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Nonuniform Circular Array Synthesis for Low Side Lobe Level Using
Dynamic Invasive Weeds Optimization

Elhadi Kenane1, Fadila Benmeddour1, *, and Farid Djahli2

Abstract—The use of invasive weeds optimization in the synthesis of antenna arrays has become
popular in the last few years. This optimization method is robust, simple and can be easily improved.
Like other stochastic algorithms, IWO suffers from premature convergence and other drawbacks. To
overcome these problems, a dynamic IWO is proposed and used for synthesizing two antenna array
topologies (linear and circular array). This proposed method tries to achieve an optimal array pattern
by acting on the amplitude excitation of elements in the nonuniform circular array and their positions
on the array, to obtain an array pattern with deep nulls in some directions of interferences and low side
lobe level. For the linear array, the nulls control can be achieved by acting on the relative amplitude
excitation of each element in the array for an optimal inter-element spacing. This proposed method
improves the performance greatly and allows to achieve a maximum reduction in side lobe level in band
Nulls with an acceptable dynamic range ratio (DRR). To show the performance of the proposed method,
for each topology, our results are compared to other results of the literature.

1. INTRODUCTION

Antenna arrays are widely used in the wireless telecommunication systems. Even if the linear arrays
are used most, circular arrays are most recommended in omnidirectional applications such as radar
applications where a 360◦ coverage space is necessary. In addition, the electronically scanned circular
arrays present mechanical simplicity because it does not need a mechanical rotation.

Usually, these applications require some characteristics in the array pattern such as a narrow main
lobe beamwidth, reduced sidelobe level (SLL) [1], nulls towards interferers [2], shaped beam [3–5], and
sum-difference pattern [6]. To achieve the requirements in pattern characteristics, some array parameters
must be adjusted. Among these parameters, one can cite current distribution (amplitude and/or phase)
and inter-element spacing.

The synthesis of antenna array that gives a desired pattern by adjusting one of the array parameters
is a nonlinear problem. Since several classical synthesis methods fall in local minima, many stochastic
methods have been applied to solve the array synthesis problems, such as evolutionary algorithms [7],
cuckoo search optimization [8], particle swarm optimization (PSO) [9], and grey wolf optimization
(GWO) [10].

These numerical methods have been used for the synthesis of antenna arrays whatever their
topologies. There are many topologies and types of antennas arrays used in electronics systems such as
planar arrays [11, 12], random antenna arrays [13], irregular arrays [14], sparse arrays [15], and prefractal
monopolar antennas [16].

The invasive weeds optimization (IWO) is a stochastic method inspired from plant colonization [17].
Due to its advantages and robustness over several analytical and stochastic methods, the IWO became
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popular in many engineering optimization problems. However, the conventional IWO algorithm has
some drawbacks. The dispersion of the produced seeds is uniform, which may be not suitable for
nonlinear optimization problems. To overcome the demerits of the conventional IWO, a novel dynamic
IWO has been proposed and used in this paper for the antenna array synthesis problems. In IWO,
the standard deviation has a considerable significant concept as it can play an important role in the
searching performance of the IWO. Therefore, a mutation process will be applied to the calculation of
standard deviation during the spatial dispersal process of produced seeds while keeping the mean at
the parent plants. In the mutation process, if special conditions are achieved, the standard deviation
would be re-initialized. To evaluate the efficacy of the proposed stochastic method, we present a fair
comparison with other works where many examples are illustrated.

In this paper, the synthesis of two topologies, the linear array and circular one has been presented.
Firstly, our goal was to achieve an array pattern with an improved null at the third null position of
the reference array pattern (uniform linear array In = 1 and d = λ/2). The achieved pattern has low
side lobe level (SLL) while maintaining the main beam beamwidth narrower or equal to that of its
corresponding reference array pattern.

In the second part, our dynamic IWO has been used for the synthesis of circular antennas array. To
achieve some desired characteristics in the array pattern, deep nulls will be imposed at some directions
of the reference pattern. The circular array is synthesized by controlling some array parameters such as
amplitude excitation an and position dn. For each example, a comparison was done with similar results
of the literature.

