
Progress In Electromagnetics Research B, Vol. 92, 47–70, 2021

Design and Implementation of Field-Programmable Gate Array
Based Fast Fourier Transform Co-Processor Using Verilog

Hardware Description Language

Yung-Chong Lee1, Yee-Kit Chan2, *, and Voon-Chet Koo2

Abstract—In this research project, the hardware implementation of a Field-Programmable Gate Array
(FPGA) based Fast Fourier Transform (FFT) will be carried out by using Verilog Hardware Description
Language (HDL). Since FFT serves as the core for the Range Doppler Algorithm (RDA) in Synthetic
Aperture Radar (SAR) processing, it is of paramount importance to evaluate the algorithm and its
computational complexity for the design of an efficient FFT hardware architecture. The design process
and Verilog hardware description language which is used to describe and model a digital FPGA-based
SAR processor will be introduced. Detailed explanation of the hardware implementation for FFT
and Inverse Fast Fourier Transform (IFFT) in SAR processing are thus presented. The performance
evaluations of the proposed processors including the comparison of the proposed processor with
MATLAB-based processor, timing considerations of the processor, and lastly the hardware resources
usage considerations are delivered at the end of this paper.

1. INTRODUCTION

SAR enhances radar’s information acquisition capability and information awareness ability by obtaining
high resolution imageries. Now, SAR has been widely used and become an important tool in airborne
as well as space borne radar systems for civilian and military users. The potential of SAR in a diverse
range of applications such as sea and ice monitoring [1], mining [2], oil pollution monitoring [3],
oceanography [4], snow monitoring [5], classification of earth terrain [6], automatic change detection
for multitemporal images [7], and multipass Coherent Change Detection (CCD) in polarimetric radar
image [8] have led to the development of a number of airborne and spaceborne SAR systems [9–14].

An extensive literature exists on various processing techniques that generate images from the
radar returns of a SAR [15–20]. The SAR signal processing can be broken into two phases: range
processing and azimuth processing. Most coherent radars use some forms of modulation or coding
of the transmitted waveforms to improve resolution. The main purpose of SAR signal processing is
to carry out the reverse transformation from signal space to target space via two dimensional inverse
convolution. The bandwidth of the pulse determines the nominal resolution of the system in the cross
track direction, and the azimuth or along track beamwidth of the antenna determines the nominal along
track resolution.

SAR can provide high-resolution image of range by emitting large time-bandwidth multiplication
signal. Resolution much finer than the length of ground intercepted by the physical antenna’s beam in
the along track direction is achievable by properly processing the signal returned during the ground
illuminated by the physical beam. Matched filter is the touchstone allowing synthetic aperture

Received 28 December 2020, Accepted 17 March 2021, Scheduled 29 March 2021
* Corresponding author: Yee-Kit Chan (ykchan@mmu.edu.my).
1 iRadar Sdn. Bhd., Melaka, Malaysia. 2 Faculty of Engineering & Technology, Multimedia University, Melaka 75450, Malaysia.

48 Lee, Chan, and Koo

processing to achieve azimuth resolution finer than that provided by the physical antenna’s azimuth
resolution. As a result, a two-dimensional high-resolution image can be obtained.

In the application of digital SAR processing, signal processing poses a significant challenge because
of its stringent computation power and data storage requirements. A high resolution SAR system
captures the return echoes and yields huge amount of raw data. The size of these data ais dependent on
several parameters such as dynamic range, spatial resolution, and also sampling frequency of the SAR
system. The majority of prior works in the design and development of digital SAR systems are based
on DSP based or computer-based SAR processor.

Therefore, this research work is motivated by the need to overcome the challenges that arise in the
hardware implementation of SAR processor due to inflexibility of customised hardware solutions as well
as stringent space and power requirements in the SAR platform. In this paper, a FPGA-based system
is proposed for the hardware implementation of an efficient digital SAR processor due to its flexibility,
reconfigurability and exploit pipelining. In addition, FPGA-based system is able to fulfill the demands
of massively parallel processing, lower power consumption, as well as smaller form factor.

This paper elaborates the design and development of the FPGA-based FFT and IFFT co-
processor by using Verilog HDL. Section 1 introduces the SAR image formation and Verilog HDL. The
introduction of Verilog HDL that specifies a digital system in a wide range of levels of abstraction is also
presented. Section 2 presents and explores the hardware architecture and specification for the design
and development of FFT and IFFT coprocessors using Verilog HDL. The target hardware platform
architecture for the implementation of the SAR processor is introduced as well. Besides, the performance
metric of the proposed processor is evaluated in terms of timing consideration, hardware usage resources
consideration, power consumption, and accuracy in Section 3. At the end of Section 3, comprehensive
performance comparisons among MATLAB, IP core, and the proposed coprocessors are presented.

1.1. SAR Image Formation

The generation of a SAR image is a computational intensive task [21]. Both range compression and
azimuth compressions can be summarised as time domain convolution with respective reference signal.
In order to reduce the computational load, the time domain correlation processes are often completed
in frequency domain. The transformation between time and frequency domains is performed by FT

Raw Data

Range FT

Range Reference
function

Range IFT

Azimuth FT

Azimuth IFT

Azimuth Reference
function

Compressed Data

Figure 1. SAR processing block diagram.

Progress In Electromagnetics Research B, Vol. 92, 2021 49

algorithms and IFT algorithms. They require most of the processing power of SAR signal processing.
The block diagram of SAR signal processing based on Range Doppler Algorithm (RDA) is shown in
Figure 1 [22–24].

At present time, the real time SAR imaging has a variety of applications such as identifying
man-made objects on the ground, executing search and rescue operation, and estimating earth surface
activities. Therefore, the hardware implementation of FPGA-based FFT/IFFT core for real time SAR
processing is essential.

Real time SAR images can be used for national monitoring and management of earth resources
as well as disaster monitoring. The importance of unlimited and timely supply of the required SAR
images cannot be understated. Besides, the generation of a two-dimensional image is a computational
intensive task. Conventional range compression and azimuth compression utilise FFT and IFFT in
order to perform convolution with respective reference signal. In fact, FFT and IFFT are estimated to
occupy about 70% of the total computation operation in SAR image formation. Thus implementation
of multiple processors and the application of parallel digital signal processing platform are needed in
order to realize the real time SAR processing.

1.2. FPGA-Based On-Board Processor

FPGA has unique characteristics of reconfigurability, application power efficiency, and high throughput
rate, which allows user to perform various direct controls for the implementation of a digital system,
including a digital SAR processor. NASA and USAF have identified that on-board processing is an
indispensable technology required in order to improve the performance of a SAR system [25]. In 2007,
Kuon and Rose showed that the main advantage of FPGA is the reprogrammable ability, and therefore,
it is the perfect and best matched candidate for the implementation of real-time processing systems.
In particular, researchers from JPL proposed an on-board FPGA-based SAR processing system which
is possible to be implemented for the application of SAR [26]. The proposed architecture consists of
major objectives and several challenges for an FPGA-based SAR processor. From the proposal, it is
shown that the implementation of an FPGA-based on-board processor in SAR mission is feasible.

By implementing SAR on-board processing with the use of an FPGA, the FPGA-based on-board
processor can be adapted into different SAR systems with different specifications as the processor is
scalable and reconfigurable according to the user requirements. As long as the hardware resources are
sufficient, the processor can be reconfigured anytime in order to match the desired requirement. The
term of scalability is defined as the processing power, and architecture of the processor can be easily
reconfigured while maintaining the same hardware platform without any physical hardware modification.
Besides, an FPGA-based SAR processor has the ability to make trade-off between hardware and software
in order to maximise the efficiency and performance of the processor. For instance if a bottleneck is
identified to be the SAR software algorithm, a customised FPGA-based co-processor can be designed
particularly for the specific algorithm. The co-processor is attached to the main processor through low
latency channels for real-time on-board processing due to high throughput rate.

