
Described metod

10.666 9.842 12.154 10.704 -

3
fo [GHz]

Publication [10]
8.7185 - - 8.5405 8.6634

fo [GHz]
Described metod

8.7322 - - 8.5421 8.6701

Sample parameters
Sample no. 1: diameter D = 9.985 mm, height L = 9.998 mm, εt = 9.389,
εz = 11.478, centrally placed within a metal cylinder having a diameter
d = 15.5 mm, height h = 13 mm with stands of the same diameter as the

sample located on both sides of the sample, the height l1 = 1.501 mm
and a relative permittivity ε1 = 1.031.

Sample no. 2: diameter D = 10.002 mm, height L = 5.002 mm, εt = 9.399,
εz = 11.553, located centrally in the cylinder identical as for sample no. 1
with stands of the same diameter as the sample located on both sides of

the sample, the amount l1 = 3.999 mm and a relative permittivity ε1 = 1.031.
Sample no. 3: diameter D = 37.7 mm, height L = 9.4 mm, εt = 4.43, εz = 4.59,

centrally placed within a metal cylinder having a diameter d = 140 mm
and height h = 9.4 mm.

As shown in Table 3, the calculation results obtained by means of presented method are identical
or nearly identical to the results given in [10, 12], which proves the correctness of the developed method.

Resonant frequencies of Table 3 were calculated for the lowest modes that are used in measurements
of the material parameters [16]. However, to validate solutions throughout the frequency range
calculations were carried out for the higher modes. The results are shown in Tables 4 and 5 and compared
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Table 4. Calculation results of resonant frequencies of the sapphire resonator (MM — radial mode
matching method, RR — Rayeigh-Ritz method, Meas. — measurement).

m = 0 WGHn,m,0 WGEn,m,0

n MM RR Meas. MM RR Meas
16 72.33 72.17 72.18 72.99 72.91 73.20
17 74.83 74.70 74.70 76.25 76.17 76.50
18 77.36 77.25 77.23 79.50 79.42 79.85
19 79.92 79.83 79.72 82.73 82.66 82.22
20 82.50 82.43 82.38 85.93 85.91 86.38
21 85.11 85.05 84.89 89.52 89.15 89.70
22 87.74 87.69 87.46 92.55 92.38 92.98
23 90.39 90.35 90.18 95.75 95.61 96.20
24 93.06 93.02 92.78 98.98 98.85 99.45
25 95.74 95.71 95.48

m = 1 WGHn,m,0 WGEn,m,0

MM RR Meas MM RR Meas
12 71.04 70.75 70.60 71.87 71.75 72.03
13 73.75 73.49 73.34 75.39 75.27 75.62
14 76.48 76.26 76.10 78.88 78.77 79.32
15 79.23 79.04 78.90 82.35 82.26 82.75
16 82.00 81.84 81.70 85.76 85.72 86.27
17 84.80 84.66 84.50 89.54 89.16 89.70
18 87.61 87.49 87.38 92.79 92.59 93.15
19 90.43 90.34 90.20 96.19 96.02 96.60
20 93.27 93.20 92.98 99.60 99.43 99.96
21 96.12 96.06 95.85
22 98.99 98.94 98.72

with those obtained by other methods and the measurements. Measurements and calculations were done
for a sample of quartz having a diameter D = 17.2 mm, height L = 3.07 mm, εt = 4.43, εz = 4.59, and
for a sample of sapphire having a diameter of D = 9.96 mm, height L = 1.068 mm, εt = 9.37, εz = 11.35.
Both samples were placed in the open resonator. As one can see by analyzing these values, there is an
agreement between the proposed method, other methods, and measurements.

The described method and written program allow to determine resonant frequencies of variety
of complicated structures, for example a sphere. The sphere must be divided into many regions and
layers with appropriate height and radius. Such division is shown in Fig. 2 and Table 6. The structure
is composed of 19 regions and 3 layers in each region. The calculations of resonant frequencies of
a sphere having radius 4.5 mm and scalar relative permittivity equal to 36, placed symmetrically in
a metal cylinder having radius 30 mm and height 11 mm are presented in Table 7. The sphere has
been approximated by 10 and 19 regions for comparison. The obtained results have been compared
with resonant frequencies calculated by means of FDTD method using QuickWave electromagnetic
simulator.

As shown in Table 7, the calculated results obtained by means of presented method are close to the
results achieved by means of FDTD method, which proves the correctness of the developed method. The
relative error decreases with an increase in the number of regions as a result of a better approximation
of the sphere.

