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Direct Control of Bearingless Permanent Magnet Synchronous
Motor Based on Prediction Model

Huangqiu Zhu and Mingcan Wu"

Abstract—The direct control for the bearingless permanent magnet synchronous motor (BPMSM) has
problems of large ripples of flux linkage, torque, and suspension force due to sampling time delay. To
solve above problems, a predictive direct control method is proposed based on the traditional direct
control by adding prediction model. Firstly, the generation principle of radial suspension forces of
the BPMSM is introduced. Secondly, the models of the predictive direct control method are given
based on the traditional direct control, and the time-delay compensation model is deduced. Thirdly,
the predictive direct control system is constructed, and the simulations are carried out. Finally, the
proposed control strategy is applied to a prototype, and the related experimental results are given and
analyzed. The results of the simulations and experiments show that compared with the traditional
direct control of the BPMSM, the predictive direct control strategy can effectively reduce the ripples
of flux linkage, torque, and suspension forces, and improve the static and dynamic performance of the
BPMSM.

1. INTRODUCTION

The traditional magnetic bearing has the advantages of no lubrication, no mechanical wear, low
noise, and long service life. Bearingless permanent magnet synchronous motor (BPMSM) inherits the
characteristics of magnetic bearing and the excellent operation characteristics of a permanent magnet
synchronous motor, which has been paid more attention [1,2]. Owing to low loss and high efficiency,
BPMSM has been applied to aerospace, biomedicine, semiconductor manufacturing [3, 4], etc.

The control technology of the BPMSM has made great progress with the development of control
technology in ordinary motor. The direct torque control (DTC) in an ordinary motor is a high
performance variable frequency speed regulation method developed after the vector control technology
[5]. The DTC based on space vector pulse width modulation (SVPWM) is applied to the BPMSM
to realize direct torque control and direct suspension force control [6]. However, a traditional direct
control system has many problems, such as not constant switching frequency of the inverter and sampling
time delay, which is easy to cause the losses and ripples of flux linkage, torque, and suspension force.
To overcome the problems, various methods have been proposed in the last few years, such as artificial
intelligence techniques [7], fixed switching frequency techniques, and improving the controller techniques
[8,9]. The DTC based on space vector modulation is proposed in [10]. The switching frequency of this
method is constant, which reduces the ripples of flux linkage and torque of motor and switching losses
effectively, but the problem of sampling time delay is neglected.

With the same aim of reducing ripples and losses, predictive direct control has been gaining more
attention. In all available predictive direct control strategies, predictive current control and predictive
torque control are two most popular control methods [11-13]. Model predictive direct control has been
widely applied to permanent magnet synchronous motors [14-17]. The electromagnetic torque and flux
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linkage are predicted respectively by establishing the discretization model of the control system. The
minimum optimal voltage vector is selected after the cost function is calculated. The high complexity
of control strategy makes the main disadvantage.

In this paper, based on direct torque control and direct suspension control of the BPMSM, a
predictive algorithm is proposed to predict the torque, flux linkage, and suspension forces of the next
sampling period. The required voltage vector is synthesized based on SVPWM to realize the direct
control of the BPMSM. The effectiveness of the control strategy is verified by simulations. Finally, the
experiment is carried out on a BPMSM prototype, which has better dynamic and static performance.
Compared with the traditional direct control method, the proposed control strategy reduces the ripples
of flux linkage, torque, and suspension forces, which improve the stability and anti-interference ability
of the BPMSM.

2. GENERATION PRINCIPLE OF RADIAL SUSPENSION FORCE

There are two sets of windings wound in the stator of the BPMSM, which are used to produce torque
and suspension force. The windings that produce torque are called torque windings, whose pole-pair
number is Py, which is equal to the pole-pair number of rotor magnetic field. Another set of windings
that produce suspension force together with torque windings is called suspension force windings, whose
pole-pair number is Pg. In addition to producing torque, the torque windings also provide a bias
magnetic field for the suspension force generation.