1.3. Verilog Hardware Description Language Based Design

Verilog was originally designed in 1993 at Gateway Automation as a hardware modeling language which
was associated with their simulator products [27]. Verilog language is a hardware description language
(HDL) that specifies a digital system in a wide range of levels of abstraction. The unique feature of
this language is that it supports the early conceptual phases of a design with its behavioral level of
abstraction followed by its structural abstractions in the later implementation phases. The language
supports a design ranging from the algorithm-level to the gate-level, and even to switch-level. The
design of digital systems using HDLs has become an essential way as it includes hierarchical constructs
and descriptions by allowing the user to define the complexity of the designs [28].

Verilog HDL-based design is gaining popularity due to several bottlenecks that appear in the
traditional schematic-based design. In traditional schematic-based design, one of the major bottlenecks
faced is that it is not able to provide the capability of design reuse as it is not easy to handle the
designs with large number of gate counts in a schematic. A design flow of the FPGA HDL-based SAR
Processor paradigm is portrayed in Figure 2. Generally, the design flow can be divided into two sections

50 Lee, Chan, and Koo

Design Specification

Design Entry

Functional Verification

Device Selected

Synthesis & Optimisation

Post-Synthesis Verification

Place & Route

Timing Analysis

Programmable Hardware

Prototyping

FPGA

Target-
Independent

Section

Target-dependent
Section

Synthesis

Implementation

SAR Raw
Data Parameters

Front-End
Design

Back-End
Design

Figure 2. A design flow of the FPGA HDL-based SAR processor paradigm.

which are target-independent section and dependent section. In the target-independent section, the
design begins with the desired specification according to the SAR raw data parameters, followed by
design entry (Verilog HDL), and ends with functional verification. The functional verification is an
important step as it assures that the functionality of design entry is correct and corresponds to the
required specification as the completion of target-independent section.

In target-dependent section, it is further branched into several subsections due to the complicated
structure of the FPGA devices. These subsections can be roughly classified into three major parts
which are synthesis, implementation, and followed by programming. The synthesis process is composed
of the FPGA device selection, design synthesis, and optimisation, together with the post-synthesis
verification. In the synthesis process, the switching function designed by the user is optimised based on
the selected FPGA device. The mapping of the abstract logic elements to the actual logic blocks as in
the device is carried out after optimisation. Upon completion of the synthesis and optimisation process,
the synthesised result is verified through post-synthesis simulation or formal verification.

As for the implementation process, it consists of place and route operations and timing analysis.
The process starts with the placement and routing of components where the logic blocks are placed into
the actual logic elements, and the related interconnects are then set up and routed in order to connect
the placed components. After the place and route operation, timing analysis is required in order to
verify whether the desired timing constraints meet the required specification. This step is necessary due
to the natural propagation delays associated with the logic elements and interconnect. Typically, there
are two types of timing analysis, namely dynamic timing analysis (DTA) and static timing analysis
(STA) [29]. The former is done by simulation, and the latter is done by analysing the timing paths of
the design without performing any actual simulation. Once the implementation process is completed,

Progress In Electromagnetics Research B, Vol. 92, 2021 51

the programming file for the design will be generated by the CAD tool in order to program the target
device. The programmed device is often used in a real world experiment in order to see if it indeed
works as expected. In the design flow of a digital system with HDL-based approach, front-end design
is usually referred to as the target-independent part and synthesis part with the remaining part as
back-end design.

2. RESEARCH METHOD

2.1. Design and Implementation of FFT and IFFT Coprocessors

SAR signal processing is a computational intensive task which involves several complex operations and
algorithms. It is important to introduce Fourier Transform (FT) in the context of SAR as it plays
a major role in convolution operations such as matched filtering which heavily utilise FT and inverse
Fourier Transform (IFT) algorithms. SAR processing becomes formidable and arduous without the
use of FT and IFT as pulse compression technique in SAR processing can be summarised as time
domain convolution with respective reference signal. Therefore, the operations are often performed in
frequency domain in order to reduce the complexity and computational load. The transformation from
time domain to frequency domain is achieved by FT whereas the transformation from frequency domain
back into time domain is achieved by IFT. FT and IFT play an important role in SAR processing, and
hence, it is motivated to extensively study the FT algorithm for the hardware implementation.

Discrete Fourier Transform and its inverse (IDFT) are considered at the first place as the SAR
digital processing algorithms are implemented in the finite length signal manner. DFT and IDFT are
defined for periodic samples signals or finite length signal. For a discrete-time signal x[n] with the finite
length of N , the DFT and IDFT pair are given as

DFT → X [k] =
N−1∑
n=0

x [n]W kn
N k = 0, 1, ..., N − 1 (1)

IDFT → x [n] =
1
N

N−1∑
n=0

X [k]W−kn
N n = 0, 1, ..., N − 1 (2)

where N in X[k] is termed as spectral coefficients, and WN = e−j 2π
N is the trigonometric constant called

twiddle factor with symmetry and periodicity properties due to the complex exponential function. In
order to recover x[n] into time domain with correct amplitude, the scaling factor of 1

N as in Equation (2)
is required. In the time domain signal of x[n], the first point is denoted as x[0] which is the time zero of
the signal. The signal samples are evenly spaced by an interval of 1

fs
where fs is the sampling frequency

of the ADC. In the frequency domain spectrum of X[k], similar to the time domain signal, the first
point is denoted as X[0] which is the zero frequency of the spectrum. The spectrum samples are evenly
spaced by an interval of fs

N . Hence, the spectrum sample for X[k] is corresponding to the frequency of
k fs

N .
One of the deficiencies arises from DFT and its inverse is the high number of operations required

in order to complete the transformation. A forward DFT requires an order of N2 complex arithmetic
operations (computational complexity O(N2)), and the same number of operations happen in its inverse.
In SAR processing algorithm, it requires a continuous computation of the FT for the range lines and
stores in the memory, thus, an efficient DFT is required in order to achieve this objective. If the
signal length N is factored into many small sections with the power of d, the number of operations
and complexity can be enormously reduced especially for long data sets in SAR data that can go up
to thousands or even millions. This method is called FFT, and its inverse is called IFFT. FFT and
IFFT algorithms are efficient methods for the implementation of DFT and IDFT, respectively. FFT
algorithm exploits a structure that is employing a divide-and-conquer paradigm in order to reduce the
number of operations in the order of N logd N instead of N2 where N is a power of d.

Generally, there are two basic classes of FFT algorithms which are the Cooley-Tukey
FFT, Decimation-in-Time (DIT) algorithm and Sande-Tukey FFT, Decimation-in-Frequency (DIF)
algorithm [30]. The two algorithms have the same complexity and require the same number of operations

52 Lee, Chan, and Koo

in order to transform a signal into frequency domain. For a radix-2 FFT or its inverse, N is a power
of 2, and the total number of operations required is in the order of N log2 N . More specifically, the
number of complex multiplications in a radix-2 FFT is N

2 log2 N , and the number of complex additions
is N log2 N . A single complex multiplication consists of four real multiplications and two real addition
whereas a single complex addition consists of two real additions. By considering the real addition
or a real multiplication as one operation, a radix-2 FFT or IFFT only requires total 5N log2 N real
operations.

The radix-2 DIF FFT is derived based on Equation (1) by decomposing the output frequency
series into successively smaller subsequences, an even-indexed frequency samples set X[2r], and an
odd-indexed frequency samples set X[2r + 1].

