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Efficient Elimination of False Detections due to Sea Spikes
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Abstract—This paper introduces a method for efficiently eliminating false detections in coherent radar
systems due to sea spikes. The proposed method employs scan-to-scan processing over a predefined
number of successive antenna scans. Processing consists of matching estimated range-azimuth-velocity
centroid associated with each radar plot extracted from a set of data detected within the current scan
(initial plot) with centroids of radar plots generated in the previous scans. For each initial plot, the
proposed method matches radar plots using a sequence of correlation windows generated in turn for each
of the predefined previous scans. Each correlation window defines a range-azimuth region, with center
and extent in range and azimuth adjusted from scan-to-scan. A group of matched plots is selected from
all plots falling into a correlation window; these plots meet the velocity matching condition. Only the one
radar plot, which minimizes the predefined overall matching criterion, is selected from the given group
of matched plots for inclusion in the set of correlated plots associated with the initial plot. For each
identified set of correlated plots, an overall correlation value is computed. If the correlation value exceeds
a predefined threshold, the initial plot associated with that set of correlated plots is stored in memory
for further processing and visualization. Otherwise, the initial plot is retained for plot rematching with
modified velocity centroids. The modified velocities provide the detection of those targets of interest
that may have been missed due to ambiguous radial velocity measurements. In contrast to known
methods, the proposed method minimizes the correlation window area at a given probability of falling
into the window for radar plots associated with a target corresponding to an initial plot. The proposed
method efficiently eliminates the false detections while maintaining reliable detection performance for
targets of interest; the detection performance is essentially improved compared to known methods.
Additionally, the proposed method ensures reliable target detection when radial velocity measurements
are ambiguous, a situation where known methods collapse.

1. INTRODUCTION

Coherent radar systems are widely used for target detection and range/velocity measurements in the
presence of clutter [1, 2]. For instance, pulsed Doppler radars such as VTS (vessel traffic services) radars
or coastal surveillance radars inevitably encounter unwanted backscattered radar signals from the sea
surface, usually referred to as sea clutter. Similarly, shipborne radars, whether used for navigation or
surveillance purposes, contend with undesirable sea clutter.

For radars operating in maritime environments, the critical problem is to detect real objects (targets
of interest) on the sea surface and distinguish them from apparent targets that are false detections caused
by radar signal backscattering from the sea surface when no real objects are present. This problem is
well known in the radar community [2, 3]. It is commonly noted, particularly in X-band radars, that
as the size of the range resolution bin reduces, the clutter increasingly appears to contain sequences

Received 12 January 2021, Accepted 6 March 2021, Scheduled 10 March 2021
* Corresponding author: Anatolii A. Kononov (akononov@onestx.com).
The authors are with the Research Center, STX Engine, 288, Guseong-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16914, Republic of
Korea.



116 Kononov et al.

of isolated discrete (target-like) returns that vary in time. These returns appear to arise due to burst
scattering from the crests of waves just before they spill [3]. At the higher range resolutions, on the
order of 5–10 m and higher, the discrete returns tend to stand well out of the background, occurring for
both polarizations but most clearly evident with horizontal polarization at small grazing angles. These
target-like returns are called sea spikes and are an inherent sea clutter component in high-resolution
radars [3]. The occurrence rate of the sea spikes becomes higher as the sea state increases.

Thus, for coherent radars operating in maritime environments, an essential increase in false alarm
rate is possible due to multiple false detections caused by the presence of sea spikes. These false
detections appear on radar display as apparent targets, i.e., as detections that are not associated with
real objects of interest. The apparent targets confuse radar operators and waste the computational
resources of radar trackers. In case of a high occurrence rate, numerous false detections overwhelm the
radar tracker, making tracking targets of interest impossible. The false detections caused by sea spikes
are highly undesirable since they may severely impede radar missions and create a danger to navigation
safety.

To cope with the problem in question, a method is required, which would allow eliminating with high
probability the false detections caused by sea spikes and simultaneously maintaining reliable detection
performance for the targets of interest.

Over the past years, several approaches have been studied to improve surface targets’ detection
while reducing the effect of sea spikes. Using real data, Rosenberg [4, 5] investigated sea-spikes’
characterization to identify features that one can use to distinguish sea spikes from targets of interest.
The approach used to discriminate sea-spikes from background sea clutter was to threshold the
magnitude of the raw backscatter data in the range/time domain. The data after thresholding
(detections due to discrete and persistent scattering) were used to verify the KK probability distribution
function. Discrete and persistent detections were then isolated to provide more information on the
underlying cause of sea spikes and answer whether the three-component mean Doppler spectrum model
is suitable at high/medium grazing angles. Unfortunately, [4, 5] do not show how to use their results to
design methods that provide reliable detection for targets of interest while efficiently eliminating false
detections due to sea-spikes.

Duk et al. [6] investigated the use of stationary wavelet transform (SWT) to improve small target
detection in medium grazing angle X-band sea clutter. In this work, the SWT decomposition performed
on intensity data in range/time domain; application to the range/frequency domain left for future work.
With this approach, one or more components (sub-bands) of the SWT decomposition have a higher
signal-to-clutter ratio (SCR) than input data. Based on this observation, Duk et al. proposed to use
a subset of SWT sub-bands to improve target detection performance. To better isolate targets and
clutter, a sub-band isolation and reconstruction procedure was suggested. Since in noncoherent radars,
target velocity is not known ahead of time, an entropy-based method was developed to select a subset of
reconstructed sub-bands that contain the most information about the target and hence would provide
the “best” improved detection performance. As demonstrated in [6] with simulated targets injected in
a real clutter dataset, the proposed SWT-based approach improves detection performance for specific
scenarios associated with the used dataset. However, that approach cannot eliminate false detections
due to sea spikes; energy associated with sea spikes is distributed over the SWT sub-bands as that for
targets of interest does. This is because radar returns caused by sea spikes exhibit many target-specific
characteristics, including polarization independence [4].

Rosenberg et al. [7] studied a specific scan-to-scan processing structure for the detection of
stationary targets with low SCR. The structure combines a block-wise scan-to-scan integration, as well
as a corresponding CFAR processing stage and a binary integration stage for final detection. Though the
investigated structure suppresses moving targets, its essential advantage is the capability of eliminating
false detections caused by sea spikes.

Guan et al. [8] introduced an algebraic fractal structure combined with the Paretian Poisson process
for modeling sea spikes duration. Some parameters of this model were found to have a potential for
separating targets from sea spikes. As a result, a noncoherent target detection method was proposed in
this work. When sea surface returns are obtained, the method separates sea spikes from the background
sea clutter. Then, identified sea spikes are modeled by the Paretian Poisson process, and two model
parameters are estimated. If the value of at least one of the estimates exceeds the corresponding CFAR
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threshold, the detector claims a target’s presence. Otherwise, no target is present. As pointed out in
[8], the method is hard to implement in real-time. It requires a large number of samples to identify sea
spikes reliably and to control CFAR thresholds accurately.

Li et al. [9] introduced a modified support vector machine (SVM) detector for small targets
detection within sea clutter; the detector can control the probability of false alarm Pfa by adjusting
two parameters. In order to discriminate target signals from background sea clutter, the proposed
detector uses three target-specific features. There are at least two issues related to the use of the
proposed SVM detector in radar applications. For radar systems, where the CFAR property has to be
maintained for Pfa = 10−6 − 10−9 per resolution bin, the proposed SVM detector will require a large
number of target-free training samples and essential computational capability. The most critical point
is that this detector does not provide efficient eliminating false detections due to sea spikes. As we
already mentioned above, radar returns caused by sea spikes have many target-specific characteristics.
Therefore, the SVM detector will detect returns due to sea spikes as if they were the target-associated
echoes.

Bell et al. [10] presented a statistical model for high-resolution surface radars’ complex-valued data.
The model assumes that radar returns from a single pulse per scan are arranged into a range/scan matrix
representing multiple range bins and scans at a single azimuth. The clutter is modeled as being from
one of two distributions: a background clutter distribution and wave clutter (sea spikes) distribution.
The model was used to design a multi-hypothesis detector (TWB algorithm) that discriminates between
targets, wave clutter, and background clutter using a fundamental statistical approach. The performance
analysis results in [10] show that the TWB algorithm exhibits better detection performance than the
CA-CFAR detector that operates on amplitude data using a spatially correlated K-distribution clutter
model. However, the target and wave clutter classification performance does not validate the algorithm’s
capability in efficiently eliminating persistent false detections due to sea spikes.

Gallone et al. [11] noted that the pulse compression output associated with sea spikes received over
a coherent processing interval (CPI) is similar to that associated with slowly moving low RCS targets.
Because of this, false detections due to sea spikes cannot be eliminated within a single antenna scan,
i.e., using conventional single scan detection after coherent integration. Work [11] proposed a method
for filtering sea spikes by scan-to-scan correlation using Doppler information. As claimed in [11], that
method is useful for reducing the effects of the sea spikes and filtering the radar echoes without negatively
influencing the correct target detection and outperforms other known techniques (see references in [11]).
However, as will be proven herein, the method suggested in [11] has the following essential disadvantages:

D1. Degradation of detection performance for targets of interest due to incorrect determination of the
range extent for the range-azimuth correlation windows.

D2. Degradation of detection performance for targets of interest due to the low precision of the suggested
radial velocity estimator.

D3. The angular extent of correlation windows is determined by the predefined maximum speed of
targets of interest; the method does not use the estimates of azimuth centroids associated with
correlated plots in adjusting the angular extent. As will be shown further, using these estimates
allows reducing the said angular extent providing, thereby, the corresponding reduction in the
number of false detections.

D4. Collapse of target detection performance in the case of ambiguous radial velocity measurements.