2. ANTENNA ARRAY THEORY

In this paper, an evolutionary optimization method, namely the dynamic invasive weeds (DIWO), has
been proposed and used to minimize a suitable cost function and synthesize the antenna arrays.

To illustrate the robustness of the proposed algorithm, two synthesis problems will be considered.
To decrease the mutual coupling effects, the distance between elements is fixed to 0.5λ in both cases.
The different array elements are assumed to be isotropic. The IWO is carried out in five runs of 50
iterations for each one.

2.1. Linear Array

The linear array of 2N elements is assumed symmetric with regard to its center. The array factor AF
can be expressed by:

AF (θ) = 2
∑N

n=1
In cos (k (n − 0.5) d (cos θ − cos θ0)) (1)

where k = 2π/λ and λ is the wavelength, N the number of elements on each side of the array, d the
inter-element spacing, θ the observation angle from the axis of the array, θo the pointing angle of the
main beam (at broadside θo = 90◦), and In the current excitation of the nth element on each side of the
array. Only the amplitude will be controlled during the optimization process, and the phase distribution
is maintained constant and equal to zero.

In this part, the linear array synthesis is done considering three examples (2N = 12, 16, and 20
elements) which can provide an array pattern with deep null, on each side of the main beam, with an
acceptable level of the sidelobes. The nulls are imposed at the second and the third null positions of the
reference pattern (uniform excitation In = 1 and inter-element spacing d = λ/2). The expression of AF
is used to obtain the amplitude excitations and the inter-element spacing d that impose nulls towards
specified directions and reduce the SLL while keeping the beamwidth of the main lobe equal to that of
the reference pattern. These requirements are imposed using the following fitness function [18].

CFULA = C1

∣∣∣∣
∏Mnu

m=1
AF (θ = nullm)

∣∣∣∣
|AF (θ0)| + C2

∑Kb

kb=1
H (kb) (Qkb

− δ) + C3(BW c − BW d) (2)

where Mnu is the number of nulls on either side of the main beam. Generally, the number of nulls that
can exist on the pattern of an array depends on many factors such as pattern geometry, number of
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elements, inter-element distance, and method of feeding. AF (θ0) is the value of the array factor at the
direction of the main beam. The second term of Equation (2) is used to minimize the SLL to a given
threshold δ. Kb denotes the number of peaks of sidelobes in the reference pattern; Qkb

is the sidelobe
level (in dB) achieved by the adjusted parameters (In and d) at the kth peak; and δ is the desired
threshold of the side lobe level (in dB). H(kb) is defined as:

H (kb) =
{

1, (Qkb
− δ) > 0

0, (Qkb
− δ) > 0

(3)

The third term is introduced to keep the bandwidth narrower than that of the reference pattern (uniform
excitation with d = λ/2). BW c and BW d are, respectively, the calculated and desired beamwidths. C1,
C2, and C3 are the weight factors depending on the importance of each term.

As in [18], we try to achieve an array pattern with deep nulls in some directions where the value
of C1 must be higher than the values of C2 and C3. The value of the threshold δ is taken similar to
that of the corresponding reference pattern (In = 1, d = λ/2). To minimize the dynamic range ratio,
another term, whose expression is given by [19], can be introduced in the cost function.

DRR =
max (In)
min (In)

(4)

2.2. Circular Array

A circular array consists of an array of M elements arranged in a ring in the x-y plane with an inter-
element spacing d = λ/2 along the periphery of a circle, as shown in Fig. 1. As in the linear array case,
we will neglect mutual coupling and assume that the elements are isotopic so that the far field array
pattern is equal to the array factor (the element radiation pattern g(θ,Φ) = 1). We are interested in
the array pattern in the plane Φ = 0◦, known as the elevation (or vertical) plane.

a

λ/2

ΔΦ

Figure 1. Geometry of a uniform circular array with M isotropic elements.