In the paper, Py = 1 and Pg = 2 are adopted as pole-pair numbers of two sets of windings in the
BPMSM, respectively. Because the pole-pair numbers of torque windings and suspension windings are
different, the pole-pair numbers of the produced air-gap magnetic field are also different. The radial
suspension force is produced by the unbalanced air-gap magnetic field. Figure 1 shows the principle of
the radial suspension force of the BPMSM in the x- and y-directions. The flux linkage 1y is produced
by torque windings and permanent magnet when the torque windings are excited. The flux linkage g
is produced by suspension force windings when the suspension force windings are excited. Figure 1(a)
shows that when the rotor is in the balanced position, two kinds of flux linkage with the same polarity
are in the z positive direction, and two kinds of flux linkage with different polarities are in the x negative
direction, which leads to the uneven magnetic field density of the left and right air gaps, resulting in
the radial suspension force Fy in the x positive direction. When the suspension flux linkage is opposite
with that in Figure 1(a), the radial suspension force in the = negative direction is produced. Similarly,
the generation principle of radial suspension force in the y direction is showed in Figure 1(b).

Figure 1. Generation principle of radial suspension force. (a) Suspension force in the z direction. (b)
Suspension force in the y direction.
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3. PREDICTIVE CONTROL MODEL OF BPMSM

3.1. Predictive Direct Torque Control of BPMSM

In the DTC method, the flux linkages of torque windings in the o~ and (3-axes are observed according
to the current values and the flux linkage values of the permanent magnet. Then the feedback value of
the torque is obtained by the relationship among the electromagnetic torque, flux linkage, and torque
windings current in the two-phase static coordinate system. The error between the feedback value and
the given value is modulated by PI controller to obtain the increment of the phase angle of the flux
linkage of torque windings. The reference voltage calculated by the voltage vector calculation module
is used as the input of SVPWM to realize the direct torque control of BPMSM.

According to the theory of the permanent magnet motor, the equations of voltage and flux linkages
of the torque windings of the BPMSM in two-phase static coordinate system are obtained as [18]:

dYma
uMa = RMmiMa + 1?;/[
1
o dipyig W)
ump = RMlMg + T

Ympg = Lgivg + ¢ sin 6

where un, and uyg are equivalent torque winding voltages in a- and [(-axes, respectively; inmo and
img are equivalent torque winding currents in a- and S-axes, respectively; ¢\, and Yy are equivalent
torque winding flux linkages in a- and [-axes, respectively; Ry is the resistance of torque windings;
¢ is the flux linkage of the permanent magnet; Ly is the inductance of torque windings; 6 is the rotor
mechanical angle.

The electromagnetic torque equation can be obtained as [19]:

3

T, = §PM(¢MaiMﬁ — YMBiMa) (3)

In the prediction algorithm of direct torque control, there are two steps. The first step is to observe
flux linkage based on the current value of the sampling point (assumed as time k) by Equation (2). The
second step is to predict the flux linkage and current at the next time (time k£ + 1) and calculate the
predicted torque.

To predict the value at next step, the forward Euler discretization equation is considered as:

dr x(k+1) -z (k)
dt T,
where 7§ is the sampling time of the system.

Assuming that the current time is k, the prediction expression of stator flux linkage at time k + 1
according to Equation (1) is obtained as follows:

{ UMal(k + 1) = Ymalk) + [uma (k) — Rainva (k)] Ts (5)
Ump(k + 1) = ug(k) + [umpg(k) — Raivg (k)] Ts
Then using the current component in d-¢q coordinate system to predict the current component of the

next step, the current component of torque windings of BPMSM in d-¢g coordinate system is obtained
as:

(4)

t

. [ uma — Rmima + wLlmdaiva
iMd = o d
PR 0V Rypinvgg — %r — wlniginvg 4t
Mq = LMq

