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mmWave/THz Reconfigurable Ultra-Wideband (UWB)
Microstrip Antenna

Uri Nissanov* and Ghanshyam Singh

Abstract—The concept of ultra-wideband (UWB) reconfigurable mmWave/THz microstrip antenna
with a newfangled gold radiating patch with two PIN diodes installed on a benzocyclobutene (BCB)
polymer is presented. The reconfigurable types of the proposed antenna are frequencies, bandwidths
(BWs), and beams reconfigurations. This reconfigurable antenna was designed and simulated with
the time-domain based on a FIT solver at the CST MWS simulator, while the comparison was with
the frequency-domain based on the FEM solver at the CST MWS simulator. The simulation results
obtained from both solvers were in a fair agreement, supporting the proposed antenna design. These
antennas may be used in cellular communication at mmWave/THz band for beyond 5G.

1. INTRODUCTION

Following [1–4], the millimeter-wave (mmWave) is a frequency band that ranges from 30 to 300 GHz,
where the terahertz (THz) regime is a frequency band that ranges from 300 to 3000 GHz, within the
millimeter-wave (mmWave) and optical bands, while other researchers define the THz band from the
frequency of 100–10,000 GHz. The THz regime has not been studied in depth by scientists, owing to
the deficiency of electronic power sources with power over ten dBm, power detectors, and high-gain
antennas in this band. The outcome of high-frequency characteristics is a large absorption loss and
is one of the main problems, so we need to use the frequency window in this regime, in which the
absorption loss is below 10 dB/100 m. For example, the frequencies range between 125 and 175 GHz,
approximately, have the absorption loss of 3 dB/100 m, with a worst-case scenario of rains at rates of
50 mm/h [5].

As the 5th generation (5G) communication networks are now putting into commercialization,
technologies for the next-generation communications (i.e., 6G) are also being explored to achieve faster
and more reliable data transmissions. Among these technologies, beam-steering, ultra-massive multi-
input-multi-output (UM-MIMO), and reconfigurable microstrip antenna have received much interest.

Communication at THz bands has drawn antenna researchers’ attention significantly since graphene
ascends as an antenna design material. The graphene capability to sustenance surface plasmon
polaritons (SPPs) modes at THz frequencies makes it possible to scale-down various communication
types of equipment for sensing and communication systems. The antenna design using graphene [6–
9] provides good matching, good total efficiency, impressive reconfiguration capabilities, and high
miniaturization.

THz reconfigurable antennas show a solution that integrates numerous radios into an integrated
circuit (IC). The integration of numerous radiation elements with reconfigurable antennas has become
an essential feature of newfangled radio-frequency (RF) systems for the THz cellular communication,
imaging, sensing, and satellite communications. There is a need to integrate RF, cognitive, and smart
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devices, sensing the RF surrounding and communicating simultaneously in any dense environment.
These capabilities include cognitive radios (CRs), solver-defined radios (SDRs), and frequency agile
to manage the multiband operation and reconfigurable operation with adequate power and spectrum
management. The competence of reconfigurable antennas to alter their functionality on requiring
allows them to change the operating frequency, the bandwidth (BW), the main beam lobe direction,
and polarization or a combination of them. Such antennas can avoid noise sources, provide broader
coverage by steering the main lobe’s angle, and improve the beam steering capability. These concepts
may diminish the hardware intricacy, cost, and number of components to contemporary radio technology
supported on communications systems without flexible hardware [10, 11].