The comparison of the calculation time carried out with the presented method with the calculation
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Table 5. Calculation results of resonant frequencies of the quartz resonator (MM — radial mode
matching method, RR — Rayeigh-Ritz method, Meas. — measurement).

m = 0 WGHn,m,0 WGEn,m,0

n MM RR Meas MM RR Meas
21 71.44 71.32 71.80
22 71.73 71.72 71.60 74.21 74.09 74.60
23 74.39 74.38 74.24 76.99 76.86 77.35
24 77.06 77.06 76.90 79.76 79.63 80.20
25 79.72 79.74 79.55 82.53 82.40 82.88
26 82.39 82.42 82.20 85.29 85.17 85.65
27 85.06 85.09 84.85 88.05 87.95 88.45
28 87.73 87.76 87.50 90.82 90.70 91.20
29 90.41 90.44 90.18 93.59 93.46 93.99
30 93.08 93.13 92.80 96.33 96.21 96.72

m = 1 WGHn,m,1 WGEn,m,1

n MM RR Meas MM RR Meas
20 76.61 76.48 76.40 75.99 76.15 76.00
21 80.00 78.88 78.88 78.64 78.80 78.66
22 81.40 81.29 81.31 81.27 81.32 81.35
23 83.80 83.71 83.74 83.91 84.06 83.92
24 86.22 86.14 86.18 86.54 86.70 86.60
25 88.65 88.58 88.60 89.18 89.33 89.24
26 91.09 91.03 90.95 91.81 91.96 91.81
27 93.53 93.53 93.45 94.45 94.62 94.45
27 96.00 96.00 95.80
29 98.47 98.47 98.30
30 100.95 100.89 100.73

Figure 2. The sphere divided in a radial mode matching method into 18 regions.
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time using the QuickWave and CST electromagnetic simulators is presented in Table 8. The calculations
were performed for a cylinder and a sphere placed on a dielectric substrate with a relative permeability
equal to 2.2. The height of the cylinder was equal to its diameter and was 9 mm. The sphere diameter
was also 9 mm. As you can see, the calculation time with the proposed method is several dozen to
several hundred times smaller than the calculation time with the simulators used.

Table 6. An approximation of a sphere in presented method.

Region Layer 1 Layer 2 Layer 3

No
Radius
[mm]

Height
[mm]

Eps
Height
[mm]

Eps
Height
[mm]

Eps

1 1.479019946 1 1 9 36 1 1
2 2.061552813 1.25 1 8.5 36 1.25 1
3 2.487468593 1.5 1 8 36 1.5 1
4 2.828427125 1.75 1 7.5 36 1.75 1
5 3.112475 2 1 7 36 2 1
6 3.354102 2.25 1 6.5 36 2.25 1
7 3.561952 2.5 1 6 36 2.5 1
8 3.741657 2.75 1 5.5 36 2.75 1
9 3.897114 3 1 5 36 3 1
10 4.031129 3.25 1 4.5 36 3.25 1
11 4.145781 3.5 1 4 36 3.5 1
12 4.242641 3.75 1 3.5 36 3.75 1
13 4.322904 4 1 3 36 4 1
14 4.387482 4.25 1 2.5 36 4.25 1
15 4.43706 4.5 1 2 36 4.5 1
16 4.472136 4.75 1 1.5 36 4.75 1
17 4.49305 5 1 1 36 5 1
18 4.5 1 1 9 36 1 1
19 30 1 1 9 1 1 1

Table 7. Calculated results of resonant frequencies of dielectric “sphere” placed in metal cylinder.

Regions Mode Presented method FDTD method Relative error
10 TE011 5.63079347 GHz 5.662 GHz −0.55116%
10 TM011 6.83878277 GHz 6.734 GHz 1.55603%
19 TE011 5.67101720 GHz 5.701 GHz −0.52592%
19 TM011 6.89746588 GHz 6.833 GHz 0.94345%

Table 8. The time of calculation of the resonant frequency for a cylinder and a sphere by means of
different programs.

Sample Presented method FDTD method CST
Cylinder 0.34 s 12 min 60 s
Sphere 34 s 25 min 8min
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4. CONCLUSIONS

The paper presents in detail the solution of Maxwell’s equations for a multilayered dielectric resonator
containing the media with uniaxial anisotropy. The radial mode matching method has been used. The
results of calculations using the computer program developed have been presented. The results of the
calculations are compared with those obtained by other methods, as well as obtained as a result of
measurements. These results are in close agreement, which proves the correctness of the method. The
solution is developed, and the software program can be used to measure the dielectric permittivity
tensor materials and to design advanced dielectric resonators.
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