The purpose of the present paper is to develop a method for eliminating undesirable false detections
associated with spiky returns caused by sea spikes using a new scan-to-scan processing technique. In
this paper, we prove that the proposed new method overcomes the drawbacks of known methods and
ensures:

- Better performance in eliminating the false detections than that of the known methods.
- Efficient eliminating the false detections with no negative influencing the detection performance for

targets of interest.
- Capability of maintaining reliable detection performance for targets of interest even when radial

velocity measurements are ambiguous.
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The remaining part of this paper is organized as follows. Section 2 analyzes the disadvantages of
the state-of-the-art method proposed in [11] and discusses the new method’s motivations. Section 3
provides a general description (a detailed one is in the Appendix) of the proposed method and analyzes
its performance. The conclusion is given in Section 4.

2. ANALYSIS OF A KNOWN STATE-OF-THE-ART METHOD

The method [11] includes two primary operations: estimation of the radial speed of radar echoes, be
them targets or spikes, and scan-to-scan correlation using the radial speed estimates for the filtering sea
spikes.

According to [11], the radial speed estimation is based on radar coherence and is subdivided into
the following procedures:

- Dividing the radar area into discrete range intervals defining the so-called radar cells.
- Computing the phase difference Δφ for each radar cell between any two subsequent sweeps within

a predefined coherent processing interval (CPI) comprising a multiplicity of subsequent sweeps.
- For each radar cell, computing instantaneous absolute radial speed v of the echoes as

v =
λ

4πT
Δφ (1)

where λ is the radar wavelength, T is the pulse repetition interval (PRI), i.e., the time interval
between two subsequent sweeps.

- For each radar cell, averaging the radial speed values computed from Equation (1) to obtain the
average radial speed V .
The scan-to-scan correlation with the use of the estimated radial speed V is carried out at the level

of plots generated by the radar extractor, as disclosed in [11]:
- All plots extracted at each scan are stored in memory.
- For each extracted plot with range R and azimuth A, a range-azimuth window is defined as follows:

i) The half azimuth extent of the window LAa is calculated using the maximum speed Vmax that
targets of interest can reach for a specific sea state as

LAa = asin(VmaxTscan/R) (2)

where Tscan is the scanning time interval of the radar antenna.
ii) The half range extent of the window is

LRa = αw

√
σ2

R + σ2
V T 2

scan (3)

where αw = 3, σ2
R is the variance of range estimation error, and σ2

V is the variance of the
average velocity estimation error.

iii) The radial position Rb of the window center is calculated as

Rb = R − V Tscan (4)
where the average radial velocity V is positive if the target moves away from the radar and
negative in the case of the target approaching the radar.

iv) The azimuth center position of the window is the same as that of the plot
Ab = A. (5)

The window (or correlation window) specified above by Eqs. (2)–(5) is used to match in position
and velocity the plot of the current radar scan with all the plots stored in the previous scan, some of
which may fall into the window. If the correlation value, with at least one plot of the previous scan, is
above a predefined threshold, then the current plot is stored for further processing and visualization on
a radar display; otherwise, the current plot is canceled. Unfortunately, the description in [11] does not
explain how to compute “the correlation value” for radar plots and the “predefined threshold.”

In Section 1, we pointed out the disadvantages of the method proposed in [11]; in this section, we
discuss them in detail.
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2.1. Disadvantage D1

The half range extent of the correlation window given by formula (3) is incorrect because it ignores the
range estimation errors for the plots in the previous scan. It should be noted that the range, velocity,
and azimuth measurement errors are statistically independent at different scans. These errors must be
taken into account because the estimated range centroid (range coordinate of the “center of gravity”) of
plots from the previous scan is used in the plot matching process. The plot’s range (as well as velocity
and azimuth) estimates R̂n in any n-th scan are unbiased and belong to a measurement uncertainty
interval

Rn = [Rn − αeσR, Rn + αeσR] (6)

where Rn is the actual range of a target, σR the standard deviation of measurement errors, and the
parameter αe > 0 is associated with some high (close to unity) probability Pαe that R̂n ∈ Rn, or, in
other words, measurement errors are in the interval [−αeσR, αeσR]. As well known, in the case of
Gaussian-distributed errors P3 = 0.997300 for αe = 3 and P4 = 0.999937 for αe = 4.

Figure 1(a) shows why the half range extent given by Eq. (3) is not adequate in terms of the radar
plot matching. As one can see, the full range extent of the window [Rb − 3σR, Rb + 3σR], which is
associated with some range estimates R̂n ∈ Rn = [Rn−3σR, Rn +3σR] in the n-th scan, does not cover
the hatched subinterval within the interval Rn−1 = [Rn−1 − 3σR, Rn−1 + 3σR] in the (n − 1)-th scan.
Therefore, for any estimate R̂n ∈ Rn, there always exist estimates R̂n−1 ∈ Rn−1 that do not fall, with
some probability, into the corresponding window (a small black square in Figure 1(a) is an example of
such estimates). Obviously, radar plots associated with these estimates will be excluded from the plot
matching process. Thus, using the half range extent defined in Eq. (3) may result in a low probability
of correct matching, and finally, in decreasing the probability of target detection.

The probability of correct matching in range (velocity/azimuth) is said to be the probability of
falling the range (velocity/azimuth) centroid of a target associated plot in the (n − k)-th scan, where
k ∈ {1, 2, . . .} into the range (velocity/azimuth) interval of the correlation window determined using the
range (velocity/azimuth) centroid of a plot associated with the same target in the n-th scan.

(n-1)-th scan
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Figure 1. Determining the range extent of correlation windows (σ2
V = 0, for simplicity, and αe = 3).

(a) Half range extent LRa = 3σR suggested in [11]. (b) Half range extent LRa = 3σR + 3σR = 6σR

proposed in this paper.
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For the Gaussian distribution of measurement errors, the probability of correct matching P cm is
given by

P cm = lim
αe→∞

⎛
⎜⎝∫ αe

−αe

1√
2π

exp
(−0.5x2

) ⎡⎢⎣
min(αe,x+αw)∫

max(−αe,x−αw)

1√
2π

exp
(−0.5y2

)
dy

⎤
⎥⎦ dx

⎞
⎟⎠

=
∫ ∞

−∞

1√
2π

exp
(−0.5x2

) [∫ x+αw

x−αw

1√
2π

exp
(−0.5y2

)
dy

]
dx (7)

where the parameter αw defines the half extent (in range, velocity, or azimuth) of the corresponding
correlation window.

Using Equations (7) and (3) with σV = 0 yields the probability of correct matching in range, i.e.,
in one coordinate for the method suggested in [11]

P cm =
∫ ∞

−∞

1√
2π

exp
(−0.5x2

) [∫ x+3

x−3

1√
2π

exp
(−0.5y2

)
dy

]
dx = 0.9661052 (8)

The plot matching process modifies (decreases) the probability of detections in the scans preceding
the current scan in which the initial plot is selected. If a target is detected with some fixed probability
PD in each of the Ns successive scans, then the modified probability of detection after performing the
plot matching (in the preceding scans) is given by

Pmod
D = (P cm)dPD (9)

where the parameter d is the number of coordinates for which the plot matching is performed, and PD is
the single scan detection probability determined by a CFAR method in use. Formula (8) assumes that
the events of correct matching in different coordinates are independent and have the same probability.

We can simply evaluate the detection performance degradation due to the plot matching in the
case of multiscan detection that uses the principle of binary integration known as the “m-of-n” rule.
Consider a detection strategy when for any fixed plot, generated in the n-th current scan, one performs
the plot matching process over n = Ns − 1 previous scans and claims the final target detection if there
are at least m = Nm−1 correlated plots in addition to the initial fixed plot in the n-th current scan. By
correlated plots, we understand the correctly matched plots associated with the same target of interest
with high probability. Thus, we observe a sequence of Ns − 1 statistically independent events wherein
the probability of “success” (detection and correct matching) is Pmod

D and the probability of “failure” is
1 − PD because the probability of miss is not affected by the plot matching process. For this detection
strategy, the overall probability of detection is given by

P fin
D (Nm − 1 of Ns − 1|1) = PD ·

∑Ns−1

i=Nm−1

(Ns − 1)!
i! (Ns − 1 − i)!

(
Pmod

D

)i
(1 − PD)Ns−1−i (10)

where the notation P fin
D (Nm − 1 of Ns − 1|1) means the final detection probability for the detection

strategy with the fixed first detection in the n-th current scan, and Nm − 1 is the threshold for the
number of detected and correctly matched plots within the Ns − 1 successive previous scans.

Replacing in Eq. (10) Pmod
D with PD yields the overall detection probability under the assumption

that the plot matching does not decrease the single scan detection probability

P fin
Dub (Nm − 1 of Ns − 1|1) = PD ·

∑Ns−1

i=Nm−1

(Ns − 1)!
i! (Ns − 1 − i)!

P i
D (1 − PD)Ns−1−i (11)

For the detection strategy under consideration, P fin
Dub(Nm − 1 of Ns − 1|1) in Eq. (11) is the upper

bound for the overall probability of detection given by Eq. (10). Using Equations (10) and (11), one
can present the loss in the overall detection probability as

Lfin
D (Nm − 1 of Ns − 1|1) = 1 − P fin

D (Nm − 1 of Ns − 1|1)
P fin

Dub (Nm − 1 of Ns − 1|1)
(12)
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From Eqs. (8)–(12), assuming PD = 0.8, d = 3 (plot matching in range, velocity, and azimuth)
Ns = 6 and Nm =4, we get in turn Pmod

D = 0.7213784, P fin
D (3 of 5|1) = 0.4930496, P fin

Dup (3 of 5|1) =
0.7536640, and the loss in the overall probability of detection for the method in [11]

Lfin
D (3 of 5|1) = 1 − 0.4930496

0.7536640
= 0.3457966 (13)

Hence, for the method proposed in [11], the loss in the overall probability of detection for targets
of interest reaches an essentially high level of 34.6%.