X [k] = X[2r] + X[2r + 1] (3)

An N -point DFT is interlaced and decomposed into two N
2 point recursively. This decomposition is

recursively applied in order to achieve the shorter-length of DFTs and results in the full radix-2 FFT.
The decomposition is stopped when a 2-point DFT is obtained. The 2-point DFT is called a butterfly
network. The even-indexed frequency samples set is written as

X [2r] =
N−1∑
n=0

x [n]W n(2r)
N =

N
2
−1∑

n=0

x(n)W 2nr
N +

N
2
−1∑

n=0

x

(
n +

N

2

)
W

2r(n+ N
2)

N

=

N
2
−1∑

n=0

[
x (n) + x

(
n +

N

2

)]
W nr

N
2

(4)

where W
2r(n+ N

2
)

N = W 2nr
N W rN

N = W 2nr
N = W nr

N
2

. The simplification of the twiddle factor is mainly due

to the 2π periodicity and symmetry properties of the complex exponential function. Similarly for the
odd-indexed frequency samples set, it is denoted as

X [2r + 1] =
N−1∑
n=0

x [n]W n(2r+1)
N =

N
2
−1∑

n=0

x(n)W (2r+1)n
N +

N
2
−1∑

n=0

x

(
n +

N

2

)
W

(2r+1)(n+ N
2)

N

=

N
2
−1∑

n=0

[
x (n) − x

(
n +

N

2

)]
W n

NW nr
N
2

(5)

Hence, the major operations in the implementation of the FFT are done during the subdivision
steps and the complex operations of subdivided samples with the twiddle factor. A radix-2 N -point
FFT requires M stages for the completion of the transformation where N = 2M . The butterfly network
is illustrated by the annotated butterfly symbol as shown in Figure 3.

x(n)

(M - 1) stageth

x(n +)
2
N -1

M stageth

X[2r] = [x(n) + x(n+)]
2
N

X[2r + 1] = [x(n) - x(n+)]W
2
N

N
n

Figure 3. Butterfly network of DIF FFT.

A simple radix-2 8-point FFT is shown in Figure 4. Addition operations are represented by the
arriving arrows while the constant coefficient multiplications are represented by a factor at an arrow.
The same type of twiddle factor is used in the multiplications for each group.

An IFFT is required in order to transform the frequency domain spectrum, X[k], back to time
domain signal, x[n]. The IFFT algorithm can be easily implemented by modifying from FFT algorithm

Progress In Electromagnetics Research B, Vol. 92, 2021 53

 x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

X[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

W
0

W
1

W
2

W
3

W
0

W
2

W
0

W
2

Stage 1 Stage 2 Stage 3

Group Butterfly

Figure 4. Signal flow graph of radix-2 8-points FFT.

as in Equation (1) with the use of complex conjugation method. The complex conjugate of both sides
as in Equation (4.3.2) is calculated.

x ∗ [n] =
1
N

[
N−1∑
n=0

X [k] W−kn
N

]∗
(6)

Since the complex conjugate of a product is equivalent to the product of the conjugates, Equation (6)
can be further expanded as

x ∗ [n] =
1
N

N−1∑
n=0

X [k]∗
(
W−kn

N

)∗
=

1
N

N−1∑
n=0

X [k]∗ W kn
N (7)

The similarity of Equation (7) to the forward FFT as in Equation (1) is surfaced. By taking the
conjugate of both sides in Equation (7), the time domain signal x(n) can be found. In short, IFFT is
derived according to forward FFT with the following steps. The complex conjugate of X[k] is firstly
obtained as X ∗ [k]. A forward FFT is performed on X ∗ [k] with a scaling factor of 1/N in order to
obtain x ∗ [n]. Finally, x[n] which is the time sample signal is found by taking the complex conjugate
of x ∗ [n].

The main impact that maked FFT and IFFT relatively important in SAR processing is the unique
property of convolution theorem. The convolution in one domain is equivalent to the multiplication in
the other domain.

x1 (t) ⊗ x2 (t) ↔ X1 (f)X1 (f) (8)
x1 (t) x2 (t) ↔ X1 (f) ⊗ X1 (f) (9)

In time domain, a convolution of two periodic sequences is equivalent to multiplication operation as
in frequency domain and vice versa. This property significantly benefits SAR processing, and it is the
most important property being utilised as match filtering technique used in SAR processing.

Based on the study on the FFT algorithm and its inverse, the proposed architecture for hardware
implementation of a radix-2 N-points FFT processor will be presented and discussed. SAR processing
operations require huge number of matched filtering operations in order to process useful and meaningful
SAR data. The operations can be performed much faster and efficient in the frequency domain. Hence,
an efficient FFT hardware architecture will always guarantee the performance of SAR processor.

2.2. FFT Coprocessor Architecture

The working principle and operation process of the radix-2 FFT algorithm are in discussed in Section 2.1.
Based on the discussed FFT algorithm, the proposed hardware architecture of a configurable FPGA-
based N-point FFT is illustrated in the block diagram of Figure 5. The generic module is designed

54 Lee, Chan, and Koo

Clock

Rese t

fft_r2_rom_n

add_ n

din_buf
wks_buf

real _in
img_in

Figure 5. Architecture of the proposed configurable N-point FFT processor.

based on the radix-2 decimation in frequency algorithm of FFT with the in place computation for
optimisation of memory resources. The number of points for the FFT and data width of all modules
are configurable, and it can be configured into any length of N in the power of 2 according to the
requirement of application. The data width of the processor in this research work is set to fixed-point
format of 16 bits as the SAR raw data width is 16-bits.

The design and development of the generic FFT processor is carried out by using Verilog HDL
approach and synthesised into FPGA hardware with Altera Quartus II CAD tool. Overall, the
architecture is partitioned into several main modules, which are look-up-table (LUT) ROMs, FFT finite
state machine (FSM) controller, radix-2 butterfly computing unit that consist of complex multiplier, on-
board SRAMs, and lastly the memory handling unit. The twiddle factors for the FFT are pre-computed
and stored into the internal ROMs of the FPGA. The on-board SRAMs are served as input buffer and
workplace buffer memories. They are used to temporary store the SAR raw data and fed into the FFT
core to perform the transform. The intermediate and final results of the transform will be stored into
the workplace buffer. Based on the interrupt control signal to the FFT module, the FSM controller will
trigger the butterfly computing unit to start the transform operation; meanwhile, the internal memory
handling unit will generate the required memory addresses so that the transformed data will be placed
into the workplace SRAM with an appropriate address.

The target FPGA device that is used to synthesise and implement the FFT coprocessor is Altera
Stratix IV GX FPGA EP4SGX230KF40C2 device. This target FPGA is selected as it is a part of
the Altera DE4 Development Board. A 16-bits N-FFT based on hardware resources available in the
device Stratix IV GX FPGA EP4SGX230KF40C2 is synthesised by using Quartus II CAD tool. The
architecture schematics of the N-point FFT processor with transform length from 64 to 4096 are available
in Appendix E. Figure 6 shows the whole schematic representation of the internal structure of the
proposed FFT coprocessor architecture with transform length of 1024. Label 1 in the figure indicates
the FSM controller that controls the overall operation of the FFT coprocessor while label 2 is the radix-2
butterfly computing unit that internally contains a complex multiplier with several real adders. The
section labelled with label 3 is a 32 bits ROM that store the twiddle factor coefficients. Label 4 and
label 5 are the parameterised true single-port synchronous RAMs that act as an input buffer and a
workplace buffer, respectively.

2.3. Finite State Machine (FSM) Controller

The zoomed in version of the FSM controller in Figure 6 is illustrated in Figure 7. In the FSM
controller, total 5 inputs are required in order to produce the three unique state outputs for the FFT
transformation. The three FSM states are idle state (FSM ST IDLE), read state (FSM ST RD XA),

Progress In Electromagnetics Research B, Vol. 92, 2021 55

1
234

5

Figure 6. Synthesised of RTL 16-bits 1024-FFT in Stratix IV GX.