In Reference [12], the researchers proposed two reconfigurable THz Vivaldi antennas founded on a
hybrid metal-graphene formation for an operating frequency range 210–670 GHz metal-graphene Vivaldi
antenna at a resonance frequency of approximately 300 GHz, and 1200 GHz for the graphene Vivaldi
antenna. The reconfiguration was performed by changing the electrical field bias of the graphene layer.
The modeling and simulation were performed with the computer simulation technology microwave
studio (CST MWS) solver. The graphene-metal Vivaldi antenna’s simulation results and the maximum
gain and operating frequency of graphene Vivaldi antenna were as follows: 7 dB, 210–670 GHz and
< 1 dB, 280–1400 GHz, respectively. In Reference [13], the researchers proposed a hybrid structure
dielectric resonator antenna (DRA) paired with dipole graphene plasmon for the resonance frequency
of 2500 GHz. The reconfiguration was performed by altering the electrical field bias of the graphene
layer. The complex effective index and typical electric field index of the 2D pattern were found and
simulated with the COMOSOL solver. The modeling and simulation of the antenna were performed
with a CST MWS solver. The simulation results for maximum gain and radiation efficiency were found
as 7 dB and 70%, respectively. In Reference [14], the researchers proposed a reconfigurable THz patch
antenna using a graphene cavity for dual frequency bands of 4–5 THz and 6.5–7.5 THz. The suggested
patch antenna was based on the backing cavity defined with interleaved graphene/Al2O3 stacks. The
reconfiguration was carried out by changing the graphene layer electrical field bias. The modeling
and simulation of the antenna were performed with a CST MWS solver. The maximum directivity,
BW, and main lobe direction simulation results were 7.2 dBi, 1000 GHz, −15◦ to 25◦, respectively.
In Reference [15], the researchers proposed a 15 × 15 reconfigurable reflectarray (RRA) antenna at a
resonance frequency of 220 GHz and based on a simple patch element. A PIN diode carried out the
reconfigurable ability. The modeling and simulation of the antenna were performed with the Ansys high
frequency structure simulator (HFSS) solver. The simulation results of the maximum directivity, beam
scanning range, and aperture efficiency were: 21 dBi, 0◦–50◦, and 43.7%, respectively. In Reference [16],
the researchers proposed a two miniaturized dual-band graphene antenna array based on a photonic
bandgap (PBG) dielectric laminate in the operating frequency band 850–1040 GHz. The reconfiguration
was carried out by changing the electrical field bias of the graphene layer. The designed antennas
were simulated and optimized by the CST MWS solver. The maximum gain, directivity, BW, and
radiation efficiency achieved for the homogenous graphene and PBG graphene were 15.89 dB, 16.8 dBi,
28.13 GHz, 87%, 16.4 dB, 17 dBi, 33.34 GHz, and 86.67%, respectively. In Reference [17], the researchers
proposed a two-element pattern reconfigurable patch antenna at a frequency of 0.6 THz. Two PIN diodes
performed the reconfigurable capability. The modeling and simulation of the antenna were performed
with the CST MWS solver. The simulation results of the maximum gain, directivity, BW, central
lobe directions angles, and radiation efficiency were: 6.99 dB, 7.1 dBi, 54.66 GHz, −26◦, 26◦, and 97%,
respectively. In Reference [18], the researchers proposed a three-structure reconfigurable graphene
antenna at a resonance frequency of 1780 GHz. The antenna model included a radiator graphene patch
and a non-radiator graphene ring. The reconfiguration was carried out by changing the electrical field
bias of the graphene layer. The design and simulation of the antenna were performed with the CST
MWS solver. The simulation results of the maximum directivity and central lobe direction angles for
antennas were: ≈ 5.8 dBi, −30◦, and −70◦, respectively. In Reference [19], the researchers proposed a
beam reconfigurable quasi-Yagi-Uda microstrip antenna operating at 495–510 GHz, while the resonance
frequency was around 500 GHz. On a metal-backed SiO2 substrate, the antenna consists of a copper
microstrip transmission line, a copper reflector, a copper half-round microstrip patch, and three groups
of monolayer-graphene-patch directors. The reconfiguration was performed by changing the electrical
field bias of the graphene layer. The modeling and simulation of the antenna were performed with
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the Ansys HFSS solver. The simulation results of the maximum gain, BW, radiation efficiency, and
central lobe direction angles were: 7.5 dB, 15 GHz, 96%, and 30–150◦, respectively. In Reference [20],
the researchers proposed a BW reconfiguration established on a concentric slot torus antenna using
graphene, while the resonance frequency was between 4854 and 4878 GHz, and the working frequency
was between 4667 and 5073 GHz. The reconfiguration was carried out by changing the electrical field bias
of the graphene layer. The modeling and simulation of the antenna were performed with the CST MWS
solver. The simulation results of maximum gain and BW were: 8.6 dB and 255–406 GHz, respectively.
In Reference [21], the researchers proposed a reconfigurable graphene-based metal planar microstrip
antenna, while the resonance frequency was between 990 and 1240 GHz, and the working frequency was
between 700 and 1505 GHz. The reconfiguration was carried out by changing the electrical field bias
of the graphene layer. The modeling and simulation of the antenna were done with the Ansys HFSS
solver. The simulation results of maximum radiation efficiency and BW were: 69% and ≈ 805 GHz,
respectively.