Even if we set d = 2, assuming P cm = 1 for the plot matching in azimuth since the method
in [11] employs a vast azimuth extent of the correlation windows, then we get Pmod

D = 0.7466874,
P fin

D (3 of 5|1) = 0.5675895, and the loss in the overall probability of detection

Lfin
D (3 of 5|1) = 1 − 0.5675895

0.7536640
= 0.2468932 (14)

Thus, contrary to the statement in [11], one can conclude that the method suggested in [11] is not
free of noticeable harmful influencing the detection performance for targets of interest.

2.2. Disadvantage D2

For the sake of clarity, in this discussion, we consider only the SIR-dependent component of the total
variance of estimation errors; this component is usually the dominant one. The abbreviation SIR may
represent the signal-to-noise ratio (SNR) or the signal-to-noise plus clutter ratio (SNCR).

This disadvantage appears because the estimator in Eq. (1) uses the phase difference Δφ measured
for each radar cell at the level of raw CPI data, i.e., before coherent Doppler processing.

First, consider the radial velocity measurements in the presence of the receiver thermal noise. In
this case, for the variance σ2

v of the velocity estimator in Eq. (1), we have [1, p. 697]

σ2
v ∼ 1/SNR1 (15)

where SNR1 is the signal-to-noise ratio for a target signal at the level of raw CPI data. Having
N consecutive sweeps in CPI, one can compute the average radial velocity V using maximum �N/2�
statistically independent estimates of v, where �x� stands for the nearest smaller integer to x. Therefore,
for the variance of the average radial velocity σ2

V , one has

σ2
V ∼ 1/(�N/2�SNR1) (16)

In the case of coherent Doppler processing implemented as a bank of Doppler filters using Fast
Fourier Transform (FFT), the SNR after coherent integration is NSNR1. Accordingly, the variance of
a radial velocity estimator based on fine Doppler estimation after coherent integration is

σ2
V ∼ 1/(NSNR1) (17)

Therefore, in the presence of thermal noise only, the variance of the radial velocity estimator that
employs fine Doppler estimation after coherent integration is half of that for the radial velocity estimator
suggested in [11].

Next, consider radial velocity measurements in the presence of sea clutter. In the raw CPI data,
returns from targets of interest as well as sea spikes are corrupted by the receiver thermal noise and
by two continuous sea clutter components. These clutter components are the result of two scattering
phenomena that are distinct from that for the sea spikes representing discrete spiky components. These
phenomena are [3, p. 29–32]: a) resonant scattering from small ripples riding on top of longer ocean
waves, and b) scattering from the very rough whitecaps of broken waves.

In the presence of two continuous sea clutter components mentioned above, the resulting SCNR
at the level of raw CPI data may be substantially lower than the SNR. Hence, the variance σ2

v of the
velocity estimator in Eq. (1), and respectively the variance σ2

V of the average velocity estimator in
Eq. (16), may increase significantly. On the contrary, the resulting SCNR at the output of one of the
Doppler filters (which is closely tuned to the target radial velocity) is substantially higher than that in
the raw CPI data, especially for moving targets when the separation between the spectrum of a target
signal and that of the continuous clutter components is large enough.
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One should recall that the methods in question have to operate in scenarios when the sea spikes
and two continuous clutter components are present simultaneously. Thus, the radial velocity estimator
employing fine Doppler measurements is essentially more precise than suggested in [11], just in situations
in which the methods in question are designed to operate.

2.3. Disadvantage D3

As follows from Eq. (2), the method [11] computes the half azimuth extent LAa of the correlation window
(for matching the current scan plots with plots stored in the previous scan) using the maximum speed
Vmax that targets of interest can reach for a specific sea state. However, the estimator in Eq. (2) can
be improved using an estimate of the absolute value of the maximum tangential (cross-range) velocity
|Vcrmax|

|Vcrmax| =
√

V 2
max − V̆ 2 (18)

where V̆ = |V | − 6σV , if |V | > 6σV , and V̆ = 0, if |V | ≤ 6σV with σV being the standard deviation of
the estimator of velocity centroid (velocity centroider).

Using |Vcrmax| from Eq. (18) yields the following improved estimator

LAai = atan(|Vcrmax| · Tscan/Ř)) + 3σα (19)

where R̆ = Rb − LRa, if Rb > LRa, and R̆ = Rb, if 0 < Rb ≤ LRa, where LRa is computed from
Equation (48) below that correctly defines this parameter in contrast to Eq. (3), and σα is the standard
deviation of the estimator of azimuth centroid (angular centroider). If LAai < LAa, then using the
estimator in Eq. (19) leads to reducing the area of the correlation window. In turn, this reduction
results in decreasing the number of false detections due to sea spikes.

As will be shown further, the improved estimator in Eq. (19) provides a noticeable decrease in the
number of false detections when the absolute value of the estimated radial velocity |V | is close to the
maximum speed Vmax. For low values of |V | this estimator provides no meaningful improvements.

However, one can achieve an essential decrease in the number of false detections using the azimuth
centroids of correlated plots in the plot matching process. The possibility of using the angular
coordinates of these plots appears as soon as the first correlated plot is found in one of the previous
scans.

Let Pn(R,V, α) denote a plot generated at the n-th scan. In this notation, R, V , and α are the
estimated coordinates of the plot’s centroid in range, velocity, and azimuth, respectively. The parameter
α is a continuous circular variable, 0 ≤ α < Naz, where Naz is the maximum azimuth cell index within
the full antenna scan.

The i-th plot Pni(Ri, Vi, αi), generated in the n-th current scan, and the j-th plot Pn−1j(Rj , Vj , αj),
generated in the (n − 1)-th scan, constitute a pair of the correlated plots if they are associated (with
high probability) with the same target. For a target associated with this pair of plots Pni and Pn−1j ,
one can use the following estimator of the azimuth velocity Δα̃cr

Δα̃cr =
(αi − αj)Naz

|ni − nj|
azimuth cells

scan
(20)

where ni and nj are the indices of scanning the i-th and j-th plots respectively associated with, and
the notation (·)Naz

denotes reduction modulo Naz onto [0, Naz). In Matlab notation, this operation is
given by (α)Naz

= mod(α,Naz). From Eq. (20), we get for the plots Pni and Pn−1j

Δα̃cr =
(αi − αj)Naz

|n − (n − 1)|= (αi − αj)Naz

azimuth cells

scan
(21)

Using Eq. (21) yields the azimuth coordinate αb of the center of a new correlation window for the
(n − 2)-th scan as

α̃b = (αj − Δα̃cr)Naz
(22)

We assume unbiased and precise azimuth measurements for which σα � θ3, where θ3 is the 3 dB antenna
beamwidth. Ignoring the wrapping effect of estimates within the interval (α−θ3, α + θ3) for any actual
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value of α, we can find the variance σ2
A of the estimator in Eq. (22) using its linear form αb = 2αj − αi.

Since αi and αj are statistically independent, we get

σ2
A = 5σ2

α (23)

where σ2
α is the variance of the azimuth centroider.

Using Eq. (21), one can also get the azimuth coordinate α̃b of the center of a new correlation
window for the (n − 3)-th scan as

α̃b = (αj − 2Δα̃cr)Naz
(24)

and then using the linear form of Eq. (24) αb = 3αj − 2αi, the corresponding variance as

σ2
A = 13σ2

α (25)

For targets detected with a probability of detection PD ≥ 0.7 (for the probability of false alarm
PFA = 10−5 . . . 10−8), the SNR is high enough so that the standard deviation σα can be expected to
be σα = βθ3 ≈ θ3/10 . . . θ3/5 [1, p. 703]. Then, considering the azimuth estimation errors, we obtain
(by analogy with the half range extent as given by Eq. (48) below) the half azimuth extent of a new
correlation window for the (n − 2)-th scan as

LAadp
a = 3σA + 3σα = 3

(√
5 + 1

)
σα ≈

{
θ3, for σα = θ3/10 (β = 0.1)
2θ3, for σα = θ3/5 (β = 0.2)

(26)

and the half-azimuth extent of a new correlation window for the (n − 3)-th scan as

LAadp
a = 3σA + 3σα = 3

(√
13 + 1

)
σα ≈

{
1.5θ3, for σα = θ3/10
3θ3, for σα = θ3/5

(27)

The said new correlation window is referred to as an adaptive correlation window (ACW). For an
ACW, the location of its center changes from scan to scan depending on the estimates of the target’s
radial and angular velocity. The range and azimuth extents of the ACW also change from scan to scan
depending on the precision of range, velocity, and azimuth centroiders.

As follows from Eqs. (26) and (27), the full azimuth extent of the adaptive correlation window is
2–6 azimuth resolution bins. Typically, the antenna beamwidth θ3 corresponds to Nsw azimuth cells,
where Nsw is the number of sliding windows in azimuth. Therefore, the variances in Eqs. (23) and (25)
can respectively be presented in terms of azimuth cells as

σ2
A =

{
0.05N2

sw, for σα = θ3/10
0.2N2

sw, for σα = θ3/5
(28)

and

σ2
A =

{
0.13N2

sw, for σα = θ3/10
0.52N2

sw, for σα = θ3/5
(29)

The half azimuth extent in Eqs. (26) and (27) is respectively in terms of azimuth cells

LAadp
a =

{
Nsw, for σα = θ3/10
2Nsw, for σα = θ3/5

(30)

and

LAadp
a =

{
1.5Nsw, for σα = θ3/10
3Nsw, for σα = θ3/5

(31)

Figures 2(a) and 2(b) show the adaptive correlation windows for the plot matching process in the
(n − 2)-th and the (n − 3)-th scans, respectively. The parameters of ACWs are determined using the
pair of correlated plots Pni and Pn−1j .