Figure 7. Synthesised of RTL FSM controller for FFT coprocessor and the finite states.

and butterfly calculation state (FSM ST CALC BFLY). The FSM controller will generate necessary
trigger signal to push the data from buffer into the butterfly unit. The clk pin is the input clock signal
to drive the FSM, and the rst n is the active low reset pin. The din buf nd pin is the trigger valid
signal to the FSM to start a new FFT operation when the last sample of a transform period has been
completed. Lastly, bfs x last and din rd cntr[8..0] are the control signal and counter output of internal
memory handling unit that assign appropriate addresses to the buffer in order to read the data for the
transformation.

2.4. Butterfly Computing Unit

The zoomed in version of the butterfly computing unit as in Figure 6 is shown in Figure 8. This butterfly
computing unit module computes a single 2-points DFT operation including the twiddle-factor complex
multiplication. The clk and rst n pins are the input clock signal and active low reset pin, respectively.
Pin x nd is used to trigger the butterfly computing unit and indicates that there is valid new data on
the input data ports. There are total six input data ports which are w re, w im, xa re, xa im, xb re, and
xb im. The ports w re and w im are the real part and imaginary part of the twiddle factor coefficient
respectively; meanwhile, xa re, xb re and xa im, xb im are the real part and the imaginary part of the
input data, respectively.

The operation of the butterfly computing unit is divided into several stages in order to produce
the output z re and z im which are the real and imaginary parts of the output data from the butterfly
computing unit. The operation is started with the loading of input data and waiting for the multiplier to
perform the complex multiplication. The complex multiplication is divided into real part and imaginary
part, and hence the total two complex multipliers are required in the module. Lastly, the final output
of the operations is scaled down to the data width as in the input data width, and the outputs are
updated. The complete internal architecture of the butterfly computing unit module is portrayed in
Figure 9. In the figure, the complex multipliers are labelled as CM symbols.

56 Lee, Chan, and Koo

-1

n
NW

xa_re+j xa_im

xb_re+j xb_im

w_re+j w_im

zb_re+j zb_im

za_re+j za_im

Figure 8. Synthesised of RTL butterfly computing unit for FFT coprocessor.

CM CM

Figure 9. Synthesised of RTL butterfly computing unit internal architecture.

2.5. Complex Multiplier

The highlighted portions with label CM in Figure 9 are the two complex multipliers used in the butterfly
computing unit module. It is of paramount importance to explore the internal structure of the butterfly
computing unit as it is the core of an FFT processor. By referring to Figure 10, the architecture of
butterfly computing unit is made up of a complex adder, complex subtraction, and a complex multiplier
for the twiddle factor multiplications.

Equation (10) shows that a complex adder is implemented by two real adders that sum the real
part and imaginary part of the signals accordingly. Equation (11) shows that a twiddle factor is
multiplied towards the operation of x-y in order to produce the output Y . It is noticeable that a
complex multiplication is much more complicated than real multiplication because it involves several
real multiplications and additions in order to complete the operation. Equation (12) is the simplified
version of twiddle factor which will be used to explain the operation of complex multiplier inside the
butterfly computing unit.

X = (xreal + yreal) + i (ximag + yimag) (10)
Y = [(xreal − yreal) + i (ximag − yimag)] WN (11)

WN = e−j 2π
N = C + jS (12)

Progress In Electromagnetics Research B, Vol. 92, 2021 57

X = x + y

Y = (x - y)W
-1

n

NW

x

y

Complex
Adder

Complex
Subtraction

Complex
Multiplication

Twiddle FactorComplex
Inputs

Complex
Outputs

N

Figure 10. DIF FFT butterfly computing unit (2 points DFT operation).

Assuming an arbitrary complex input variable with A as the real part and B as the imaginary part
multiplied with the twiddle factor as in Equation (12), the complex multiplication is shown as

(A + jB) × (C + jS) = (AC − BS) + j (AS + BC) (13)

Equation (13) shows the complex multiplier for the twiddle factor complex multiplication which is
implemented by using 4 real multiplications (AC, BS, AS, BC) and 2 add/subtract operations (AC−BS
and AS+BC). Figure 11 shows the RTL of the synthesised complex multiplier. Two real multiplications
and one adder are required on each of the real part and imaginary part in the operation. Therefore, two
of the complex multipliers are instantiated in order to complete one complex multiplication, one for the
real part and the other for the imaginary part. The clk and rst n pins are the input clock signal and
active low reset pin, respectively. Pin xy nd is used to trigger the complex multiplier and indicates that
there is valid new data available on the input data ports. Port x is the input to the multiplier while
port y is the multiplicand. The result of the multiplication is valid after 2 clock cycles and output as
port z. Pin z nd indicates that the multiplier has a valid output data from the operation.

Figure 11. Synthesised RTL complex multiplier for FFT coprocessor.

In the complex multiplier, the multiplication of multiplicand and multiplier is carried out though
2-stages pipelined operations. The multiplicand is segmented into two parts which is the 10-bits of LSB
and 15-bits of LSB before the multiplication. These two parts of multiplicand are then multiplied with
the same multiplier concurrently, and the products of these two operations are latched by the flip-flop
prod lo and prod hi. The number of bits for the intermediate product registers is subjected to the
data width of the multiplication which is the summation of data width for multiplicand and multiplier.

58 Lee, Chan, and Koo

After the intermediate products of the multiplication are obtained, the data width of prod lo is then
extended into 32 bits so that these products can be added or subtracted in the same data length in
order to produce the z hi as stage-1 product of the multiplication. The subtraction is carried out in
the same manner as addition by using 2’s complement numbering format. As for the stage-0 product
of the multiplication, it is abstracted from the 10-bits of LSB from prod lo and latched as z lo. Lastly,
the z lo and z high are combined through concatenate syntax in Verilog HDL in order to produce the
final product of the multiplication. This entire operation will be carried out twice simultaneously by
two dedicated multipliers, one for real data and the other for the imaginary data.

2.6. Twiddle Factor Coefficient ROM

The twiddle factor of the FFT operation as in Figure 10 is implemented by using a synchronous RAM in
the FPGA device as the default memory resource available in an FPGA is RAM. Thus, RAM is treated
as ROM and loaded with the precalculated twiddle factor that is stored in memory initialization file
(.mif) to create a LUT ROM. Throughout the FFT operation, the twiddle factor coefficients are being
read only, and hence the synchronous RAM is behaving as a ROM without any write operation. The
data width of the twiddle factor ROM depends on the input data of the application. Since the input
data width of the FFT coprocessor is set to 16 bits, the twiddle factor ROM with 32 bits data width is
instantiated and synthesised as shown in Figure 12 and Figure 13. The twiddle factor is precomputed
and generated by using MATLAB with the first 16 bits MSB (Bit 31 to Bit 16) as the real part of
the twiddle factor coefficients and the first 16 bits LSB (Bit 15 to Bit 0) as the imaginary part of the
twiddle factor coefficients. The address line width is set to 9 bits as there are 512 unique twiddle factor
coefficients for 1024-points of FFT. Different numbers of points for the FFT processor will have their
own unique twiddle factor ROM respectively, but generally the architectures are the same.

Figure 12. Synthesised RTL 32 bits twiddle factor ROM for FFT coprocessor.

Figure 13. Internal architecture of synthesised RTL 32 bits twiddle factor ROM for FFT coprocessor.

As observed in Figure 13, the internal of the twiddle factor ROM consists of a synchronous RAM, a
data multiplexer, and a D flip-flop. The multiplexer functions as the imaginary twiddle factor selection
during the read operation according to the address validity while the D-flip flop will latch the real part
of the twiddle factor from the ROM accordingly with the synchronisation of global clock signal.

