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Study of Active Negative Group Delay Circuit Based on LNA
and RLC-Parallel Network

Dan Chen1, Taochen Gu2, Xiang Zhou3, Fayu Wan2, *, and Blaise Ravelo2

Abstract—This paper develops a circuit theory on bandpass negative group delay (NGD) topology.
The NGD active lumped circuit uses a low noise amplifier (LNA). An S-parameter model is formulated.
Unfamiliar, NGD function analysis is introduced by analytically defining the NGD value, bandwidth,
and central frequency as a function of the topology parameters. The synthesis formulas enabling the
calculation of cell parameters as a function of the targeted bandpass function specifications. To validate
the circuit theory, an NGD proof of concept (PoC) is designed, simulated, and tested. As expected,
simulations and measurements are in good agreement. Calculated model, simulated and measured
results showing NGD level of about −10 ns around the centre frequency 0.5 GHz over the bandwidth
50 MHz validate are obtained.

1. INTRODUCTION

The first negative group delay (NGD) microwave devices were designed with passive circuits in 1990s
[1]. In 2000s, NGD topologies inspired from left-handed metamaterial structures were developed [2]. A
few years later, microwave distributed topologies generating NGD effect were introduced by exploiting
electromagnetic coupling effects [3, 4]. However, these passive NGD circuits operate inherently either
with absorption or with strong reflections. Therefore, the application possibilities are very limited.
Despite the systematic limitation inherently to the NGD function [5], different applications notably
in the microwave engineering were proposed. For example, NGD function application to design high-
performance feed forward amplifier and bandwidth enhancement was also proposed [6, 7]. To face
the NGD passive attenuation loss limitations, topologies of active microwave cells using field effect
transistors (FETs) were investigated [8–9]. It was pointed that the NGD function presents behaviors
like a classical filter [10]. Indeed, various classes of NGD function as low-pass, high-pass and bandpass
NGDs were introduced [10]. It is noteworthy that the FET-based NGD microwave topologies require
further improvement on the access-matching and biasing networks design complexity. Furthermore,
FET-based NGD circuits present a systematical sign inversion of output voltage compared to the input.
To overcome the bias and access matching network design complexity, NGD topologies were proposed
replacing the FET by low noise amplifier (LNA) [11–15]. The alternative LNA-based NGD topology is
expected to present considerable advantages like design simplicity. This active topology is prominent
to achieve better access matching and allowing to avoid the instability. We address further understand
of NGD function in the present paper.

The NGD theory developed in the present paper is quite easy to understand for non-specialist
microwave engineers. The paper explains theoretical and experimental approaches of a bandpass NGD
active topology. Difference from the NGD topology presented in [11], the proposed one is established
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from a lumped element components-based RC parallel network. For better comprehension, it is mainly
divided in three main sections:

• Section 2 is focused on the theoretical NGD analysis. The NGD bandpass cell is a first order circuit.
The S-parameter model is briefly introduced.

• Section 3 is focused on the NGD analysis and characterization.
• Section 4 describes the experimental validations compared to analytical modelling and simulations

of the proposed LNA-based NGD topology.
• Lastly, Section 5 draws the conclusion.

2. TOPOLOGICAL DEFINITION OF THE BANDPASS NGD ACTIVE CIRCUIT
UNDER STUDY

The topology of the bandpass NGD active cell is introduced. The NGD analysis is developed from S-
parameter modelling. The synthesis equations are established in function of the targeted NGD function.

2.1. Definition of Bandpass NGD Function

Acting as a two-port system, by denoting ω the variable angular frequency, an NGD circuit S-matrix
can be written as:

[S(jω)] =
[

S11(jω) S12(jω)
S21(jω) S22(jω)

]
(1)

To analyse the NGD function, we need the magnitude of transmission (p �= q) and reflection (p = q)
coefficients, respectively:

Spq(ω) = |Spq(jω)| (2)
with p, q = {1, 2}. GD is analytically defined by:

τ(ω) = −∂ϕ(ω)
∂ω

(3)

by reminding that the transmission phase:
ϕ(ω) = ∠S21(jω). (4)

The graphical specification of bandpass NGD function is shown in Fig. 1, with centre angular frequency
ω0, cut-off angular frequencies ωc1,2, and negative angular frequencies ωn1,2 which are defined by:{

τ(ωc1,2) = 0
τ(ωn1,2) = τ0 < 0

. (5)

The NGD bandwidth (BW) [10] is given by:
Δω = ωc2 − ωc1. (6)

Acting as an RF/microwave function, the GD specification must be associated with the transmission
gain flatness Ga ≤ S21(ω) ≤ Gb in the NGD bandwidth ωc1 ≤ ω ≤ ωc2.

Figure 1. Typical specification of bandpass NGD function magnitude and GD.
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2.2. General Description of the LNA-Based Topology

The general topology adopted in the present study is depicted in Fig. 2. It consists of an LNA with
upstream and downstream connected series impedances Z.

Figure 2. General topology of the LNA based active cell under study.