Equations (26), (30) and (27), (31) define the half azimuth extents for adaptive correlation window
in the case when the estimator of the angular velocity uses azimuth centroids of plots from adjacent
scans, i.e., from the n-th and the (n− 1)-th scans as given by Eq. (21). Generally, if the said estimator
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Figure 2. Determining the parameters of adaptive correlation windows using a pair of correlated plots
in the (n − 1)-th and the n-th scans: (a) for the (n − 2)-th scan, (b) for the (n − 3)-th scan.

employs the azimuth estimates from the n-th and the (n − d)-th scans, then using Eqs. (20) and (22)
yields the center of the ACW in the (n − d − h)-th scan, h ∈ [1, 2, . . . , Ns − 1 − d], as

α̃b =
(

αj − h
(αi − αj)Naz

d

)
Naz

(32)

Using the linear form of the estimator in Eq. (32) yields its variance as

σ2
A =

(d + h)2 + h2

d2
σ2

α (33)

and in terms of azimuth cells as

σ2
A =

⎧⎪⎪⎨
⎪⎪⎩

0.01N2
sw

(d + h)2 + h2

d2
, for σα = θ3/10

0.04N2
sw

(d + h)2 + h2

d2
, for σα = θ3/5

(34)

As follows from Eq. (33), for d = 2 and h = 1

σ2
A =

10
4

σ2
α (35)

and, from Eq. (34), in terms of azimuth cells

σ2
A =

{
0.025N2

sw, for σα = θ3/10
0.1N2

sw, for σα = θ3/5
(36)

Then, the half azimuth extent of the ACW for the (n − d − 1)-th scan (d = 2) is

LAadp
a = 3σA + 3σα = 3

(√
10
2

+ 1

)
σα ≈

{
0.8θ3, for σα = θ3/10
1.6θ3, for σα = θ3/5

(37)

and in terms of azimuth cells

LAadp
a =

{
0.8N sw, for σα = θ3/10
1.6Nsw, for σα = θ3/5

(38)
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Similarly, for the center of the ACW in the (n − d − 2)-th scan (d = 2), we have

α̃b =
(

αj − 2
(αi − αj)Naz

d

)
Naz

(39)

and the variance of the linear version of the estimator in Eq. (39) is

σ2
A =

(d + 2)2 + 4
d2

σ2
α (40)

As one can see, Eq. (40) follows from Eq. (33) with h = 2. Therefore, from Eq. (33), for d = h = 2, and
from Eq. (40), for d = 2, we get the same result

σ2
A = 5σ2

α (41)

and in terms of azimuth cells

σ2
A =

{
0.05N2

sw, for σα = θ3/10
0.2N2

sw, for σα = θ3/5
(42)

Then, the half azimuth extent of the ACW for the (n − d − 2)-th scan (d = 2) is

LAadp
a = 3σA + 3σα = 3(

√
5 + 1)σα ≈

{
θ3, for σα = θ3/10
2θ3, for σα = θ3/5

(43)

and in terms of azimuth cells

LAadp
a =

{
Nsw, for σα = θ3/10
2Nsw, for σα = θ3/5

(44)

2.4. Disadvantage D4

For a pulsed Doppler radar, the target radial velocity can be measured unambiguously (assuming, for
simplicity, a fixed radar platform) only if the actual radial velocity v′ meets the condition

−Vuamax ≤ v′ ≤ Vuamax (45)

where Vuamax = vua
2 is the maximum unambiguous velocity with vua = λ

2T = λPRF
2 , where PRF is the

pulse repetition frequency (PRF).
If the absolute value of the actual radial velocity v′ exceeds the Vuamax, then the estimated apparent

value will be v = v′ + kvua for some integer k such that v meets Eq. (45). Therefore, in the case of
ambiguous velocity measurements, the estimated radial velocity v differs from the corresponding actual
value v′ by kvua, k = ±1,±2, . . .. Accordingly, for the estimated average radial velocity V we have
V = V ′ + kvua, where V falls within ±Vuamax.

The method proposed in [11] computes the range of the correlation window center using Eq. (4).
Hence, for a target moving at an actual radial velocity V ′, where |V ′| > Vuamax, the apparent radial
position Rb of the correlation window center is

Rb = R − V Tscan = R − (V ′ + kvua

)
Tscan

= (R − V ′Tscan) − kvuaTscan = R′
b − kvuaTscan (46)

As follows from Eq. (46), the difference |Rb − R′
b| = |kvuaTscan| may substantially exceed the correlation

window extent in the range 2LRa, where LRa is given by Eq. (3). In this case, the actual target position
does not fall into the precomputed correlation window. Therefore, no position and velocity matching
occur for such a target over the predefined number of previous scans. As a result, all the detections
associated with the target in the previous scans are missed. This mismatch explains why the method [11],
collapses when radial velocity measurements are ambiguous.

Thus, it is desirable to develop such a new method employing scan-to-scan processing for eliminating
false detections in coherent radar systems due to sea spikes that would be free of disadvantages of known
techniques.
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3. PROPOSED NEW METHOD

Figure 3 is an exemplary scan pattern of a surveillance radar, which looks for surface targets in azimuth
and range using a fan antenna beam. The radar antenna rotates to scan the full azimuthal area around
the radar (360◦ coverage in azimuth) and receives returns from some specified range interval for each
azimuth cell in the whole coverage. The duration of the subsequent antenna scans is Tscan.

 

   Azimuth
   BeamwidthAntenna

     

360°  coverage

   
   

 Tscan  

Figure 3. Scan pattern of a surveillance radar.

Figure 4 shows the full radar coverage in range and azimuth. The angular extent Δαsw of an
azimuth cell is equal to a fraction of the antenna beamwidth, that is Δαsw = θ3/Nsw, where θ3 is the
3 dB antenna azimuth beamwidth and Nsw is the number of sliding windows in azimuth per the antenna
beamwidth: typically, Nsw = 3 . . . 6. The duration of each sliding window in azimuth is equal to the
duration of CPI. The total number of range cells is M , and the range extent ΔR (range granularity) of
each range cell is typically 1/5 . . . 1/3 of a radar range resolution δR.
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Figure 4. Full radar coverage in range and azimuth.
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Radar returns received by the antenna during the CPI corresponding to each of Naz azimuth cells
are amplified, downconverted, and digitized. After pulse compression, the digital samples are arranged
into a fast/slow time (FST) complex-valued M -by-N matrix, where M is the number of range cells
within the specified range interval, and N is the number of pulses transmitted within the CPI. Each
row of this matrix is coherently integrated by a Doppler processor followed by a square-law detector.
The Doppler processor’s output is arranged into a complex-valued Range-Doppler data matrix of size
M -by-N . This matrix contains all radar-available information on a specific radar scene associated with
a particular azimuth cell from the full radar coverage. Further processing uses this information for
target detection and measurements. The square-law detector’s output is organized into an M -by-N
real-valued Range-Doppler data matrix.

The proposed new method performs scan-to-scan processing over a predefined number of successive
antenna scans to eliminate the false detections due to sea spikes. This processing consists of matching
the estimated range-azimuth-velocity centroid associated with each radar plot extracted from a set of
data detected within the current scan with centroids of radar plots generated at the previous successive
scans. For each plot in the current antenna scan (initial plot), the proposed method matches the radar
plots using a sequence of correlation windows generated in turn for each of the predefined previous scans.
Each correlation window defines a range-azimuth region, with center and extent adjusted from scan-to-
scan. These adjustments minimize the area of the correlation window under the condition that plots
associated with a target corresponding to the initial plot fall into the window with high probability.
A group of matched plots is selected from all plots falling into the correlation window; these plots
meet the velocity matching condition. Only the one radar plot, which minimizes the predefined overall
matching criterion, is selected from the given group of matched plots for inclusion in the set of correlated
plots associated with the initial plot. After matching the plots over a predefined number of successive
previous scans, a set of correlated plots is identified for each initial radar plot. The proposed new method
performs the plot matching in two runs. The first run uses initial (computed by plot extractor) velocity
centroids of plots, and the second run performs plot re-matching using modified velocity centroids. The
modifications provide the detection of those targets of interest that have probably been missed due to
ambiguous velocity measurements. For each identified set of the correlated plots, an overall correlation
value is computed. If this value exceeds a predefined threshold, then the initial plot from the current
antenna scan associated with the set of correlated plots is stored in memory for further processing and
visualization. Otherwise, the set of correlated plots is retained for plot re-matching after the first run
or discarded after the second run.

The positions (range-azimuth centroids) of radar plots related to sea spikes do not depend on the
sea spikes’ velocities; they change randomly from scan-to-scan. Hence, the overall correlation values for
the plots associated with sea spikes are generally below the threshold. In contrast, radar plots related
to targets of interest change their positions from scan-to-scan regularly depending on targets’ velocities.
Therefore, the overall correlation values for plots associated with targets to be detected are generally
above the threshold. The proposed new method employs these phenomena to eliminate false detections
due to sea spikes while maintaining reliable detection performance for targets of interest.

A block diagram in Figure 5 illustrates a fully coherent pulsed radar system that contains a DSP
unit that implements the proposed new method. The DSP unit performs all the functions required to
eliminate the false detections due to sea spikes and maintain reliable detection performance for targets
of interest. In Figure 5, Section A contains typical blocks required to generate the coherent sequence of
transmit waveforms, to radiate these waveforms into a specified space region, to receive and coherently
process returns. For the sake of simplicity, the synchronizer that supplies the synchronizing signals
needed to control timing throughout the radar system (transmitted pulses, analog-to-digital (A/D) and
digital-to-analog (D/A) converter, DSP unit, radar display, and other associated circuits) is omitted.
The power amplifier usually employs solid-state devices. The transmit waveform may be represented
at intermediate frequency by a sequence of real samples; these samples are extracted from memory and
converted into an analog signal at the waveform generator output. The acronym LNA stands for a low
noise amplifier.