Progress In Electromagnetics Research B, Vol. 92, 2021 59

2.7. Input and Workplace Buffers Synchronous RAMs

Label 4 and label 5 as shown in Figure 6 are the parameterised single-port synchronous RAMs that
act as input buffer and workplace buffer during the FFT operation. The two RAMs have the same
architectures and are clocked by a single clocking frequency. The RAMs support non-simultaneous
write and read operations from a single address. It allows read or write operation to be performed at a
time only. The only difference between these two RAMs is the data width which is defined by the input
data width. Figure 14 and Figure 15 show the architectures of the mentioned RAMs.

Figure 14. Architecture of synthesised RTL synchronous RAM input buffer for FFT coprocessor.

Figure 15. Architecture of synthesised RTL synchronous RAM workplace buffer for FFT coprocessor.

60 Lee, Chan, and Koo

Since the FFT coprocessor is designed based on 16 bits data width, the input buffer synchronous
RAM is 32 bits wide. The data is indexed into real part and imaginary part and write into the RAM
before the FFT operation is carried out. The first 16 bits MSB data in the RAM (Bit 31 to Bit 16) is
the real part of the input data while the first 16 bits LSB data (Bit 15 to Bit 0) are the imaginary part
of the input data. The address line width is set to 10 bits as the sample size for the FFT processor is
1024 (2 to the power of 10). In other words, the address line width depends on the number of points of
the FFT processor that is in the factor of power of 2.

As for the workplace buffer RAM, the data width is set to 50 bits based on 16 bits input data
width. Similar to the input buffer, for workplace buffer, the first 25 bits MSB data in the RAM (Bit 49
to Bit 25) is the real part of the data while the first 25 bits LSB data (Bit 24 to Bit 0) is the imaginary
part of the data. The reason for workplace buffer having larger data width than the input buffer is
mainly that operations are carried out during the FFT operation. In the butterfly computing unit,
it involves several operations such as additions and multiplications that will increase the data width.
Therefore, workplace buffer requires larger data width in order to store the intermediate results of the
sub operations in order to prevent overflow or data saturation. The output data from the FFT operation
will be scaled, updated, and latched by two D flip-flops for both real and imaginary parts in order to
keep the data width same as the input data width. The address line width for the workplace buffer
RAM is similar to the input buffer RAM as discussed earlier. The performance evaluation including
the hardware resources usage and timing considering of the entire FFT coprocessor will be discussed in
the later section.

2.8. Design and Implementation of IFFT Coprocessor

The working principle and operation process of the radix-2 IFFT algorithm are discussed in Section 2.1.
The IFFT coprocessor has a very similar architecture as discussed in Section 2.2. This is because a
minor modification is done by manipulating the data in the buffer RAM and computing the IFFT by
using an FFT coprocessor.

As discussed in Section 2.1, the IFFT is performed by using complex conjugate operation and FFT
operation with scaling factor of N where N is the transform length. Since the data are stored in the
buffer synchronous RAM with real and imaginary parts indexed with the respectively unique addresses,
implementing the complex conjugate operation can be easily done by inversing the signed bit of the
imaginary data in the RAM for the indexed addresses. The IFFT coprocessor implementation scheme is
illustrated in Figure 16. In short, an IFFT coprocessor is composed of an FFT coprocessor as discussed
earlier, a data manipulator to inverse the sign bit of the imaginary data which imitate the complex
conjugate operation. Lastly, two shift registers will be used in order to scale the data with the factor of
N, where N is required transform length, so that frequency domain data can be transformed into time
domain data.

FFT
Coprocessor

N

N

Real Data

Imaginary Data

Frequency Domain Time Domain

Real Data

-1-1

IFFT Coprocessor

Imaginary Data

Figure 16. Architecture of IFFT coprocessor using modified FFT coprocessor.

The performance analysis and evaluation of the proposed FFT coprocessor will be carried out in the
upcoming section. The proposed processors will be benchmarked according to the timing performance
consideration and also overall hardware usage resources occupied in Altera Stratix IV GX FPGA
EP4SGX230KF40C2 chip.

Progress In Electromagnetics Research B, Vol. 92, 2021 61

3. RESULTS AND DISCUSSIONS

In order to analyse and evaluate the performance of the proposed N-point radix-2 FFT coprocessor, the
proposed coprocessor is benchmarked and compared with commercialised Altera Intellectual Property
(IP) FFT MegaCore. Both proposed coprocessor and IP core are configurable in terms of transform
length and data width. The benchmarks are carried out by implementing both proposed processor
and IP core in the same device which is Altera Stratix IV GX FPGA EP4SGX230KF40C2 chip with
16 bit data width in fixed-point format from the transform length of 64 points to 4096 points. The
performance evaluation metrics of both processors are conducted in terms of timing considerations,
hardware resources utilisations, and total power consumptions.

3.1. Hardware Resources Utilisations and Power Consumptions

The proposed FFT coprocessor and Altera FFT IP MegaCore are instantiated in Altera Quartus II
CAD tools in order to analyse and synthese the physical hardware resources utilisations and total
power consumptions for both FFT coprocessors in the mentioned Stratix IV device. The total power
consumptions of the coprocessors are measured by using the CAD tool built-in function called PowerPlay
Power Analyser. The FFT coprocessors based on the transform lengths of 64, 128, 256, 512, 1024, 2048,
and 4096 are instantiated and synthesised for the performance evaluation. The main reason that these

Table 1. Description of hardware resources utilisations metrics.

Hardware Resources Description

Combinational
ALUT

The ALUT is a construction of logical that is representing the
design which is being implemented by the combinational logic

hardware of an Adaptive Logic Module (ALM) in the supported
device families (Stratix IV). The Adaptive Logic Module (ALM) is
the fundamental building block of the device Stratix IV. A single

ALM can support up to 8 inputs and 8 outputs that contains two or
four register logic cells and two combinational logic cells, two dedicated

full adders, a carry chain, a register chain, and a 64-bit LUT mask.

Total Dedicated
Logic Registers

Represents the total number of logic registers in the design that will
be implemented with core logic of ALMs. They are are also used

as the implementation registers and routing optimisation registers.

Total Pin The total number of pins being occupied in the design.
Total Block
Memory Bits

Total number of memory bits that are used in the design.

M9K Block
Memory

Asynchronous true dual-port memory block with registered inputs and
registered outputs that is only available in selected device families

(Arria II GX, Cyclone IV, and Stratix IV). The M9K block is useful
for storing processor code and implementing lookup schemes such as
the twiddle factor LUT in FFT processor. Each of the M9K block

memory is a 256 × 36 RAM block and contains 9,216 programmable bits.

DSP Block
18-bit Elements

The DSP block 18-bit elements represents the total number of DSP
block 18-bit elements utilised in the design. These DSP blocks

contain input shift registers and can be easily used to implement
multiply, multiply-add and multiply-accumulate features.

62 Lee, Chan, and Koo

transform lengths are selected is mainly that the data sample size of SAR application typically falls
under this range. Thus, in total 7 proposed FFT coprocessors and 7 Altera IP FFT cores are synthesised
for the performance comparison purpose.

There are six metrics to be considered in the area of hardware resources utilisations. These metrics
are Combinational Adaptive Look-Up Table (ALUT), total dedicated logic registers, total pins, total
block memory bits, M9K block memory, and DSP block 18-bit elements. The descriptions of these
performance metrics are summarised and tabulated in Table 1.

The performance evaluations are conducted by comparing the hardware resources utilisations in
six metrics as discussed earlier and the total power consumptions for both Altera IP FFT coprocessor
and the proposed FFT coprocessor with the transform length from 64 points until 4096 points. The
evaluations are tabulated into Table 2 and Table 3 for the ease of comparison.

Table 2. Evaluation of hardware resources utilisations and power consumption of proposed system and
Altera IP for different point of FFT (64-, 128-, 256-, 526-, 1024-, 2048-, and 4096-point).