(6)

where w is the electric angular frequency; Lyiq and Lyiq are the equivalent inductances of torque windings
in d- and g-axes, respectively; unq and ung are equivalent torque winding voltages in d- and g-axes,
respectively; ing and iyq are equivalent torque winding currents in d- and g-axes, respectively.
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From Equation (6), the current prediction expression in d-q coordinate system can be obtained as:

uma (k) — Ravima(k) + UJLMdiMd(k)T
LMd i (7)
untq(k) — Baintq (k) — ¢r — wLvigivg(k) .
Liq s

inma(k + 1) = iva(k) +

intqlk + 1) = iarq(k) +

iMa(k+1) and iyig(k+1) can be obtained by the park inverse transformation of iniq(k+1) and ing(k+1).
According to Equations (3), (5), and (7), the predictive expression of torque can be obtained as:

Tu(k+1) = gpM nta(k + Ding(k + 1) — gk + Dingalk + 1) (8)

3.2. Predictive Direct Suspension Force Control of BPMSM

Direct suspension force control includes the closed loop control of suspension force and the closed loop
control of rotor radial displacement. In a two-phase static coordinate system, the feedback value of
suspension force is calculated according to the observed flux linkage of torque windings and the flux
linkage of suspension force windings. Then according to the error between the given value and the
feedback value of suspension force, the increment of the flux linkage of the suspension force windings
is obtained. Through SVPWM and inverter, the direct suspension force control of BPMSM is realized.
According to the principle of the BPMSM, Figure 2 is the flux linkage vector diagram of BPMSM.

ﬁi h

Wi

Figure 2. Flux linkage vector diagram of BPMSM.

The mathematical model of suspension force expressed by flux linkage is written as [6]:

{ F, = kmmip cos(A — ) (9)
Fj = kmtmtp sin(A — p)

where ¥y and g are flux linkages of torque windings and suspension force windings, respectively;
A is the phase angle of flux linkage in torque windings, A = arctan(yma/¥mp); p is the phase
angle of flux linkage in suspension force windings, u = arctan(ypo/vgg); km is the constant term,
kwm = mPy Pg/8lrpgN1No; r is the radius of rotor; [ is the length of the motor core; Ny and Ny are the
turns of torque windings and suspension force windings, respectively; g is the air gap length.

The flux linkage of the suspension force windings is produced when the suspension force windings
are excited. The equations of voltage of suspension force windings can be obtained as

. dLgi
UBa = RBiBa + EtBa

. dLgipg (10)
upg = Rpipg + 1

where Ly is the self-inductance of suspension force windings; ig, and ipg are the equivalent suspension
force winding currents in the a- and (-axes, respectively; Rp is the resistance of suspension force
windings.
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From Equation (9), the suspension force is determined by the flux linkages of torque windings and
suspension force windings. It can be assumed that the position of the rotor remains unchanged in a
very small period At. At this point, it can be approximately assumed that the amplitude of the rotor
winding flux linkage ¢ and phase A are constant. The relationship between increment of suspension
force and increment of flux linkage of suspension force windings can be expressed as:

AF, \ cos A sin A Ao
< AFyp ) o km¢M( sinA  —cosA ) < Apg (11)
According to the increment of flux linkage, the reference voltage value is calculated as

ug, = RBiBa + AYBa (12)

The prediction of the suspension force is also divided into two steps. The first step is to observe
the flux linkage of the suspension force windings and the torque windings according to the sampling
current at time k. The observed value of the suspension force is obtained from Equation (9). The
second step is to predict the flux linkage of torque windings according to Equation (5), and the flux
linkage of suspension force windings is predicted by Equation (13). The prediction of the flux linkage
of suspension force windings can be obtained as

VBa(k + 1) = ¥YBa(k) + [ua(k) — Rpia(k)] T

{ UBs(k + 1) = ¥Bg(k) + [ups(k) — Reigs(k)] T

From Equation (9), the predicted value of suspension force at the next time can be obtained as
Fo(k+1) = km¥m(k + D)¢(k + 1) cos(A — p)