Figure 6 shows a block diagram of the proposed new method, wherein the input is the complex-
valued FST data matrix of size M -by-N that represents raw CPI data after the pulse compression. This
block diagram comprises:
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Figure 5. Pulsed Doppler radar system with a DSP unit implementing the proposed method.
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1) Computing block “Doppler Processing” for performing coherent integration of radar returns
represented in the FST data matrix by applying a Fast Fourier Transform (FFT) to each row of
the matrix. Doppler processing substantially improves the output SNR and SNCR relative to their
corresponding input values [1, 2], especially for targets separated from the clutter in the Doppler
domain. The output of Doppler processing is a complex-valued Range-Doppler data matrix of size
M -by-N .

2) Computing block “Magnitude Squaring” for converting the output of Doppler processing into a
real-valued Range-Doppler data matrix of size M -by-N

3) Computing block “CFAR Detection” for performing reliable target detection using as input the
real-valued Range-Doppler data matrix. This block can exploit any appropriate CFAR techniques,
in particular, advanced CFAR approaches introduced in [12, 13] and [14, 15]. The output of this
block is Detected Data Reports that contain the range cell indices of detected samples in the
real-valued Range-Doppler data matrix, as well as a value of the maximum magnitude among all
Doppler samples associated with each detected range cell (i.e., such a range cell for which there is at
least one detected sample) and the Doppler bin index associated with the said maximum Doppler
sample.

4) Data extraction block “Data Extractor” for extracting a set of data required for fine Doppler
estimation from the complex-valued Range-Doppler data matrix. The data set is extracted for
each detected range cell and usually consists of the complex sample associated with the maximum
Doppler sample, two neighboring complex samples, and their corresponding Doppler bin indices.

5) Computing blocks “Radial Velocity Estimator” and “Range Estimator.” The former computes
a radial velocity estimate (for each detected range cell) as V = (λ/2)FD , where λ is the radar
wavelength and FD is the fine Doppler frequency estimate. Fine Doppler estimator uses a set of
complex samples at the output of “Data Extractor.” An example of the fine Doppler estimator
operating on complex samples is given by [1, p. 520]⎧⎪⎪⎨

⎪⎪⎩
f = k0 + Δk = k0 − Re

{
Y [k0 + 1] − Y [k0 − 1]

2Y [k0] − Y [k0 − 1] − Y [k0 + 1]

}

FD =
PRF

N

(
f − N

2
− 1
) (47)

where f is the normalized Doppler frequency estimate; k0 and Y [k0] is respectively the Doppler bin
index and complex sample associated with the maximum sample |Y [k0]|; Y [k0 − 1] and Y [k0 + 1]
are the two neighboring complex samples of Y [k0]; FD is the fine Doppler frequency estimate (zero-
centered) in Hertz; PRF is the pulse repetition frequency, and N = 2n (n = 3, 4, . . .) is the FFT
length.
The range estimator computes a range estimate for each detected range cell as R = rΔR, where r
is the associated range cell index and ΔR the range cell extent in meters.
The radial velocity and range estimates computed by “Radial Velocity Estimator” and “Range
Estimator,” respectively, for all detected range cells within each current CPI, as well as the azimuth
cell index associated with the current CPI, are accumulated in the memory over the whole current
scan.

6) Computing block “Plot Extractor” for grouping the samples associated with detections occurred
in the current scan into plots and estimating their centroids in range, azimuth, and radial velocity.
The plots’ centroids are stored in the memory for the current scan and accumulated in the memory
for the Ns − 1 successive previous scans. A set of the plot-associated data also includes the range-
azimuth samples constituting the plot and their corresponding range-azimuth cell indices.

7) Computing block “Scan-to-Scan Plot Matching” that executes, starting from each plot in the
current scan(initial plot), the matching of that initial plot with plots in the Ns−1 successive previous
scans using estimates of their range-azimuth-velocity centroids. All the plots, which centroids meet
predefined matching criteria, survive. The initial plot and all the corresponding survived plots
compose a set of the correlated plots (SCP). The sets of correlated plots, the number of plots
Ncor, and data associated with correlated plots in each SCP are stored in the memory for further
processing.
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8) Computing block “Overall Correlation” for computing the overall correlation value for each SCP
and making decisions based on this value. If the overall correlation value is equal to or greater than
a predefined threshold, then the initial plot survives, and its associated data are stored in memory
for further processing and visualization. Otherwise, the initial plot is retained for the plot re-
matching in block “Scan-to-Scan Plot Matching.” The plot re-matching operates on retained plots
using both initial and modified velocity centroids. The modified velocity centroids are computed
from initial velocity centroids by shifting them to a predefined ambiguity interval in velocity. After
plot re-matching, a new SCP is generated for each retained plot. If the overall correlation value for
the new SCP is below a predefined threshold, the corresponding retained plot is discarded.

In particular, this block can use the “m-of-n” rule, where m is the predefined threshold for the
number of correlated plots in an SCP and n is the predetermined number of the successive previous
scans used in the plot matching process. If Ncor ≥ m, the data set of the initial plot in the SCP is
stored in the memory for further processing and visualization; otherwise, the initial plot is discarded. In
the case of the “m-of-n” rule, the equivalent correlation value is Ncor/Ns and the equivalent correlation
threshold is m/n.

In contrast to the method [11], the proposed new method considers the range estimation errors for
plots in the previous scans. These errors must be considered because the plot matching procedure verifies
the range matching condition using the estimated range centroids of a plot in the n-th current scan
and plots in the previous antenna scan. Under the assumption that the variance of a range estimator is
constant within the predefined number of scans, the corresponding equation for the half range extent
LRa of the correlation window in the (n − 1)-th previous scan is given by

LRa = αw

√
σ2

R + σ2
V T 2

scan + αwσR (48)

where the parameter αw > 0 governs the half range extent,and the second term αwσR accounts for the
range estimation errors in the previous scans.

Figure 1(b) shows the benefit of the new half extent value LRa = 3σR + 3σR = 6σR computed
from (48) assuming αw = 3 and σ2

V = 0. As can be seen, for a given range estimate in the n-th scan
R̂n, the full range extent of the correlation window [Rb − 6σR, Rb + 6σR] entirely covers the uncertainty
interval Rn−1 = [Rn−1 − 3σR, Rn−1 + 3σR] in the (n − 1)-th scan. This full-coverage occurs even when
the estimate R̂n is equal to the upper bound Rn + 3σR of the uncertainty interval Rn in the n-th
scan. Hence, the plot associated with any range estimate R̂n−1 ∈ Rn−1 will never be excluded from the
matching process.

Thus, the half range extent defined in Eq. (48) maximizes the probability of correct matching for
a given αw and, therefore, should not have a noticeable detrimental effect on the probability of target
detection. Indeed, using Equations (7) and (48) with αw = 3 and σV = 0 yields the probability of
correct matching in one coordinate for the method proposed in this paper

P cm =
∫ ∞

−∞

1√
2π

exp
(−0.5x2

) [∫ x+6

x−6

1√
2π

exp
(−0.5y2

)
dy

]
dx = 0.9999779 (49)

Then, using Equations (8)–(12) with settings PD = 0.8, d = 3, Ns = 6 and Nm = 4, we get for the
proposed new method Pmod

D = 0.7999470 and, finally

P fin
D (3 of 5|1) = 0.7534577 (50)

Lfin
D (3 of 5|1) = 1 − 0.7534577

0.7536640
= 2.7369443 × 10−4 (51)

As follows from Eq. (51), for the new method, the loss in the overall probability of detection is an
essentially small value of 0.0273694%, which is a practically negligible quantity. It is straightforward,
using the quantities of P fin

D (3 of 5|1) from Equations (13) and (51), to evaluate the loss in the overall
probability of detection for the method [11] relative to the proposed new method as

Lfin
D (3 of 5|1)

Prior art vs new method
= 1 − 0.4930496

0.7534577
= 0.3456174 (52)
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From Eq. (52), this loss is 34.6%, i.e., as large as that for the method proposed in [11] relative to the
upper bound P fin

Dub = 0.7536640 computed from Eq. (11).
Thus, in contrast to the method [11], the new method is practically free of negative influencing the

target detection performance. Thereby, the proposed new method provides radically improved detection
performance for targets of interest relative to state-of-the-art methods.

The azimuth extent defined in [11] for the correlation windows is not the best choice to reduce
the number of false detections due to the sea spikes. Indeed, as follows from Eq. (2), the azimuth
extent 2LAa of the prior art correlation window (PCW) proposed in [11] may be too large, especially
for near-range targets, since it is calculated using a predefined maximum speed Vmax.

The proposed new method employs two kinds of correlation windows. The first one is referred to
as the initial correlation window. An initial correlation window (ICW) is generated whenever the new
method starts matching a plot in the current scan with plots in the adjacent previous scan; these scans
are separated in time by Tscan. For each i-th plot Pni(Ri, Viαi) in the n-th current scan, the center
position of the ICW is determined as follows:

- The range Rb of the ICW center is calculated as

Rb = Ri − ViTscan, (53)

where the velocity of the centroid Vi is positive if the target moves away from the radar and negative
if the target approaches the radar.