This research studies the design and simulation of an ultra-wideband (UWB) reconfigurable
microstrip antenna for the frequency range of 100–302.85 GHz for beyond 5G wireless communication
at the mmWave/THz band. Moreover, this antenna includes two PIN diodes. This paper is organized
as follows. Section 1 exhibits the introduction and the related works. Section 2 shows the proposed
antenna design and analysis. Section 3 shows the simulation and comparison results and discussion.
Finally, Section 4 concludes this work.

This research paper’s novelty is to design a mmWave/THz band UWB reconfigurable microstrip
antenna with a novel gold radiating element mounted on a benzocyclobutene (BCB) polymer. This
reconfigurable microstrip antenna was frequency, BW, and beam reconfiguration types. The design was
carried out with the time-domain solver at the CST MWS simulator, while the comparison was carried
out with the frequency-domain solver at the CST MWS simulator.

2. PROPOSED ANTENNA DESIGN AND ANALYSIS

A UWB reconfigurable microstrip antenna with a novel patch for the frequency range of 100–302.85 GHz
was modeled and simulated in this study.

2.1. Introduction of Reconfigurable Microstrip Antenna

Following [10, 11, 22], wireless communications systems’ rapid growth is limited because the
electromagnetic (EM) spectrum has become overcrowded. THz cellular communications need to be
reconfigurable to solve this challenge. They will have the capacity and intelligence to support the best
suitable communications master plan based on signal quality evaluation and channel sensing activities.

Reconfigurable antennas can be sorted into four different types [10, 11, 22] (a) Frequency
reconfigurable antenna: a radiator can alter its working frequency by leaping through diverse frequency
bands. (b) Pattern reconfigurable antenna: the radiating structure can tune its radiation pattern. In
this type, the antenna radiation pattern alters in terms of gain, direction, or shape. (c) Polarization
reconfigurable antenna: a radiator can change its polarization, such as vertical/horizontal, righthand,
or left-hand circular polarized (RHCP, LHCP). (d) This category is an integration of the last three
categories. Reconfigurable antennas with adaptive radiation features must achieve these flexibilities in
place of conventional antennas, whose formations are matched to specific specifications. A reconfigurable
antenna can also be used to enhance security, refrain interference, and facilitate signal quality decline
caused by multi-path fading by using cognitive radio communications and UM-MIMO techniques. Four
significant reconfiguration types are used to implement reconfigurable antennas. (a) Antennas are based
on switching out or in parts of the antenna structure with switches such as PIN diodes, varactor diodes,
and RF microelectromechanical systems (MEMS) to alter their surface currents, which are defined as
electrically reconfigurable. (b) Antennas using photoconductive switching elements are called optically
reconfigurable antennas. (c) Physically reconfigurable antennas can be obtained by altering the geometry
of the antenna. (d) Reconfigurable antennas can be applied via the exploit of smart materials, in which
the characteristics of the substrate antenna can be changed, such as ferrites and liquid crystals.
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2.2. PIN Diode Fundamentals

Following [23, 24], the PIN diode is a current-controlled resistor at microwave and RF signal. A silicon
semiconductor diode, in between an N-type and a P-type region, is a high intrinsic I-region. The
resistance of the PIN diode is set only by the forward-biased direct current (DC). The PIN diode can
control the attenuator’s RF signal level without introducing distortion, changing the RF signal’s shape.
An essential character of the PIN diode is its capability to control large RF signals when exceedingly
smaller DC excitation level is used. PIN diode switches are often chosen as excellent mmWave switches
for their high power handling capability and high third-order intercept point (IP3), as well as their high
cutoff frequencies (up to 1500 GHz). A PIN diode, used as a switch, has two coequal states: OFF and
ON states [24]. The ON state is frequently represented by a parasitic inductor L, which is usually below
150 pH (pH = 10−12 H), in series with a low ohmic resistor R, having a resistance of about 10Ω, while
the OFF state is represented by a parasitic capacitor C, which is generally less than 50 f (fF = 10−15 F),
in series with the same parasitic inductor L, as the ON states.