{ Fg(k+1) = kntm(k + 1)Yp(k + 1) sin(A — p)

According to Equations (11) and (12), the voltage reference values of predictive direct suspension
force control can be obtained as:

uhy, = Rpipa(k + 1) + kp'tn (b + 1)(AF, cos A + AFgsin \)
ulyy = Rpipg(k + 1) + ky' vy, (k + 1)(AF, cos A — AFjgsin \)

(13)

(14)

(15)

4. TIME-DELAY COMPENSATION

In ideal simulation, the current and voltage measurements are taken at time k, and the accurate reference
voltage is obtained at time k. However, the microprocessor needs time to execute the algorithm in a
real experiment, and if the variables are measured at time k, a sampling period is required to generate
the optimal switching state. Therefore, the selected voltage vector is given to the inverter at time
k + 1 instead of time k. In order to compensate the delay time, the values of flux linkage, torque, and
suspension force are predicted at time k 4 2 on the basis of the original prediction of time k£ + 1. The
most effective drive and the reference voltage vector at time k4 1 are obtained, which makes up for the
time delay calculated by the algorithm and realizes the consistency of time.

The predicted flux linkages, currents, and torque of torque windings at time k + 2 are obtained as

{ @Z)Ma(k + 2) = @Z)Ma(k + 1) + [uMa(k: + 1) — RMiMa(k + 1)]TS (16)
leg(k‘ + 2) = ¢Mg(k +1)+ [uMg(k + 1) — RMng(k‘ + 1)]Ts
. . uMd(k + 1) — RMiMd(k‘ + 1) + WLMdiMd(k + 1)
ZMd(k' + 2) = ZMd(:IC + 1) + LMd TS (17)
. . k+1) — Ryivg(k+1) — ¢ — wlymgimalk + 1
imq(k +2) = ing(k 4+ 1) + upq(k + 1) — Ryring( LMZ Yr — wlyaima( )TS

T.(k+2) = SPM [VMa(k + 2)ing (K +2) — dng(k 4 2)iva (K + 2)] (18)
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The predicted flux linkage of suspension force windings and suspension force at time k + 2 are
obtained as

{ ¢Ba(k + 2) = wBa(k + 1) + [uBa(k + 1) — RBiBa(k + 1)]TS (19)

¢Bﬁ(k + 2) = @DB/g(k‘ + 1) + [uBﬁ(k + 1) - RBiBﬁ(k + 1)]TS

{ Fo(k+2) = kmtm(k + 2)¢B(k +2) cos (A — p) (20)
Fa(k +2) = huntbra (k + 20k +2) sin(A — o)

5. PREDICTIVE DIRECT CONTROL SYSTEM OF BPMSM

According to predictive direct torque and suspension force control algorithm, a predictive direct control
system for BPMSM is constructed. The control block diagram is shown in Figure 3.
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Figure 3. Predictive direct control diagram of BPMSM.

The control system can be divided into predictive direct torque subsystem and predictive direct
suspension force subsystem. In the predictive direct torque subsystem, the rotor angle 8 is detected
by photoelectric encoder, which is used to calculate rotor speed w. The error between the rotor speed
and the given rotor speed w* is regulated by a PI controller to produce the given torque 7. The given
torque is compared with the torque T,(k + 2) in the prediction module. The torque error is regulated
by the PI controller to produce the power angle increment. According to the given flux linkage v}
of the torque windings and the predicted flux linkage ¥\ (k + 2) of torque windings in the prediction
module, the reference voltages v}, and uzg are obtained. The switching signal of the inverter is given by
SVPWM. The closed-loop operation of predictive direct torque control of BPMSM is realized.

In the predictive direct suspension force subsystem, the displacement x and y are detected by the
displacement sensor. The error between the displacement and given displacement is regulated by the PID
controller to produce the given suspension force F; and F) g, which is compared with the suspension force
in the prediction module. The increment of the flux linkage of suspension force windings is obtained



Progress In Electromagnetics Research M, Vol. 101, 2021 133

by the reference flux linkage generation module. The increment of the space voltage vector of the
suspension force windings is obtained through the reference voltage module. The switching signal of
the inverter is given through SVPWM, which is transported to the BPMSM to realize the double closed
loop control of the direct suspension force of the BPMSM.