Area of

Hardware

Resources

Combinational

ALUTs

Total

Dedicated

Logic Registers

Total

Pins

Total

Block

Memory bits

M9K

Block

Memory

DSP block

18-bit

elements

Total

Power

Consumption

Altera IP

64-FFT
1,992 3,461 85 9,024 18 12 886.48 mW

Proposed

64-FFT
439 884 68 4,736 3 8 901.06 mW

Altera IP

128-FFT
2009 3,585 85 17,792 18 12 886.90 mW

Proposed

128-FFT
464 934 68 9,728 3 8 901.30 mW

Altera IP

256-FFT
2,078 3,698 85 39,168 20 12 887.99 mW

Proposed

256-FFT
543 984 68 19,968 3 8 901.52 mW

Altera IP

512-FFT
2,421 4,101 85 78,080 20 12 888.49 mW

Proposed

512-FFT
634 1,035 68 40,960 5 8 901.73 mW

Altera IP

1024-FFT
2,491 4,418 85 155,904 20 12 888.90 mW

Proposed

1024-FFT
803 1,085 68 83,968 10 8 901.99 mW

Altera IP

2048-FFT
3,417 5,631 85 311,552 39 12 889.27 mW

Proposed

2048-FFT
1,088 1,135 68 172,032 24 8 903.55 mW

Altera IP

4096-FFT
3,597 5,949 85 622,848 76 24 890.74 mW

Proposed

4096-FFT
1,602 1,185 68 352,256 41 8 905.82 mW

From the tables, it is noticeable that for all transform lengths of the FFT coprocessors, the proposed
FFT coprocessors occupy fewer hardware resources in all the six metrics than the Altera IP FFT
coprocessor. For the total number of pins metrics, the total number of pins occupied for all transform

Progress In Electromagnetics Research B, Vol. 92, 2021 63

Table 3. Resources reduction of proposed system (Different point of FFT, 64-, 128-, 256-, 526-, 1024-,
2048-, and 4096-point) reference to Altera IP.

Area of

Hardware

Resources

Resources Reduction

Altera IP

64-FFT

vs Proposed

64-FFT

Altera IP

128-FFT

vs Proposed

128-FFT

Altera IP

256-FFT

vs Proposed

256-FFT

Altera IP

512-FFT

vs Proposed

512-FFT

Altera IP

1024-FFT

vs Proposed

1024-FFT

Altera IP

2048-FFT

vs Proposed

2048-FFT

Altera IP

4096-FFT

vs Proposed

4096-FFT

Combinational

ALUTs
77.96% 76.90% 73.867% 73.81% 67.76% 68.16% 55.46%

Total Dedicated

Logic Registers
74.46% 73.95% 73.39% 74.76% 75.44% 79.84% 80.08%

Total Pins 20.00% 20.00% 20.00% 20.00% 20.00% 20.00% 20.00%

Total Block

Memory bits
47.52% 45.32% 49.02% 47.54% 46.14% 44.78% 43.44%

M9K Block

Memory
83.33% 83.33% 85% 75.00% 50.00% 38.46% 36.84%

DSP block

18-bit elements
33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 66.67%

lengths remain the same which is 85 pins for Altera IP FFT and 68 pins for the proposed FFT. The main
reason for the Altera IP FFT occupying more pins is that the Avalon-ST protocol interface used for
data transfers internally. This protocol is not used in the proposed FFT because of the hardware usage
reduction purpose. Hence, this shows that the proposed FFT occupies fewer pins with 20% reduction
as compared to the Altera IP FFT.

Besides, from the tables it is also apparent that when the transform length increases, the utilised
hardware resources are drastically increased as well. However, the proposed FFT coprocessor shows
the promising hardware resources reduction regardless the length of the transform as compared to the
Altera IP FFT coprocessor. Another reason for the Altera IP FFT occupying more hardware resources
than the proposed FFT is mainly the existence of internal error handler used to monitor the illegal
usage of the Avalon-ST protocol. Since the proposed FFT coprocessors do not use this protocol, the
error handler is not needed which leads to the reduction of hardware resources as shown in tables and
figures. The reduction of hardware usage significantly helps in the development of the integrated SAR
processor as more hardware resources quota can be allocated for the other sub-module designs in the
SAR processor.

In terms of the total power consumption, the proposed FFT coprocessor consumes slightly higher
power than the Altera IP FFT coprocessor in all the transform lengths. The differences of the power
consumptions of all transform lengths are about 14 mW. However, the small difference of the power
consumptions between the proposed FFT coprocessors and the Altera IP FFT coprocessor is negligible.
The proposed FFT coprocessors have slightly higher power consumptions mainly due to the employment
of global routing architectures done by the CAD tool. This is because for the global signal networks
such as global clock that spans larger areas of the device and have high capacitance will significantly
increase the power consumption of the design. Besides, the operating mode of each circuit element will
also affect the power consumption. For instance, a DSP block element performing n×n multiplications
and a DSP block element performing multiply-accumulate operations will consume different amounts
of power due to the different amounts of charging internal capacitance during each transition. All of
these factors affecting the power consumptions of the design are subjected to the design architecture in
the Verilog HDL modeling and the CAD tool compiler settings.

64 Lee, Chan, and Koo

3.2. Timing Performance Analysis

A series of test benches are carried out by using Mentor Graphic ModelSimin order to exercise the Altera
FFT coprocessor and the proposed FFT coprocessor. The test benches allow the performance evaluation
of the processors in terms of timing and functionality verification to be conducted. The coprocessors
are instantiated and treated as the device under test (DUT) followed by inserting the required stimulus
data into the DUT. The overall block diagram of the test bench is illustrated in Figure 17. The inserted
stimulus will trigger and operate the DUT in order to produce output responses that consist of the
transformed data, and the timing of the transform can also be observed.

Stimulus Block

Top-level Block

FFT
Coprocessor
Device Under
Test (DUT)

Input Stimuli

Output Responses

Figure 17. Test bench for performance evaluation of the FFT coprocessors.

The proposed FFT coprocessor and Altera FFT IP MegaCore undergone the test benches process
in order to analyse and evaluate the timing performance in the mentioned Stratix IV device. The FFT
coprocessors based on the transform lengths of 64, 128, 256, 512, 1024, 2048, and 4096 are instantiated
as DUTs for the evaluation purpose. Thus, there are in total 7 proposed FFT coprocessors and 7 Altera
IP FFT cores undergoing the test benches for the timing performance comparison purpose by using
the same set of stimuli. There are 2 metrics to be considered in the timing performance metrics which
are maximum restricted clocking frequency of the processors and the total transform time required
to complete a single transform with the specified length. The maximum restricted clocking frequency
depends on two factors which are the speed grade of the device family (Stratix IV) to be implemented
and also depends on the design architecture done by user.

Table 4 tabulates the test benches results for both Altera IP FFT and the proposed FFT
coprocessors with the transform length from 64 points to 4096 points. The test benches are conducted
by clocking the coprocessors with a clock frequency of 340 MHz. The main reason for selecting this
frequency is mainly the maximum restricted frequencies for both processors falling in the same frequency

Table 4. Timing performances comparison.