- The azimuth center of the ICW is equal to the azimuth centroid of the plot

Ab = αi, (54)

- The azimuth extent of the ICW (in terms of azimuth cells) is computed using Eq. (19) as

LAai =
⌈

atan(|Vcrmax| · Tscan/Rbmin)
θ3

⌉
Nsw + �3β�Nsw, (55)

where |Vcrmax| =
√

V 2
max − V̆ 2 with V̆ = |Vi| − 6σV if |Vi| > 6σV , and V̆ = 0 if |Vi| ≤ 6σV , and

Rbmin = Rb−LRa if Rb > LRa and Rbmin = Rb, if 0 < Rb ≤ LRa. Here, LRa is given by Eq. (48); β
is the parameter in an expression for the standard deviation σα of an angular centroider (σα = βθ3

or σα = βNsw), and the function �x� returns the nearest larger integer to x.
The second kind of correlation window is referred to as the adaptive correlation window (ACW).

Adaptive correlation windows are generated after the first correlated plot is found in the ICW. In
this case, there are two azimuth centroids associated with the correlated plots. For instance, if the
first correlated plot is found in the adjacent previous scan, these centroids are αi associated with the
i-th plot Pni(Ri, Vi, αi) in the n-th current scan, and αj associated with the corresponding j-th plot
Pn−1j(Rj , Vj , αj) in the (n − 1)-th scan. Then, the azimuth center of the ACW for matching the plot
Pn−1j(Rj , Vj , αj) in the (n − 1)-th scan with the plots Pn−2k(Rk, Vk, αk) in the (n − 2)-th scan (i.e.,
in the second previous scan) is computed, taking into account that azimuth centroids are continuous
circular variables on [0, Naz), as

α̃b =

{
αb, if 0 ≤ αb < Naz

αb − Naz, if αb ≥ Naz

αb + Naz, if αb < 0
(56)

where αb = αj − α̃cr and the azimuth velocity α̃cr for a target associated with the plots Pni(Ri, Vi, αi)
and Pn−1j(Rj, Vj , αj) is computed using (20) as

α̃cr =
{

Δα1, if Δα1 ≤ Δα2

−Δα2, if Δα1 > Δα2
(57)

with Δα1 and Δα2 being computed from

Δα1 = mod(αi − αj, Naz)
Δα2 = mod(αj − αi, Naz)

(58)

where mod(x,Naz) returns the remainder after division of x by Naz .
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Figure 7. Examples of computing the azimuth coordinate of the center of ACW.

Figure 7 shows four numerical examples of using Eqs. (56)–(58). In Eq. (57), the sign of the
estimate α̃cr defines the direction of the target’s azimuth change; α̃cr ≥ 0 means that the target moves
“clockwise”; otherwise, it moves “anticlockwise.”

Using the half azimuth extent given by Eq. (30), the azimuth correlation interval [ÃL, ÃU ] for
matching the plot Pn−1j(Rj , Vj, αj) with the plots Pn−2k(Rk, Vk, αk) is computed as

ÃL =

{
AL, if 0 ≤ AL < Naz

AL − Naz, if AL ≥ Naz

AL + Naz, if AL < 0
(59)

ÃU =

{
AU , if 0 ≤ AU < Naz

AU − Naz, if AU ≥ Naz

AU + Naz, if AU < 0
(60)

where AL = α̃b−LAadp
a , AU = α̃b+LAadp

a , and according to Eq. (30), LAadp
a = 2N sw is the half azimuth

extent of the ACW to be used in matching the plots from (n−2)-th scan with the correlated plot found
in the (n − 1)-th scan. For this ACW, the range coordinate of the center is

Rb = Rj − VjTscan (61)

To characterize the effect of the area of a range-azimuth correlation window on the number (as
well as the probability) of false detections due to the sea spikes, we use the probability that at least one
sea spike occurs in the range-azimuth region associated with a given correlation window. To that end,
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we use a statistical model of sea spikes introduced in [3, p. 115–124]. This model assumes a Poisson
distribution that describes fluctuations in a population of independent, un-bunched spikes. According
to the model, the mean number of spikes in any range-azimuth resolution element (bin) is N̄ � 1, so
that the probability of occurring m spikes in a range-azimuth bin, Psp(m) is given by

Psp (0) = 1 − N̄

Psp (1) = N̄

Psp (m ≥ 2) = 0
(62)

The occurrences of sea spikes in a set of range-azimuth bins are independent events. Hence, the
probability of occurring at least one sea spike in each range-azimuth correlation window is given by

PW (m ≥ 1) = 1 − (1 − N̄
)Nbin(W) (63)

where Nbin(W) = Nazm
bin ·N rng

bin is the total number of range-azimuth bins in a given correlation window
with Nazm

bin and N rng
bin being the number of resolution bins within the azimuth and range extents of the

window, respectively, and W stands for the type of window: PCW for the correlation window according
to the method disclosed in [11]; ACW and ICW respectively for the adaptive and initial correlation
windows according to the proposed new method.

In the comparative analysis of the false detection elimination performance, we compare the values
of PW(m ≥ 1) for the PCW (method in [11]) and those for the ICW and ACW (proposed new method)
under the following settings:

- Scanning time: Tscan = 6 s.
- Range interval for plots (in meters): [Rmin, Rmax] = [100, 10000].
- Standard deviations: σR = 3 m, σV = 0.3 m/s and σα = θ3/5 = 0.1◦.

These parameters are SNR dependent, and the SNR is a decreasing function of range.
It is assumed that σR, σV and σα correspond to a boundary SNR at point Rmax.
Thus, for any range R ∈ [Rmin, Rmax], given precision is guaranteed.

- Maximum speed for a target of interest: Vmax = 20 m/s and 40 m/s.
- Range resolution: δR = 10 m.
- Azimuth resolution: δθ3 = θ3 = 0.5◦.
- Probability of occurring one sea spike in a range-azimuth bin: Psp(1) = N̄ = 0.01 [3, p. 126].

In this analysis, we assume that all the correlation windows in question have the same correctly
defined half range extent given by Eq. (48)

LRa = 3
√

32 + (0.3 · 6)2 + 3 · 3 = 19.5m (64)

Hence, all the windows have the same number of range bins N rng
bin within the range extent in Eq. (64)

N rng
bin = 2

LRa

δR
= 2

⌈
19.5
10

⌉
= 4 (65)

As follows from Eq. (26), for a pair of the correlated plots Pni and Pn−1j , the full azimuth extent of the
ACW is 2LAadp

a = 4θ3. Therefore, the number of azimuth bins within this azimuth extent is

Nazm
bin =

2LAadp
a

θ3
= 4 (66)

and the total number of range-azimuth bins

Nbin(ACW) = Nazm
bin · N rng

bin = 4 · 4 = 16 (67)

The half azimuth extent of the ACW given by Eqs. (26) and (30) depends on the precision of the
azimuth centroider. Therefore, these equations define the minimum azimuth extent for other correlation
windows. Thus, for the PCW and ICW, the number of azimuth bins is greater than or equal to that
given by Eq. (66).
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For the ICW, using the azimuth extent given by Eq. (19) and the lower bound given by Eq. (66)
yields the corresponding number of azimuth bins as

Nazm
bin = max

{
atan(|Vcrmax| · Tscan/(R − LRa)) + 3σα

θ3
, 4
}

(68)

where |Vcrmax| is given by Eq. (18), and the total number of range-azimuth bins

Nbin(ICW) = 4 · max
{

atan(|Vcrmax| · Tscan/(R − LRa)) + 3σα

θ3
, 4
}

(69)

Similarly, using Eqs. (2) and (66) yields for the PCW

Nbin(PCW) = 4 · max
{

asin(Vmax · Tscan/R)
θ3

, 4
}

(70)

Under the assumption that the ACW parameters are computed using radar plots in the adjacent
scans, the probability of occurring at least one sea spike, as follows from Eqs. (63) and (67), is a range
independent constant

PACW (m ≥ 1) = 1 − (1 − 0.01)16 = 0.149 (71)

Figure 8 shows the graphs of the improvement (reduction) factors Q in the probability of occurring
at least one sea spike for the ICW relative to the PCW, and Figure 9 shows similar graphs for the ACW
relative to the PCW and ICW. Using Eqs. (69)–(71) yields the following formulas for computing the
improvement factors

For ICW relative to PCW

Q(ICW vs. PCW) =
PPCW (m ≥ 1)
PICW (m ≥ 1)

=
1 − (1 − N̄

)Nbin(PCW)

1 − (1 − N̄
)Nbin(ICW)

, R ∈ [Rmin, Rmax] (72)

For ACW relative to ICW

Q(ACW vs. ICW) =
PICW (m ≥ 1)
PACW (m ≥ 1)

=
1 − (1 − N̄

)Nbin(ICW)

PACW (m ≥ 1)
, R ∈ [Rmin, Rmax] (73)

For ACW relative to PCW

Q(ACW vs. PCW) =
PPCW (m ≥ 1)
PACW (m ≥ 1)

=
1 − (1 − N̄

)Nbin(PCW)

PACW (m ≥ 1)
, R ∈ [Rmin, Rmax] (74)

The graphs of the improvement factors in Figures 8 and 9 are computed for Vmax = 20 m/s
and Vmax = 40 m/s at |Vr|/Vmax = 0.5, 0.9 and 0.99. Figure 8 shows the improvement factor
Q(ICW vs. PCW) as a function of range. For |Vr|/Vmax = 0.5, one can observe some small degradation
in this improvement factor; the degradation does not exceed 6% and 4% for Vmax = 20 m/s and
Vmax = 40 m/s, respectively. However, the ICW can provide a noticeable reduction of 50% or more
(Q ≥ 1.5) in the probability of occurring at least one sea spike when the ratio |Vr|/Vmax ≥ 0.99 for
both Vmax = 20 m/s and 40 m/s. Comparing the plots in Figure 8 for these values of Vmax shows that
the improvement factor increases for the higher value of Vmax. For Vmax = 40 m/s, the “effective” range
interval, i.e., the range interval within which Q ≥ 1.5, extends up to 4300 m, and it is two times broader
than that for Vmax = 20 m/s.