6. SIMULATION AND EXPERIMENT

6.1. Simulation Result Analysis

In order to verify the effectiveness of the proposed method, the simulations of the proposed method and
traditional direct control method are performed in the MATLAB/Simulink environment. The starting
time and termination time of the simulation are 0s and 0.2s, respectively. Simulation parameters are
set as: the air gap is 1 mm; the initial position of rotor is z = —0.25mm, y = —0.35 mm; the motor
speed is set to 6000 r/min. Figure 4 shows the simulation waveforms of speed in two methods. In
Figure 4, the speed response time of the proposed method is shorter than the traditional method; the
speed is stable; the speed response is fast; and there is no overshoot basically, which shows the good
speed regulation performance.

6000} 6000}
= 5000} 1 25000}
g =0.062 5 2 =0.059 s
£ 1000} 1 £ 4000}
= 3000} {4 E 3000

(5]

22000} 1 &2000}

1000} ] 1000}

0 0.020.010.060.08 0.1 012014016018 0.2 0 002004006008 0.1 012014016018 0.2
me (s [1me (s)
(a) (b)

Figure 4. The simulation waveforms of speed in two methods. (a) Traditional direct control method.
(b) Predictive direct control method.

The initial load torque is 1 N - m, and the load torque is added to 3.5 N -m at 0.12s. Then, the output
torques of two methods are simulated. The simulation waveforms of torque are shown in Figure 5. The
torque ripples of the traditional direct control are about 0.5 N-m, and the torque ripples of predictive
direct control are only about 0.2 N-m. It can be concluded that the proposed method can significantly
reduce the torque ripple. The simulation waveforms of flux linkage in two methods are shown in
Figure 6. After using the proposed method, the flux linkage of torque windings in the BPMSM is
obviously improved, and the flux linkage ripple is reduced.
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Figure 5. The simulation waveforms of torque in two methods. (a) Traditional direct control method.
(b) Predictive direct control method.
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Figure 6. The simulation waveforms of flux linkage in two methods. (a) Traditional direct control
method. (b) Predictive direct control method.

— 02F _
g E
2 01 E
3 0 5
;:: =
7 o
2 02 2

03k , , . . , . . . 0.4 . . . . L . \ ,

0 0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 002 004 006 008 0.1 012 004 016 018 0.2
Time (s) Time (s)
(a) (b)
- - - . - r . - . 015 . . . . . .

~ 0.1 — 0.1
E 0.05} E 0.05¢
E 0 é or
5 3 -0.05
E—IJ.(IS F E 0.1
2 0.1 3 -0.15
o 0.2
=15
a : 1.25

-0.2 03

025 L L L L L L L L L -0.35 L i i i L i i i i

0 002 0.04 0.06 008 0.1 012 014 016 018 02 a 0,02 0.04 0.06 008 0.1 012014 016 018 0.2
Time (s) l'ime (s)
(c) (d)

Figure 7. The simulation waveforms of radial displacement in two methods. (a) Displacement of
traditional direct control method in the z direction. (b) Displacement of traditional direct control
method in the y direction. (c) Displacement of predictive direct control method in the = direction. (d)
Displacement of predictive direct control method in the y direction.

The simulation waveforms of radial displacement in two methods are shown in Figure 7. When the
motor is set at the same offset position, the rotor can be recovered to the balanced position faster, and the
fluctuation decreases with the predictive direct control system. In the traditional direct control system,
the rotor is restored to the balanced position in the x direction after 0.06 s and in the y direction after
0.11 s, respectively. In predictive direct control system, the rotor is restored to the balanced position in
the x direction after 0.03s and in the y direction after 0.032 s, respectively. It shows that the proposed
prediction direct control not only preserves the excellent operation characteristics of the traditional
direct control algorithm, but also improves the performance of the motor.