3. THE FORMATION OF THE DESIGNED PROPOSED RECONFIGURABLE
MICROSTRIP ANTENNA

This antenna included a novel gold radiation element and was made with BCB polymer from the
Cyclotene series 3000 as a dielectric substrate for the microstrip antenna with the parameters of
substrate height (h), gold thickness (t), dielectric constant (εr), and loss tangent (tan δ) of 30 µm,
2µm, 2.6, 0.009 @65 GHz, respectively. The simulation results would be closest to the simulation
for the frequency range of 100–302.85 GHz, because tan δ and εr were taken upon the BCB polymer
measurements, which was done [25] at the highest frequency, 65 GHz. One of the most critical BCB
polymer features is the small tan δ value, which assures low losses. The frequency behavior of both
tan δ and εr is almost constant below 1500 GHz [25]. Furthermore, this polymer’s εr is almost constant

(a)

(b) (c)

Figure 1. Structure of the proposed reconfigurable microstrip antenna. (a) Front view. (b) Back view.
(c) Zoomed view of the radiating element.
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under ambient temperature change up to 150◦C [26–28]. All conductors were made of lossy metal of
gold, and the electric conductivity of the lossy gold was applied as 4.561 · 107 S/m at the CST MWS
simulator, while the lossy metal of gold model was also applied at the CST MWS simulator.

This substrate is electrically extremely ultrathin (h = 30µm ≤ λ0/4), for the sake of suppressing
the surface wave in the THz band. This antenna includes 2 PIN diodes (D1,D2) as switches. The
following figure (Fig. 1) is attached.

Figure 1 describes the structure of the designed reconfigurable microstrip antenna. All of the
radiating elements’ dimensions and partial ground sizes were optimized with the parameter sweep at
the CST MWS solver. The dimensions of the substrate were (40 × 20) mm2. The PIN diodes (D1 and
D2) were simulated as lumped elements (R, L, and C) according to the PIN diode electrical equivalent
models at ON and at OFF states [24], when the optimal values of R, L, and C of the PIN diodes were
set, according to the parameter sweep at the CST MWS solver as 10Ω, 100 pH and 4 fF, respectively.

4. SIMULATION & COMPARISON RESULTS AND DISCUSSION

There are two accepted ways of validating the design and simulation results [29]: experimental
verification and simulator verification/comparison. In this paper, the simulator verification/comparison
was chosen.

The three-dimension (3D) commercial EM CST MWS simulator contains different solvers in which
each solver works with different techniques [30]. The CST MWS has the time-domain solver based on
the finite integration technique (FIT) describing Maxwell’s equations in a time-grid space. The CST
MWS simulator also has a frequency-domain solver, whereas this solver is based on the finite element
method (FEM).

This paper’s design and simulation were carried out with the FIT solver at the CST MWS simulator
(2020 version). Comparing the designed and simulation results of the proposed reconfigurable microstrip
antenna was carried out with the FEM solver at the CST MWS simulator.

Printed circuit board (PCB) technology requirements for mmWave interconnect and the antenna
are very tight, and the minimum fabrication etching can be around 40µm. In comparison, the declared
etching accuracy is about ±5µm [31], so in this research, the minimum etching was taken as 40 µm. To
show the possible errors of this future fabrication, simulations were also performed on the possibility of
this accuracy, i.e., for each dimension of the antenna that has been optimized, the possible production
accuracy was added/subtracted in the simulation software, and two more simulations were performed
with the new values that can be after the production of the proposed antenna. Therefore, two more
graphs were obtained for S11 which may show the S11 that can be obtained in prototype fabricated
antenna.

The PIN diodes (D1 and D2) were simulated as a lumped element (R, L, and C), according to
the PIN diode electrical equivalent models at ON and OFF states [24], and the different modes are
summarized at the following Table 1.

Table 1. The different modes of the proposed reconfigurable microstrip antenna.

Mode PIN diode D1 state PIN diode D2 state

mode 1 OFF OFF

mode 2 OFF ON

mode 3 ON OFF

mode 4 ON ON

According to the two PIN diodes states, Table 1 shows the different modes of the designed
reconfigurable microstrip antenna.
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4.1. Simulation Results of the Proposed Reconfigurable Microstrip Antenna at
Modes 1–4

The next simulation results are shown in Figs. 2–8.

(a) (b)

(c) (d)
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Figure 2. Simulation results of the return loss (S11) for the proposed reconfigurable microstrip antenna.
(a) For mode 1. (b) For mode 2. (c) For mode 3. (d) For mode 4.