The plots in Figure 9 show that the ACW provides a noticeable reduction in the probability of
occurring at least one sea spike relative to both the ICW and the PCW. This reduction is especially
prominent for Q(ACW vs. PCW) at Vmax = 40 m/s. In this case, the “effective” range interval also
extends up to 4300 m and is two times wider than that for Vmax = 20 m/s.

Thus, in contrast to the method [11], the proposed new method ensures a noticeable reduction in
the probability of occurring at least one spike in the area occupied by adaptive correlation windows.
Thereby, the proposed new method provides a noticeable decrease in the number of false detections due
to the sea spikes relative to state-of-the-art methods.

It is also of interest to evaluate the overall probability of detection for the sea spikes using their
statistical model discussed above. For a single range-azimuth resolution element, we will find this
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Figure 8. Improvement factor for ICW relative
to PCW.

Figure 9. Improvement factor for ACW relative
to PCW and ICW.

probability from Eq. (10), assuming that a sea spike that appears in the resolution element with
probability Psp(1) is detected by radar with probability unity in any single scan. We also assume
ideal plot matching (probability of correct matching is unity) in all coordinates. Then, substituting in
Eq. (10) PD and Pmod

D with Psp(1) from Eq. (62) yields the sought probability

P fin
Dsp (Nm − 1 of Ns − 1|1) = Psp (1) ·

∑Ns−1

i=Nm−1

(Ns − 1)!
i! (Ns − 1 − i)!

(Psp (1))i (1 − Psp (1))Ns−1−i (75)

For Ns = 6, Nm = 4 and Psp (1) = 0.01, we get from Eq. (75) P fin
Dsp(3 of 5|1) = 9.85 × 10−8. This

value is within the range of typical probabilities of false alarm (in the presence of receiver noise) used
in designing radar systems. Thus, the “m-of-n” rule in computing the overall correlation for sets of
correlated plots is an efficient remedy for eliminating false detections caused by the sea spikes.

A detailed description of the proposed new method is provided in the Appendix.

4. CONCLUSION

This paper has introduced a new method for eliminating false detections in coherent radars due to sea
spikes. The proposed method overcomes the drawbacks of the state-of-the-art methods and exhibits
essentially improved performance over the latter. The comparative performance analysis has shown
that the proposed new method:

- Efficiently eliminates false detections due to the sea spikes by using the “m-of-n” detection strategy
in computing the overall correlation.

- Radically improves detection performance for targets of interest through the adequate
determination of the extent of correlation windows for radar plot matching in the scan-to-scan
data processing.

- Provides higher precision of radial velocity estimation, especially in the presence of sea clutter; this
increases the probability of correct matching for plots and, finally, the probability of detection for
targets of interest.

- Decreases the number of false detections by providing an essential reduction in the angular extent
of the correlation windows.

- Provides reliable detection performance for targets of interest when radial velocity measurements
are ambiguous; the prior art methods collapse in such situations.



136 Kononov et al.

APPENDIX A. DETAILED DESCRIPTION OF THE PROPOSED METHOD

This description assumes a coherent radar covering a surveillance area in subsequent scans of duration
Tscan, wherein the radar transmits waveforms and receives returns during a coherent processing interval
(CPI). These radar returns contain information on a radar scene within a particular azimuth cell
associated with each current CPI in turn.

The proposed new method comprises the following steps.
1. Performing coherent Doppler processing, wherein the input is raw CPI data in the form of

a complex-valued fast/slow time data matrix of size M -by-N that represents radar returns received
within each current CPI. The output is a complex-valued Range-Doppler data matrix of size M -by-N
that represents all radar-available information on a radar scene associated with the current CPI, where
M and N is the number of range cells and Doppler bins, respectively.

2. Generating a real-valued Range/Doppler data matrix of size M -by-N from the complex-valued
Range-Doppler data matrix from step 1 by computing magnitude-squared value for each element in this
complex-valued matrix.

3. Performing CFAR detection using the real-valued Range/Doppler data matrix from step 2. For
each range cell, at which at least one Doppler sample is detected, storing in memory the corresponding
range cell index and data required for fine Doppler estimation.These data are extracted from the row
corresponding to the said range cell index in the complex-valued Range-Doppler data matrix in step 1.

4. For each range cell index associated with detections reported in step 3:
- Performing fine Doppler estimation using the corresponding required data stored in step 3 and

computing the radial velocity estimate V and the range estimate R associated with the range cell
index.

- Storing in memory the estimates V , R, a value of the maximum magnitude among all the
detected Doppler samples associated with the range cell index, and the azimuth cell index α of
the corresponding CPI.
5. Repeating steps 1–4 for all consecutive CPIs over the entire antenna scan, i.e., for all azimuth cells

associated with these CPIs, and collecting in memory the said range, velocity, azimuth, and magnitude
data stored in step 4 during the entire antenna scan.

6. Generating radar plots using the range, velocity, azimuth, and magnitude data accumulated in
the memory during the entire antenna scan.

7. Storing in the memory all the plots generated in the n-th current scan and each of the Ns−1 ≥ 2
successive previous scans that include the (n − 1)-th, . . . , (n − Ns + 1)-th scans.

8. Identifying a set of the correlated plots associated with each i-th plot Pni(Ri, Vi, αi) (i = 1, 2, . . . )
in the n-th current antenna scan by performing the plot matching process for the i-th initial plot with
plots from the Ns − 1 successive previous scans.

In step 8, the plot matching process starts from initializing a set of the correlated plots associated
with the i-th plot as SCP i = {Pni} and generating an initial correlation window (ICW) for matching
the i-th plot Pni(Ri, Vi, αi) with plots Pn−1j(Rj , Vj, αj) in the (n − 1)-th scan. The parameters of the
ICW are:

- Range position of the center:
Rb = Ri − ViTscan.

- Half range extent:

LRa = 3
√

σ2
R + σ2

V T 2
scan + 3σR.

where σR is the standard deviation of the range centroider and σV is a standard deviation of the velocity
centroider.

- Azimuth position of the center:
Ab = αi.

- Half azimuth extent:

LAai =

⎡
⎢⎢⎢

atan
( |Vcrmax|Tscan

Rbmin

)
θ3

⎤
⎥⎥⎥Nsw + �3β�Nsw,
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where |Vcrmax| =
√

V 2
max − V̆ 2 with V̆ = |Vi| − 6σV if |Vi| > 6σV , and V̆ = 0 if |Vi| ≤ 6σV , Nsw is the

number of sliding windows within the 3 dB antenna beamwidth θ3, Rbmin = Rb − LRa, if Rb > LRa,
and Rbmin = Rb, if 0 < Rb ≤ LRa. The value of parameter β is determined from the equation σα = βθ3.

After having defined the ICW, the matching process performs the following sub-steps:

8.1 Selecting the plots that fall into the specified ICW, that is, their azimuth and range centroids meet
the conditions

αj ∈
[
ÃL, ÃU

]
and Rb − LRa ≤ Rj ≤ Rb + LRa,

where

ÃL =

⎧⎨
⎩

AL, if 0 ≤ AL < Naz

AL − Naz, if AL ≥ Naz

AL + Naz, if AL < 0
and ÃU =

⎧⎨
⎩

AU , if 0 ≤ AU < Naz

AU − Naz, if AU ≥ Naz

AU + Naz, if AU < 0

with AL = Ab − LRai and AU = Ab + LRai, respectively, and Naz is the total number of azimuth
cells within the full 360◦ azimuth coverage.
The plots that meet these conditions constitute a set of the selected plots

Pn−1jp

(
Rjp , Vjp , αjp

)
, p = 1, 2, . . . , P.

8.2 Determining those plots in the set of the selected plots that meet the velocity matching condition

Vi − 6σV ≤ Vjp ≤ Vi + 6σV

The plots that meet this velocity matching condition constitute a set of the matched plots

Pn−1jg

(
Rjg , Vjg , αjg

)
, g = p1 < p2 < . . . < pG, G ≤ P.

8.3 Identifying such a plot Pn−1jg̃
(Rjg̃

, Vjg̃
, αjg̃

) in the set of the matched plots that minimizes the
overall matching criterion F , such as

F = (V i − Vjg̃
)2 → min

or of a more general form such as

F =
(Rb − Rjg̃

)2

σ2
RV

+
(V i − Vjg̃

)2

σ2
V

→ min

where σ2
RV = σ2

R + σ2
V T 2

scan.
8.4 Including the plot Pn−1jg̃

(
Rjg̃

, Vjg̃
, αjg̃

)
in the set of correlated plots SCP i associated with the i-th

initial plot Pni (Ri, Vi, αi): SCP i = {PniPn−1jg̃
}.

If the said set of selected plots or the said set of matched plots in the (n−1)-th scan is empty, then
the matching process defines new ICW parameters for the (n − 2)-th scan as

- Range position of the center:
Rb = Ri − Vi(2T scan)

- Half range extent:

LRa = 3
√

σ2
R + σ2

V (2T scan)2 + 3σR.

- Azimuth position of the center:
Ab = αi.