6.2. Experiment Result Analysis

The predictive direct control algorithm proposed in this paper is applied to a BPMSM prototype.
Figure 8 shows the experimental platform of the BPMSM. The parameters of the prototype are shown
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Displacement
sensor

Figure 8. Experimental platform of BPMSM.

Table 1. Parameters of BPMSM.

Parameters value
Rated power (kW) 1.1
Rated speed (r/min) 6000
Pole-pair number of torque windings 1
Pole-pair number of suspension force windings 2
Flux linkage of permanent magnet (Wb) 0.125
Permanent magnet material NFeB35
Length of air gap (mm) 1
Length of rotor axial (mm) 20
Length of air gap (mm) 0.25
Rotor rotary inertia (kg-m?) 0.0056

in Table 1. The proposed control method is implemented by a digital signal processor (DSP) of
TMS320F28335.

The experimental results are shown in Figure 9, Figure 10, and Figure 11. Figure 9 shows the radial
displacement waveforms in two methods when the motor is running steadily. The speed is 1000 r/min.
The displacement fluctuations of BPMSM are about 12 um in the x- and y-directions when traditional
direct control method is applied. When the proposed control method is applied to the motor, the
displacement fluctuations are about 8 um in the z- and y-directions. It can be seen that the control
accuracy of the radial suspension force of the motor is improved by the proposed control algorithm in
this paper, and the motor has better control performance.

Figure 10 shows the comparison of dynamic performance when the proposed control method and
traditional control method are applied to the prototype, respectively. The given speed of the prototype
rises from 1000 r/min to 2800 r/min. The predictive control algorithm takes 80 ms, and the speed ripples
are 120 r/min while the traditional control algorithm takes 110 ms, and the speed ripples are 160 r/min.
It can be seen that the speed response of the proposed control algorithm is faster, and the running
of motor is more stable. In the process of speed rising, the displacement ripples increase. After the
speed is stable, the motor continues to maintain steady suspension. The radial displacement in the x
direction (similar to y direction) slightly increases, but the difference is very small, which indicates that
the coupling relationship between the torque subsystem and suspension subsystem is very small, and
the direct suspension force control used in the suspension subsystem has good dynamic performance.

Figure 11 shows a comparison of the radial displacement waveforms when the rotor is subjected
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Figure 9. Radial displacement waveforms. (a) Traditional direct control method. (b) Predictive direct
control method.
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Figure 10. Experimental results of BPMSM speed regulation. (a) Traditional direct control method.
(b) Predictive direct control method.
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Figure 11. Radial displacement waveforms with external disturbance. (a) Traditional direct control
method. (b) Predictive direct control method.

to external interference. When the motor is running at the speed of 1000 r/min, the rotor suspends
steadily in the balanced position and suddenly adds a radial interference force of 10 N in the y direction.
It can be seen that the displacement error of the rotor in the y direction is more than that in the x
direction. After a brief adjustment of the suspension force subsystem, the rotor can quickly return to
the balanced position and continue to maintain a stable suspension. The radial displacement waveform
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in the y direction can be seen in Figure 11, which shows that the recovery time of conventional direct
control method is 80 ms, and that of proposed control method in this paper is 50 ms. Therefore, the
control method proposed in this paper can improve the anti-interference ability of the motor.

7. CONCLUSION

In this paper, the predictive control algorithm is added to the traditional direct control, which makes
up for the defect of the sampling time delay and improves the stability of the motor. The simulated and
experimental results show that compared with the traditional direct control, the proposed predictive
direct control reduces the ripples of flux linkage, torque, and suspension forces of the BPMSM. When
the rotor is subjected to external disturbance, the BPMSM rotor can be suspended and operated stably.
Therefore, the BPMSM with predictive direct control system has better dynamic and static performance
and anti-interference ability.
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