FFT

Transform

Length

Maximum Restricted

Frequency, Fmax (MHz)

FFT Transform

Time (µs)

Altera IP

FFT

Proposed

FFT

Altera IP

FFT

Proposed

FFT

64 375.09 341.76 1.69 1.81

128 375.09 341.76 3.08 3.39

256 375.09 341.76 5.35 7.53

512 375.09 341.06 10.82 16.56

1024 375.09 341.06 21.08 36.13

2048 375.09 341.06 34.50 78.27

4096 375.09 340.58 67.80 168.59

Progress In Electromagnetics Research B, Vol. 92, 2021 65

range. The maximum clocking frequency is subjected to several factors in FPGA-based design. This
clocking frequency depends on the speed grade of the device as well as the design of the coprocessor
done by the user. Different design architectures will lead to different maximum clocking frequencies
although the same FPGA device is used. This is mainly becaues the clocking frequency is subjected
to the timing path, and it is defined by the slowest path in the designed circuit. From Table 4, it can
be observed that the maximum restricted frequency for the Altera IP FFT is slightly higher than the
proposed FFT about 10% for all transform lengths. This means that the Altera IP FFT coprocessor
can operate slightly faster than the proposed FFT coprocessor. This condition explains the reason
that Altera IP FFT coprocessor utilises significantly more hardware resources than the proposed FFT
coprocessor in Section 3.1 because certain levels of timing optimisations are implemented by scarifying
the hardware resources.

In terms of transform time, the Altera IP FFT coprocessor has faster transform time than the
proposed FFT coprocessor. The FFT coprocessors transform times are highly competitive for the
transform lengths of 64, 128, and 256. The two FFT coprocessors have very similar transform times
in terms of microseconds. However, when the transform length is increased starting from 512 points
to 4096 points, the Altera IP FFT coprocessors show faster transform time in terms of microseconds
than the proposed FFT coprocessor. This is mainly because the optimisation of the Altera IP FFT
coprocessors is dominant for speed over the area resources while the proposed FFT coprocessors are
dominant for area resources over speed.

In spite of the transform time for Altera IP FFT coprocessors are faster than the proposed FFT
coprocessors in the multiple of tens microseconds (the smallest difference is 5.74 µs, and the largest
difference is 100.79 µs), and the proposed FFT coprocessor is regarded as satisfactory with respect to
the implementation of SAR processor. This is because both FFT coprocessors are capable to perform
a single transform within a single PRI, but the proposed FFT coprocessor achieves this transformation
with lower hardware resources and lesser complexity. The tradeoff between timing and hardware
utilisation is acceptable in this case. Therefore, the proposed FFT coprocessor is still preferable for
the implementation of SAR processor due to lower hardware resources utilisation while maintaining
reasonable timing performance. In such a way, more hardware resources quota can be allocated for the
others sub-module designs in the SAR processor.

3.3. Precision Comparison of the Proposed FFT/IFFT coprocessors with MATLAB
FFT/IFFT

After evaluating the proposed FFT coprocessor in terms of hardware resources utilisations and also
timing performances, the proposed FFT coprocessor is also compared with MATLAB built-in FFT
function in order to evaluate the performance in terms of precision and also verify the functionality. A
complex chirp signal with bandwidth of 50 MHz is used as the input signal and loaded into the proposed
FFT coprocessor and also MATLAB FFT in order to evaluate the transformed signal. The difference
between these two transformed outputs is evaluated accordingly. Since the range and azimuth sample
points of the SAR raw data are 1024 samples and 2048 samples, respectively, the evaluation in this
section only involves the coprocessor with the transform lengths of 1024 points and 2048 points. This is
because the coprocessors with these transform lengths will be used in the RDA for range compression
and azimuth compression, respectively. Similarly, the evaluation of the inverse FFT is conducted in the
same manner.

The test benches as conducted in Section 3.2 are modified with minor changes so that the FFT
coprocessor can read the chirp signal from a binary file, transform it into frequency domain, and write
the processed sample into a new binary file. The main purpose of doing this is to allow MATLAB to
be able to read the processed data from the proposed FFT coprocessor and visualise the transformed
signal so that comparison can be done with the MATLAB built-in FFT. Figure 18 shows the input 16
bits fixed point format complex chirp signal with its real part and imaginary part, respectively. This
input signal will be transformed into frequency domain by using the proposed FFT coprocessor and
also MATLAB built-in FFT function in order to evaluate the precision of the proposed FFT.

It can be observed that the number of sample points for the chirp signal is 432. The proposed
FFT coprocessor and the MATLAB built-in FFT will pad the input signal with trailing zeros to the
transform length. The proposed FFT coprocessor achieves this by pre-initialising the input buffer RAM

66 Lee, Chan, and Koo

0 50 100 150 200 250 300 350 400 450
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Input Sample Points 432

A
m

pl
itu

de
 (1

6-
B

it)

0 50 100 150 200 250 300 350 400 450
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Input Sample Points 432

A
m

pl
itu

de
 (1

6-
B

it)

(a) (b)

Figure 18. 16 bits input complex chirp signal: (a) real part, (b) imaginary part.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

6

1024-Sample Points

A
m

pl
itu

de
 (

16
-B

it)

Figure 19. Frequency domain spectrum plot transformed by the proposed 1024-FFT coprocessor.

with zero padded data in the addresses that represent the transform length. Figure 19 and Figure 20
illustrate the frequency domain spectrum plots of the complex chirp signal transformed by the proposed
1024-FFT coprocessor and MATLAB.

From the figures, visually the two transformed signals are almost identical in terms of shape and
also amplitude level. In order to have a quantitative comparison, the differences between the two FFT
outputs of MATLAB and FPGA in terms of the magnitude is calculated and compared. The figure of
merit in terms of percentage is calculated by using the following equation where s is the input chirp
signal to be transformed, and the MATLAB FFT function is treated as the reference.

Δ(%) =
Magnitude of FFTFPGA(s) − Magnitude of FFTMATLAB(s)

Magnitude of FFTMATLAB

× 100% (14)

The difference is illustrated in Figure 21. The performance of the proposed FFT coprocessor in
terms of precision is somehow satisfied as the amplitude differences between the two FFTs which are

Progress In Electromagnetics Research B, Vol. 92, 2021 67

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

6

1024-Sample Points

A
m

pl
itu

de
 (

16
-B

it)

Figure 20. Frequency domain spectrum plot transformed by MATLAB 1024-FFT.

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0

5

10

Samples

P
er

ce
nt

ag
e

%

Figure 21. Difference in between the proposed 1024-FFT and MATLAB 1024-FFT.

in the range of ±4% only. The main reason of this error is the quantisation noise in the input signal as
the data are truncated into 16 bits fixed point format.

The frequency domain spectrums as shown in Figure 19 and Figure 20 will be transformed back
into time domain by using the proposed inverse FFT coprocessor and MATLAB built-in inverse FFT
function, respectively. Figure 22 and Figure 23 show the time domain signals which are transformed by
the proposed 1024-IFFT coprocessor and MATLAB, respectively.

Visually the two transformed signals are almost identical in the figures in terms of the shape and also
amplitude level. The differences between the two IFFT outputs in terms of percentage are calculated
in the same manner as in Equation (14). The differences for real and imaginary data are illustrated in
Figure 24. Similar to the evaluation of the proposed FFT coprocessor, the performance of the proposed
inverse FFT coprocessor in terms of precision is satisfactory as the differences for both FFTs are only
in the range of ±4%. The main reason for this error is the quantisation noise as discussed earlier. The
differences in terms of magnitude between the IFFT real and imaginary signals will cause the phase to
be changed, and the SAR image generated will be affected in terms of the signal phase. Therefore, the
differences have to be made as small as possible (< 5%) in order not to affect the quality of SAR image
generated.

Throughout the evaluations of the proposed FFT and IFFT coprocessors, it can be seen that the
proposed coprocessors show the promising results in the time-frequency transformation. Other than
that, the performances of the coprocessors in the aspects of hardware utilisations, timing performance,
and precision wise are satisfactory.

68 Lee, Chan, and Koo

0 100 200 300 400 500 600 700 800 900 1000
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Samples

A
m

pl
itu

de
 (

16
-B

it)

0 100 200 300 400 500 600 700 800 900 1000
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Samples

A
m

pl
itu

de
 (

16
-B

it)

(a) (b)

Figure 22. Time domain signal plot transformed by the proposed 1024-IFFT coprocessor, (a) real
data, (b) imaginary data.