Figures 2(a)–(d) show the simulation result of return loss (S11) in (dB) of the
proposed reconfigurable microstrip antenna at modes 1–4. It has been shown that
the BWs of this antenna in modes 1–4 are: BW (S11≤ −10 dB)>159.98 GHz(>80.54%),
BW (S11≤ −10 dB)>201.77GHz (>100.44%),BW (S11

≤ −10 dB)>159.96GHz (>88.88%), BW (S11≤ −10 dB)>168.05GHz(>91.31%), respectively. Further-
more, the resonance frequencies (f0) at modes 1–4 are: 202 GHz, 178.74 GHz, 212.25 GHz, 128.2 GHz,
respectively.

Figures 3(a)–(d) show the simulation result of the gain (IEEE) in (dB) of the proposed
reconfigurable antenna at modes 1–4 while Phi = 44◦. It has been shown that the gains for modes
1–4 are 0.93–8 dB, 0.28–8.47 dB, 0.42–8.46 dB, 0.2–8.59 dB for the frequency range of 100–300 GHz,
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Figure 3. Simulation results of the gain for the proposed reconfigurable microstrip antenna. (a) For
mode 1. (b) For mode 2. (c) For mode 3. (d) For mode 4.

respectively.
Figures 4(a)–(d) show the simulation results of the directivity in (dBi) at 3D result of the proposed

reconfigurable antenna (modes 1–4) @160 GHz. It has been shown that the directivities at modes 1–4
were found as 8.32 dBi, 8.82 dBi, 8.76 dBi, 8.9 dBi @160 GHz, respectively.

Figures 5(a)–(d) show the simulation result of the proposed reconfigurable antenna’s radiation
and total efficiency (modes 1–4). It has been shown that radiation efficiency and total efficiencies of
the proposed reconfigurable antenna at modes 1–4 are 78.13–94.42%, 70.92–93.4%, 67.9–89.1%, 78.2–
93.17%, 77.85–93.85%, and 73.67–92.96% at the frequency range of 100–300 GHz, respectively.

Figures 6(a)–(d) show the comparison between the simulation results of the E-field in (dB) at the
frequencies of 100 GHz, 180 GHz, and 300 GHz of the proposed reconfigurable antenna (modes 1–4).
It has been shown that the E-field of the proposed reconfigurable antenna is −0.46–(6.1) dB at these
frequencies. Furthermore, vit has been shown that the main lobes’ angles are: −90, 77, 90, 96, 97, and
103◦ when these angles depend on the PIN diodes states.
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(a) (b)

(c) (d)

Figure 4. Simulation results of the directivity at the 3D result of the proposed reconfigurable microstrip
antenna. (a) For mode 1. (b) For mode 2. (c) For mode 3. (d) For mode 4.

Figures 7(a)–(h) show the simulation results from a comparison of the surface current distribution
at the (dB max A/m) at the frequencies of 100 GHz and 300 GHz of the proposed reconfigurable antenna
at modes 1–4. It has been shown that the surface current distribution of the proposed reconfigurable
antenna is between 1367 and 1531 A/m at the frequencies of 100 GHz and 300 GHz. It is also shown
that the surface current distribution is concentrated at the edges of the gold patch. Moreover, at
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Figure 5. Simulation results of the radiation and the total efficiency of the proposed reconfigurable
microstrip antenna. (a) For mode 1. (b) For mode 2. (c) For mode 3. (d) For mode 4.

the feed line, because of the skin depth effect on the alternate electric current (AC), and the surface
current distribution is inversely related to the frequency, i.e., at a lower frequency, the surface current
distribution is high and vice versa, and also the surface current distribution is almost independent of
the PIN diodes states.

Figure 8(a) shows the simulation result comparison of S11 in [dB] of the proposed reconfigurable
antenna, which depends on the two PIN diodes states. It has been shown that the proposed
reconfigurable antenna has six different working bands, which are 100–136.88 GHz, 156.51–260 GHz,
283.91–302.85 GHz, 100–301.75 GHz, 100–260 GHz, and 100–268.16 GHz. Fig. 8(b) shows the simulation
result comparison of the gain (IEEE) in (dB) when Phi = 44◦ of the proposed reconfigurable antenna,
which depends on the PIN diodes states. It has been shown that the gain of the proposed reconfigurable
antenna is between 0.17 and 8.59 dB when Phi = 44◦ at the frequency range of 100–300 GHz.
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(a) (b)

(c) (d)

Figure 6. Simulation results of the E-field for the proposed reconfigurable microstrip antenna. (a) For
mode 1. (b) For mode 2. (c) For mode 3. (d) For mode 4.