- Half azimuth extent:

LAai =

⎡
⎢⎢⎢

atan
( |Vcrmax|(2T scan)

Rbmin

)
θ3

⎤
⎥⎥⎥Nsw + �3β�Nsw,
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and then repeats the sub-steps 8.1–8.4 for the plots Pn−2j(Rj , Vj , αj) in the (n − 2)-th scan using
in sub-step 8.3 the updated variance σ2

RV = σ2
R + σ2

V (2Tscan)2.
The matching process repeats sub-steps 8.1–8.4, recomputing the ICW parameters and the variance
σ2

RV at each repetition until the first correlated plot is found. Once the said correlated plot is found
in the (n − s1)-th scan, s1 ∈ [1, 2, . . . , Ns − 1], the said set of the correlated plots is updated as
SCP i = {Pni, Pn−s1jg̃

}, and then the plot matching process continues for the (n − s1 − 1)-th scan
using adaptive correlation windows.
If no correlated plots in all Ns − 1 successive previous scans are found, the process starts plot
matching for the (i + 1)-th plot Pni+1(Ri+1, Vi+1, αi+1) in the n-th current antenna scan.
Once the set of correlated plots SCP i = {Pni, Pn−s1jg̃

} is generated, the plot matching process
computes an adaptive correlation window (ACW) for matching the plot Pn−s1jg̃

(Rjg̃
, Vjg̃

, αjg̃
) with

plots Pn−s1−1k(Rk, Vk, αk) in the (n − s1 − 1)-th scan. The parameters of this ACW are:
- Range position of the center:

Rb = Rjg̃
− Vjg̃

Tscan

- Half range extent:

LRa = 3
√

σ2
R + σ2

V T 2
scan + 3σR

- Azimuth position of the center:
Ab = α̃b

where

α̃b =

⎧⎨
⎩

αb, if 0 ≤ αb < Naz

αb − Naz , if αb ≥ Naz

αb + Naz , if αb < 0
.

with αb being computed as
αb = αjg̃

+ α̃cr/s1,

wherein

α̃cr =
{

Δα1, if Δα1 ≤ Δα2

−Δα2, if Δα1 > Δα2

with
Δα1 = mod(αi − αjg̃

, Naz) and Δα2 = mod
(
αjg̃

− αi, Naz

)
.

- Half azimuth extent:

LAadp
a =

⎡
⎢⎢⎢3

⎛
⎝
√

(d + h)2 + h2

h2
+ 1

⎞
⎠ β

⎤
⎥⎥⎥Nsw

with d = s1, h = 1.
After having defined this ACW, the plot matching process performs the following sub-steps:

8.5 Selecting the plots that fall into the said ACW, that is, their azimuth and range centroids,
respectively meet the conditions

αk ∈
[
ÃL, ÃU

]
and Rb − LRa ≤ Rk ≤ Rb + LRa,

where

ÃL =

⎧⎨
⎩

AL, if 0 ≤ AL < Naz

AL − Naz, if AL ≥ Naz

AL + Naz, if AL < 0
and ÃU =

⎧⎨
⎩

AU , if 0 ≤ AU < Naz

AU − Naz, if AU ≥ Naz

AU + Naz, if AU < 0

with AL = α̃b − LAadp
a and AU = α̃b + LAadp

a , respectively.
The plots that meet these conditions constitute a set of the selected plots

Pn−s1−1kl
(Rkl

, Vkl
, αkl

) , l = 1, 2, . . . , L.
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8.6 Determining those plots in the said set of the selected plots that meet the velocity matching
condition

Vjg̃
− 6σV ≤ Vkl

≤ Vjg̃
+ 6σV

The plots that meet this velocity matching condition constitute a set of the matched plots

Pn−s1−1ku (Rku , Vku , αku) , u = l1 < l2 < . . . < lU , U ≤ L.

8.7 Identifying such a plot Pn−s1−1kũ
(Rkũ

, Vkũ
, αkũ

) in the set of the matched plots that minimizes the
overall matching criterion F , such as

F = (V jg̃
− Vkũ

)2 → min

or of a more general form such as

F =
(Rb − Rkũ

)2

σ2
RV

+
(α̃b − αkũ

)2

σ2
A

+
(V jg̃

− Vkũ
)2

σ2
V

→ min

where σ2
RV = σ2

R + σ2
V T 2

scan and σ2
A = (d+h)2+h2

d2 (βNsw)2 with d = s1 and h = 1.
8.8 Including the plot Pn−s1−1kũ

(Rkũ
, Vkũ

, αkũ
) in the set of the correlated plots SCP i associated with

the i-th initial plot Pni(Ri, Vi, αi):

SCP i = {Pni, Pn−s1jg̃
, Pn−s1−1kũ

}.
If the set of selected plots or the set of matched plots for the (n − s1 − 1)-th scan is empty, then
the matching process defines new ACW parameters for the (n − s1 − 2)-th scan as

- Range position of the center:
Rb = Rjq̃

− Vjg̃
(2T scan)

- Half range extent:

LRa = 3
√

σ2
R + σ2

V (2T scan)2 + 3σR

.
- Azimuth position of the center:

Ab = α̃b

where

α̃b =

⎧⎨
⎩

αb, if 0 ≤ αb < Naz

αb − Naz , if αb ≥ Naz

αb + Naz , if αb < 0

with αb being computed as
αb = αjg̃

+ 2α̃cr,

wherein

α̃cr =
{

Δα1, if Δα1 ≤ Δα2

−Δα2, if Δα1 > Δα2

with Δα1 = mod(αi − αjg̃
, Naz) and Δα2 = mod

(
αjg̃

− αi, Naz

)
.

- Half azimuth extent:

LAadp
a =

⎡
⎢⎢⎢3

⎛
⎝
√

(d + h)2 + h2

h2
+ 1

⎞
⎠ β

⎤
⎥⎥⎥Nsw

with d = s1, h = 2 and then repeats sub-steps 8.5–8.8 for plots Pn−s1−2r (Rr, Vr, αr) from the
(n− s1 − 2)-th scan using in sub-step 8.7 the updated variances: σ2

RV = σ2
R + σ2

V (2Tscan)2 and

σ2
A = (d+h)2+h2

d2 (βNsw)2 with d = s1 and h = 2.
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The plot matching process repeats sub-steps 8.5–8.8, recomputing the ACW parameters and the
variances σ2

RV and σ2
A (with properly redefined parameters d and h) at each repetition, until the

first correlated plot is found. Once the said correlated plot is found at the (n − s2)-th scan,
s2 ∈ [s1 + 1, s1 + 2, . . . , Ns − 1] the matching process updates the set of the correlated plots as
SCP i =

{
Pni, Pn−s1jg̃

, Pn−s2rh̃

}
and then continues plot matching for the (n − s2 − 1)-th scan

and further up to the (n− Ns + 1)-th scan using properly redefined adaptive correlation windows.
Whenever a new correlated plot is found, the set of the correlated plots is updated so that the
finally updated set of the correlated plots associated with the i-th initial plot Pni (Ri, Vi, αi) is

SCP i =
{

Pni, Pn−s1jg̃
, Pn−s2rh̃

, . . . , Pn−sKi
tũ

}
wherein the total number of the correlated plots is Nicor = Ki + 1, Ki ≤ Ns − 1.
Once the set of the correlated plots SCP i is finally updated, the plot matching process starts for
the (i+1)-th plot Pni+1 (Ri+1, Vi+1, αi+1) in the n-th current antenna scan.
9. Computing the value of overall correlation for each i-th set of the correlated plots found in

step 8. If the said value exceeds a predefined threshold, then the initial plot associated with the i-th
set of correlated plots is stored in memory for further processing and visualization on a radar display.
Otherwise, the said initial plot is retained for processing in step 10.

In step 9, one can compute the overall correlation value using the “(Nm − 1)-of-(N s − 1)” rule
(Nm ≤ Ns), with the fixed first detection associated with the initial plot in the n-th current scan. In
this rule, Nm − 1 is the positive integer detection threshold for the number of detected and correctly
matched plots within the Ns − 1 successive antenna scans before the n-th current scan.

10. Repeating steps 8 and 9 for each plot retained in step 9 using modified velocity centroids.
The modifications are to detect targets that have been (presumably) missed due to ambiguous velocity
measurements.

Step 10 comprises the following sub-steps for each r-th initial plot Pnr (Rr, Vr, αr) retained at step 9
in a set of retained plots:
10.1 Set k = 1, where the parameter k is the index of the ambiguous velocity interval.
10.2 Compute modified maximum velocity as

V ′
max = V max + kvua,

where vua = λPRF
2 with λ being the wavelength and PRF being the pulse repetition frequency,

and two modified estimates of the velocity centroid for the said r-th initial plot as
Vr1 = Vr + kvua

Vr2 = Vr − kvua

10.3 Repeat step 8 to identify a new set of the correlated plots using in the plot matching process
- Modified maximum velocity V ′

max.
- Assumed unambiguous estimate of the velocity centroid of the said r-th initial plot Vr1.
- Assumed unambiguous estimates of the velocity centroids for all plots that fall within

correlation windows generated in the Ns − 1 successive previous scans
Vq1 = Vq + kvua, q = 1, 2, . . .

where Vq, q = 1, 2, . . . stands for the probably ambiguous initial estimates of the velocity
centroids for all plots that fall within correlation windows generated in the Ns − 1successive
previous scans.

10.4 Repeat step 9 for a new set of the correlated plots generated in sub-step 10.3.
10.5 If the r-th initial plot associated with a new set of the correlated plots generated in sub-step 10.4

is stored in memory for further processing and visualization or if the r-th initial plot is retained for
re-matching after repeating sub-step 10.4 with the modified velocity centroid estimates Vr2, go to
sub-step 10.6. Otherwise, repeat sub-steps 10.3–10.5 using in the plot matching process Vr2 instead
of Vr1 and Vq2 = Vq − kvua instead of Vq1, q = 1, 2, . . . .

10.6 Set k = k + 1. If k ≤ kmax, where kmax is the maximum integer value of k(kmax ≥ 1), repeat
sub-steps 10.2–10.5; otherwise, discard all the plots remaining in a set of the retained plots.
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