0 100 200 300 400 500 600 700 800 900 1000
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Samples

A
m

pl
itu

de
 (

16
-B

it)

0 100 200 300 400 500 600 700 800 900 1000
-8

-6

-4

-2

0

2

4

6

8
x 10

4

Samples

A
m

pl
itu

de
 (

16
-B

it)

(a) (b)

Figure 23. Time domain signal plot transformed by proposed 1024-IFFT coprocessor, (a) real data,
(b) imaginary data.

0 100 200 300 400 500 600 700 800 900 1000
-10

-8

-6

-4

-2

0

2

4

6

8

10

Samples

P
er

ce
nt

ag
e

%

0 100 200 300 400 500 600 700 800 900 1000
-10

-8

-6

-4

-2

0

2

4

6

8

10

Samples

P
er

ce
nt

ag
e

%

(a) (b)

Figure 24. Difference in between proposed 1024-IFFT and MATLAB 1024-IFFT, (a) real data, (b)
imaginary data.

Progress In Electromagnetics Research B, Vol. 92, 2021 69

4. CONCLUSION

In this paper, a Verilog HDL based design that is used in the implementation of FFT/IFFT coprocessors
and SAR processor is introduced. In depth exploration and discussion of DIF radix-2 Fast Fourier
Transform and its inverse are carried out. Based on the studied FFT/IFFT algorithm, the hardware
implementation architectures of the FFT/IFFT coprocessors are proposed and discussed. The proposed
coprocessors undergo several performance analysis and evaluations in the aspects of hardware resources
utilisations, timing performance analysis, and precision. These evaluated coprocessors and additional
sub modules can be further implemented and integrated as a SAR Processor in order to process the
SAR raw data into SAR image. The hardware implementation of FPGA-based SAR processor can be
carried out with the FFT/IFFT coprocessors developed and discussed in this paper. The FFT/IFFT
coprocessors will be part of the hardware sub-modules integration for the SAR processor.

ACKNOWLEDGMENT

This research is supported by MOSTI E-Science Fund, 04-02-01-SF0200.3.

REFERENCES

1. Drinkwater, M. K., et al., “Synthetic aperture radar polarimetry of sea ice,” Proceeding of the 1990
International Geoscience and Remote Sensing Symposium, Vol. 2, 1525–1528, 1990.

2. Lynne, G. L. and G. R. Taylor, “Geological assessment of SIR-B imagery of the Amadeus Basin,”
IEEE Transactions on Geoscience and Remote Sensing, Vol. 24, No. 4, 575–581, 1986.

3. Hovland, H. A., et al., “Slick detection in SAR images,” Proceeding of the 1994 International
Geoscience and Remmote Sensing Symposium, 2038–2040, 1994.

4. Walker, B., et al., “A high-resolution, four-band SAR Testbed with real-time image formation,”
Proceeding of the 1986 International Geoscience and Remmote Sensing Symposium, 1881–1885,
1996.

5. Suzuki, S., M. Tsuchiya, O. Ochiai, T. Endo, H. Tanimoto, and H. Okubo, “Initial check-out result
of the ALOS ground data system,” IEEE International Conference on Geoscience and Remote
Sensing Symposium 2006, 329–331, 2006.

6. Kong, J. A., et al., “Classification of earth terrain using polarimetric synthetic aperture radar
images,” Progress In Electromagnetics Research, Vol. 3, 327–370, 1990.

7. Bazi, Y., L. Bruzzone, and F. Melgani, “An unsupervised approach based on the generalized
Gaussian model to automatic change detection in multitemporal SAR images,” IEEE Transactions
on Geoscience and Remote Sensing, Vol. 43, No. 4, 874–887, 2005, doi: 10.1109/TGRS.2004.842441.

8. Ciuonzo, D., V. Carotenuto, and A. De Maio, “On multiple covariance equality testing with
application to SAR change detection,” IEEE Transactions on Signal Processing, Vol. 65, No. 19,
5078–5091, 2017, doi: 10.1109/TSP.2017.2712124.

9. Chan, Y. K. and V. Koo, “An introduction to synthetic aperture radar (SAR),” Progress In
Electromagnetics Research B, Vol. 2, 27–60, 2008.

10. Vachon, P. W., et al., “Airborne and spaceborne synthetic aperture radar observations of ocean
waves,” Atmosphere-Ocean, Vol. 32, No. 1, 83–112, 1994.

11. Esposito, C., et al., “On the capabilities of the Italian airborne FMCW AXIS InSARSyste,” Remote
Sensing, Vol. 12, No. 3, 539, 2020.

12. Reigber, A., et al., “The high-resolution digital-beamforming airborne SAR system DBFSAR,”
Remote Sensing, Vol. 12, No. 11, 1710, 2020.

13. Yoon, S. S., et al., “A modified SweepSAR mode with dual channels for high resolution and wide
swath,” Journal of Electromagnetic Engineering and Science, Vol. 18, No. 3, 199–205, 2018.

14. Kraus, T., et al., “TerraSAR-X staring spotlight mode optimization and global performance
predictions,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
Vol. 9, No. 3, 1015–1027, 2016.

70 Lee, Chan, and Koo

15. Chang, C. Y., et al., “Squint mode processing algorithm,” Proc. IGARSS’89, 1702–1706, 1989.
16. Cumming, I. G., et al., “Interpretations of the Omega-K algorithm and comparisons with other

algorithms,” Proc. IGARSS’2003, 1455–1458, 2003.
17. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech

House, London, 2005.
18. Franceschetti, G. and R. Lanari, Synthetic Aperture Radar Processing, CRC Press LLC, New York,

1999.
19. Raney, R. K., et al., “Precision SAR processing using chirp scaling,” IEEE Transactions on

Geoscience and Remote Sensing, Vol. 32, No. 4, 786–799, 1994.
20. Soumekh, M., Synthetic Aperture Radar Signal Processing, John Wiley & Sons, 1999.
21. Xie, X., et al., “Embedded synthetic aperture radar imaging system on compact DSP platform,”

2017 International Conference on Electrical and Computing Technologies and Applications
(ICECTA), 1–4, 2017.

22. Jin, M. Y. and C. Wu, “A SAR correlation algorithm which accommodates large range migration,”
IEEE Transactions on Geoscience and Remote Sensing, Vol. 22, No. 6, 592–597, 1984.

23. Wu, C., et al., “Modelling and a correlation algorithm for space borne SAR signals,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 18, No. 5, 563–574, 1982.

24. Curlander, J. C. and R. N. McDounough, Synthetic Aperture Radar, Systems and Signal Processing,
John Wiley & Sons, New York, 1991.

25. Le, C., S. Chan, F. Cheng, W. Fang, M. Fischman, S. Hensley, R. Johnson, M. Jourdan, M. Marina,
B. Parham, F. Rogez, P. Rosen, B. Shah, and S. Taft, “Onboard FPGA-based SAR processing for
future spaceborne systems,” Proceedings of the IEEE in Radar Conference, 15–20, 2004.

26. Kuon, I. and J. Rose, Measuring the gap between FPGAs and ASICs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No. 2, 203–215, 2007.

27. “Verilog’s inventor nabs EDA’s Kaufman award,” EE Times, Cambridge, 2005.
28. Thomas, D. E. and P. R. Moorby, The Verilog R©Hardware Description Language, Springer, New

York, 2013.
29. Lin, M., et al., “Simulation acceleration for dynamic timing analysis with static timing analysis,”

TENCON 2006 — 2006 IEEE Region 10 Conference, 1–4, 2006.
30. Cooley, J. W. and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier

series,” Mathematics Computation, Vol. 19, 297–301, 1965.