4.2. Comparison of Simulation Results of the Proposed Reconfigurable Microstrip
Antenna with Declared Etching Accuracy

The following simulation results are shown in Figs. 9(a)–(d).
Figures 9(a)–(d) show the simulation results of S11 for the proposed reconfigurable microstrip

antenna (modes 1–4) with or without etching accuracy (±5 µm), which is supposed to be when this
antenna will be fabricated. This figure may show that the frequency working band may change at a
frequency range about 8GHz, when this reconfigurable antenna will be fabricated.

4.3. Comparison of Simulation Results of the Proposed Reconfigurable Microstrip
Antenna

The following simulation results are shown in Fig. 10.
Figures 10(a)–(b) show the simulation results from a comparison of the gains and S11 in (dB)

of the proposed reconfigurable antenna, which depends on the two PIN diodes states (modes 1–4),
depending on the FEM and FIT solvers at the CST MWS simulator. It has been shown that a fair
agreement between the simulation results is achieved regarding the proposed reconfigurable antenna,
which supports the proposed antenna design.
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4.4. Discussion

The objective of this research was to design and simulate, with FIT solver at the CST MWS simulator,
a UWB reconfigurable microstrip antenna for the frequency range of 100–302.85 GHz with two PIN
diodes, for cellular communication at mmWave/THz band for beyond 5G and comparison with the
FEM solver. This microstrip antenna can change its BW, primary radiation lobes direction, or both of
them with only one antenna design structure.

A mmWave/THz reconfigurable microstrip antenna is a powerful approach to realize low-profile
UWB mmWave/THz antennas. To design mmWave/THz microstrip antenna, a low εr should be used.
Moreover, low tan δ should be used. In this research paper, BCB polymer was used, which has those

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 7. Simulation results of the surface current distribution of the proposed reconfigurable
microstrip antenna. (a)–(b) For mode 1. (c)–(d) For mode 2. (e)–(f) For mode 3. (g)–(h) For mode 4.

features [25].
According to the simulations done with FIT solver at CST MWS simulator, the proposed antenna

has six different working bands, which are 100–136.88 GHz, 156.51–260 GHz, 283.91–302.85 GHz, 100–
301.75 GHz, 100–260 GHz, and 100–268.16 GHz, which depend on the two PIN diodes states, while
the maximum gain and the direction of the main lobes were 8.59 dB, −90, 77, 90, 96, 97, and 103◦,
which depend on the PIN diodes states, respectively. The proposed antenna’s simulation results were



Progress In Electromagnetics Research C, Vol. 111, 2021 219
S 

   
[d

B
]

11

G
ai

n 
[d

B
]

(a) (b)

Figure 8. Comparison between the four different modes. (a) S11 of the proposed reconfigurable
antenna. (b) Gain of the proposed reconfigurable antenna.
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Figure 9. Simulation results of the S11 of the proposed reconfigurable microstrip antenna with or
without the etching accuracy. (a) For mode 1. (b) For mode 2. (c) For mode 3. (d) For mode 4.
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Figure 10. Comparison of the simulation results of the gain and the return loss of the proposed
reconfigurable microstrip antenna. (a) For mode (1–2). (b) For mode (3–4).

Table 2. Comparison with others reported kinds of literature.

Ref. Techno.
Reconfig.
technique

Freq.
nom.
(GHz)

Operating
frequency

(GHz)

Max.
directivity

/gain
(dBi/dB)

Main
lobe

angles
(◦)

Max.
Rad.

efficiency
(%)

[12]

Graphene
Vivaldi
antenna

Electrical
field

bias of the
graphene

layer

≈ 1200 280–1400 < 1 dB n/a n/a

Graphene-metal
Vivaldi
antenna

≈ 300 210–670 7 dB n/a n/a

[13]

Hybrid
structure

DRA with a
graphene

dipole antenna

Electrical
field

bias of the
graphene

layer

2500 1000–4000 7 dB n/a 70

[14]

Microstrip
patch backing
cavity with
graphene/

Al2O3 stacks

Electrical
field

bias of the
graphene

layer

4500,
7000

4000–5000,
6500–7500

7.2 dBi −15–(25) n/a

[15]

15 × 15
microstrip
patch RRA

antenna

Electrical-PIN
diode switch

220 215–225 21 dBi 0–50 43.7
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Ref. Techno.
Reconfig.
technique

Freq.
nom.
(GHz)

Operating
frequency

(GHz)

Max.
directivity

/gain
(dBi/dB)