The LNA is assumed as a non-unilateral (S12 �= 0) and defined by the S-parameter model:

[
SLNA(jω)

]
=

[
r r
t r

]
(7)

with t and r being the LNA transmission, and reflection and isolation coefficients. In the considered
operating bandwidth, these coefficients are assumed constant and independent of the frequency variables.

2.3. Global S-Matrix Model

As represented in Fig. 3, the equivalent S-matrix of the topology introduced in Fig. 2 can be determined
by considering the S-matrix of each constituting block [SLNA] and:

[
SZ(jω)

]
=

1
Z(jω) + 2R0

[
Z(jω) 2R0

2R0 Z(jω)

]
. (8)

The total transfer matrix can be easily determined knowing the circuit and system theory [11, 12].
Indeed, it is equal to the matrix product between the cascaded constituting cells. The global S-matrix
can be derived from the transfer matrix of the overall circuit:

S11(jω) = S22(jω) =
r2Z(jω) [Z(jω) − R0] + 4rR2

0 − r(t + 2)Z2(jω) + 2(1 + r t)R0Z(jω)
[(1 − r)Z(jω) + 2R0]

2 (9)

S12(jω) =
4rR2

0

[(1 − r)Z(jω) + 2R0]
2 (10)

S21(jω) =
4R2

0t

[(1 − r)Z(jω) + 2R0]
2 . (11)

Figure 3. S-matrix diagram equivalent to the topology introduced in Fig. 2.

3. NGD ANALYSIS WITH AND RLC-NETWORK BASED CELL

An example of bandpass NGD cell is elaborated in the present section. The main NGD properties are
analytically defined in the function of circuit parameters.
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3.1. Introduction of the Lumped RLC Network Cell

Among the simplest circuits allowing to fulfil the bandpass NGD specified in Fig. 1, we can choose
the series impedance Z as constituted by an RLC-parallel passive network. Therefore, our LNA based
topology is transformed into the schematic shown in Fig. 4.

Figure 4. RLC passive network and LNA based cell.

Under the configuration of RLC-parallel network impedance shown in Fig. 4, the series impedance
Z is analytically given by:

Z(jω) =
jωRL

R(1 − LCω2) + jωRL
(12)

3.2. NGD Analysis

The NGD analysis consists in determining the properties between the circuit parameters to realize the
inequality:

τ(ω) < 0 (13)

in the NGD bandwidth ωc1 ≤ ω ≤ ωc2. To perform this analysis, we can consider the S-matrix and GD
at the particular frequency:

ω0 =
1√
LC

(14)

By means of Eq. (3), the S-parameter at the resonance frequency can be rewritten as:

S11(ω0) = S22(ω0) =
r(r − t − 2)R2 + 4rR2

0 + R0R(2 + rt − r2)
[(1 − r)R + 2R0]

2 (15)

S12(ω0) =
4rR2

0

[(1 − r)R + 2R0]
2 (16)

S21(ω0) =
4tR2

0

[(1 − r)R + 2R0]
2 . (17)

The GD at the center frequency can be written as:

τ(ω0) =
2(r − 1)R2C

(1 − r)R + 2R0
. (18)

3.3. Synthesis Method

The bandpass NGD cell synthesis consists in calculating the parameters R, L and C in function of
the targeted reflection coefficient m, targeted transmission gain g, NGD level τ0 < 0, and the centre
frequency ω0 by means of equations related to:

• the transmission coefficient:
S21(ω0) = g (19)

• the GD:
τ(ω0) = τ0 (20)
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• and the reflection coefficient:
S11(ω0) = m. (21)

The derived expressions of the bandpass cell resistance and inductance are written as:

R =
2(
√

t −√
g)R0√

g(1 − r)
(22)

C =
τ0(r − 1)R

2R [2R0 + (1 − r)R]
. (23)

It is noteworthy that the resistance R exists only if:
g < t. (24)

By inverting Equation (14), the inductance can be calculated from equation:

L =
1

Cω2
0

. (25)

To check the bandpass NGD theory validity, the next section will describe the design, simulation,
and experimental results. The proposed demonstrators are aimed to make the established theory as
familiar as possible to non-specialists.

4. EXPERIMENTAL VALIDATION

This section is focused on the feasibility study of the bandpass NGD theory. The NGD circuits [1–13]
are designed similarly to classical and familiar electronic microwave circuits by paying attention to the
condition in Eq. (5). The PoC was designed and simulated in the ADS� commercial tool from Keysight
Technologies�.

4.1. PoC Description

The NGD circuit design and fabrication were carried out in two steps. First, the ideal circuit was
designed and simulated following the synthesis formulas established previously. Then, the real circuit
was fabricated in function of the available components and technology in our laboratory.

4.1.1. Ideal NGD Circuit Design

The NGD circuit design was stared with an ideal circuit. The RLC lumped element values were
calculated with the synthesis Equations (23), (24), and (26). The NGD circuit was intended to operate
under the specifications g = 0dB and τ(f0) = −10 ns with the NGD centre frequency f0 = 0.5 GHz.
Based on these specifications, the cartographies showing the variation of R, L, and C in function of
couple (r, t) were established in Figs. 5(a), (b), and (c), respectively. These mappings were exploited to
choose the adequate LNA in function of its reflection and transmission parameters to realize the NGD
circuit.