Main
lobe

angles
(◦)

Max.
Rad.

efficiency
(%)

[16]

Homogenous
graphene

substrate with
dielectric
grating

Electrical
field

bias of the
graphene

layer

903.9
889.325–
917.455

15.89 dB
/16.8 dBi

n/a 87

PBG graphene
substrate with

dielectric
grating

990.8
974.15–
1157.3

16.39 dB
/17 dBi

n/a 86.67

[17]

Pattern
two element

patch
antenna

Electrical-2
PIN diodes
switches

600
572.67–
627.33

6.99 dB/
7.1 dBi

−26, 26 97

[18]
Graphene
antenna

Electrical
field

bias of the
graphene

layer

1780 n/a 5.8 dBi −30, −70 n/a

[19]

Microstrip
quasi-Yagi-Uda

antenna
with graphene

Electrical
field

bias of the
graphene

layer

≈ 500 495–510 7.5 dB 30–150 96

[20]

Concentric
ring slot
antenna
using

graphene

Electrical
field

bias of the
graphene

layer

4754–
4878

4667–
5073

8.6 n/a n/a

[21]

Graphene-based
metal planar
microstrip
antenna

Electrical
field

bias of the
graphene

layer

990–1240 ≈ 805 n/a n/a 69

This
work

Microstrip
patch

antenna

Electrical-2
PIN diodes
switches

128.2–
212.25

100–
302.85

8.9 dBi/
8.59 dB

−90, 77,
90, 96, 97,
and 103

93.4

compared by simulation with the FEM solver at the CST MWS simulator, and a fair agreement was
achieved between them, supporting this design.

It may have been shown that the simulation results of this work were compared, while in works [12–
21], the simulation results were not compared. Like works [12–21], the goal of this work was to design
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a mmWave/THz reconfigurable antenna, but in this work, we used the PIN diodes switches to change
the antenna working frequency band, like works [15, 17], while in works [12–14, 16, 18–21] the graphene
layers used and by changing the electrical filed bias of the graphene layers, the researchers changed the
antennas’ parameters. The design and simulation were done with the CST MWS solver, like works [12–
14, 16–18, 20]. In contrast, the design and simulation in work [12, 19, 21] were done with an Ansys HFSS
solver.

The simulator comparison of the proposed mmWave/THz UWB reconfigurable microstrip was
close, as much as can be, to experimental validation [29]. Because in the FEM and FIM solvers in the
CST MWS simulator, the values of tan δ and εr of the BCB polymer are measured and applied at the
highest frequency @65 GHz, and these parameters are almost constant below 1500 GHz [25], while this
polymer’s εr is also constant, approximately, under ambient temperature change up to 150◦C [26–28].
Furthermore, to show the possible errors of this fabrication, simulations were also performed on the
possibility of this etching accuracy (±5 µm) [31], i.e., for each dimension of the antenna that has been
optimized, the possible production accuracy was added/subtracted in the simulation software, and two
more simulations were performed with the new values that can be after the production of the proposed
antenna. Therefore, two more graphs were obtained for S11 which may show the S11 that can be obtained
in prototype fabricated antenna, and the obtained results with this accuracy were relatively close to the
results without this accuracy. To summarize this paragraph and the discussion, the following Table 2
is attached.

5. CONCLUSIONS

The concept of a UWB reconfigurable mmWave/THz microstrip antenna for the frequency range 100–
302.85 GHz with a newfangled gold radiating patch with two PIN diodes installed on a BCB polymer is
presented. The equivalent inductor (L), capacitor (C), and resistor (R) for the ON and OFF states of
these PIN diodes should be 100 pH, 4 fF, and 10 ohms, respectively. These PIN diodes need to work at the
frequency range of 100–303 GHz at least. These PIN diodes do not exist at the current mmWave/THz
technology to our best knowledge. The reconfigurable types of the proposed antenna are frequencies,
BWs, and beams reconfiguration. This reconfigurable microstrip antenna was designed and simulated
with the FIT solver in the CST MWS simulator, while the comparison was with the FEM solver in the
CST MWS simulator. The simulation results obtained from the two solvers were in a fair agreement,
supporting the proposed antenna design. Furthermore, the simulation results of the maximum gain,
BW, and total efficiency obtained for the proposed antenna were 8.59 dB, > 201.77 GHz (> 100.44%),
and 93.4%, respectively. These antennas may be used for cellular communication at mmWave/THz
band beyond 5G.
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