After different comparisons of available LNA in the market, we choose the packed MMIC LEE-9+
from mini-circuits employed in [11, 12]. This LNA is specified by the transmission gain t = 8.5 dB and
input/output reflection coefficient average value r = −22 dB. Then, the ideal bandpass NGD cell was
calculated, and the chosen real parameters with 5% tolerances are addressed in Table 1.

Table 1. Ideal and chosen real NGD prototype parameters.

R C L

Ideal 68.56 Ω 94.23 pF 1.07 nH

Real 68 Ω 95 pF 1.07 nH
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Figure 5. Mappings of (a) R, (b) L and (c) C versus the LNA reflection and transmission coefficients.

4.1.2. NGD Prototype Implementation

Figure 6(a) highlights the detailed schematic of the LNA based designed circuit. The bias and decoupling
circuits are indicated in thin lines. The RF/microwave parts are indicated in bold lines. Fig. 6(b)
represents a photo of the fabricated circuit prototype which was implemented in hybrid technology.
The lumped passive elements were chosen by using commercially available surface mounted components
(SMCs).

(a)

(b)

Figure 6. Photograph of the fabricated NGD prototype (Rn1 = Rn2 = 68Ω, Ln1 = Ln2 = 1.1 nH,
Cn1 = Cn2 = 95 pF, R = 22Ω, L = 5mH, C1 = C2 = C3 = C4 = 10µF, C5 = 100 nF, C6 = 10 nF).

The printed circuit board was implemented on an FR4 epoxy dielectric substrate. The geometrical
and physical characteristics of the substrate are addressed in Table 2.
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Table 2. Fabricated circuit substrate parameters.

Constituting element Designation Parameters Values

Substrate

Dielectric substrate thickness h 1.6 mm
Relative permittivity εr 4.4

Metallization thickness t 35 µm
Loss tangent tan(δ) 0.12

Metallization conductivity σ 58 MS/m

4.2. Discussion on Simulation and Measurement Results

The experimental validation of the bandpass NGD PoC was carried out with S-parameter measurements.
The tested S-parameters are measured with Vector Network Analyzer (VNA) from Rohde & Schwarz�
which presents the reference ZNB 20, frequency band 100 kHz to 20 GHz.

The present S-parameter analyses were performed from 0.35 GHz to 0.7 GHz. Figs. 7(a) and
7(b) display the comparisons of modelled, simulated, and measured GDs and transmission coefficients,
respectively. The experimental results are in good agreement with the theory and simulation. As
predicted by our theory, the measured results correspond to the bandpass NGD responses. Emphatically,
theoretical models, simulations, and experimentations confirm that the LNA-based bandpass NGD
topology introduced in Fig. 1 operates as a bandpass NGD function.

The tested prototype exhibits an NGD central frequency around 0.5 GHz, NGD level −10 ns over
the bandwidth 50 MHz. In addition to the NGD aspect validation, the NGD prototypes generate
transmission gain slightly more than 0 dB. As illustrated in Figs. 8(a) and 8(b), the input and
output reflection coefficients are better than −9 dB. The relative differences between the simulated
and experimental results, especially seen around the NGD centre frequency about 20% are mainly due
to the used component tolerances and the LNA model defined in matrix expression (25). The slight
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Figure 7. (a) GD and (b) transmission parameter of the bandpass NGD circuit.
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Figure 8. (a) Input and (b) output reflection coefficients of the bandpass NGD circuit.
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differences between the simulations and measurements may be mainly caused by the dielectric substrate
permittivity dispersion and the circuit fabrication imperfection, and the obtained results are in good
correlation in the centre frequency.

4.3. Application of BP NGD

The potential applications of the bandpass NGD circuit proposed are:
a. RF/microwave phase shifters: The bandpass NGD active circuits were also applied to design an

innovative type of phase shifter. The NGD phase shifter design principle is based on cascading the
positive group delay and NGD circuit. The technique was exploited to design a phase equalizer
making use of negative group delay times by reflection coefficients. The technique was developed
to synthesize a broadband-independent frequency phase shifter.

b. Microwave and digital signal delay reduction: The NGD could be an equalization technique of signal
propagation. It was applied to high speed metamaterial-inspired NGD CMOS circuits. Then,
by using an FET based NGD active circuit, the technique was extended to the PCB electrical
interconnect effect equalization for the signal integrity enhancement.

5. CONCLUSION

A bandpass NGD microwave theory of LNA based topology is developed. The active cell S-parameter
model was established in order to make the NGD analysis. The characteristics of the bandpass NGD
function as NGD level, center frequency, bandwidth, transmission gain, and reflection coefficient are
analytically expressed. The NGD active cell parameter formulas are given in function of targeted the
NGD specifications.

The established NGD circuit theory is validated with comparisons among the calculated model,
simulations with ADS�, and measurements. As PoC, a hybrid prototype was designed, simulated,
fabricated, and tested. As expected in theory, calculated, simulated and measured NGD and S-
parameter results are in very good agreement.
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