The array factor for this topology can be expressed as:

AF (θ, ϕ) =
∑M

m=1
Wm exp [−j · k · a · (sin θ · cos (ϕ − ϕm)) − sin θ0 · cos (ϕ0 − ϕm))] (5)

where

Wm = amplitude excitation of the mth radiating element in the array.
k = 2π/λ is the free-space propagation constant, and λ is the wavelength.
a = the radius of the array.
θ0 = a vertical angle of the peak of the main beam direction.
ϕ0 = a horizontal angle of the peak of the main beam direction.
ϕm = an angular position of the mth element on x-y plane.
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After some simplifications, the following expression can be achieved:

AF (θ, ϕ) =
∑M

m=1
Wm cos

⎡
⎣k · a ·

⎛
⎝sin θ · cos (ϕ − ϕm) − sin θ0 · cos

⎛
⎝ϕm

0

− ϕm

⎞
⎠

⎞
⎠

⎤
⎦ (6)

The cost function is the most important relationship between the synthesis problem and the stochastic
method.

To minimize the average SLL, the cost function may therefore be expressed as:

CF1 =
∑K

i=1

1
Δϕi

∫ ϕUi

ϕLi

∣∣∣AF X̃ (ϕ)
∣∣∣2 dϕ (7)

K is the number of regions (K = 2), Δϕi = ϕUi − ϕLi, where ϕLi and ϕUi are the lower and upper
angles of the ith side, respectively.

In order to decrease the effect of the undesired interference signals, some nulls should be imposed
at the specific directions using the following cost function:

CF2 =
∑Mnu

k=1

∣∣∣AF X̃ (ϕnuk)
∣∣∣ (8)

where Mnu is the number of nulls, and ϕnuk is the angle at the direction of the kth null.
A small side lobe, for a specific beamwidth, leads to high directivity. To reduce the SLL, the

following fitness function must be minimized:

CF3 =
∑K

k=1

∣∣∣AF X̃ (ϕmsk)
∣∣∣ (9)

ϕmsk is the angle which allows to reach the maximum side lobe level, in the kth region. In our study,
the number of regions is fixed to two for all the examples.

Due to the size limitations in many applications, it is important to reduce the physical size
(aperture) of the array antenna. The physical size of the circular array will be reduced by controlling
its circumference as given in the following fitness function:

CF4 =
∑N

i=1
di (10)

A tradeoff between physical size and mutual coupling effect has to be made. For this purpose, a
minimum inter-element spacing must be considered.

The general form of the cost function used to obtain a desired pattern is given by:

CF NUCA = α1CF1 + α2CF2 + α3CF3 + α4CF4 (11)

where α1, α2, α3, and α4 are the weighting factors assigned to the fitness functions.

3. DYNAMIC INVASIVE WEEDS OPTIMIZATION

In this study, null control low SLL arrays are synthesized by using a dynamic IWO method. The flow of
this method is similar to that of the traditional IWO [17], where we propose to change the conventional
calculation of spatial dispersion by using some other hybrid processes. Our approach uses mutation
process as in the genetic algorithm with a given probability of mutation. The application of this process
allows a better exploration of the search space, which improves the obtained results.

The main phases of invasive weeds method are as follows:

(1) Initially, a population of plants will be generated randomly in the search space.
(2) Evaluation of each plant in the colony uses a cost function.
(3) Reproduction of seeds, when each plant can produce a number of seeds according to its cost function

as given in the following equation:
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Ns (Pi) = integer
[
ms +

(
Ms − ms

BC − WC

)
(C (Pi) − WC)

]
(12)

where Ms and ms are, respectively, the maximum and the minimum number of generated seeds by the
plant Pi. BC,WC, and C(Pi) represent, respectively, the cost function (fitness) of the best plant, the
cost function of the worst plant, and the cost function of the ith plant Pi within the colony.

(4) Evaluation of spatial distribution of the produced seeds. These seeds will grow and will be added
to the colony as new plants. This spatial distribution is given by:

SD (itr) =
[
itrmax − itr

itrmax

]mod

(SDini − SDfini ) + SDfini (13)

where itrmax is the maximum number of iterations, and itr is the actual iteration index. SD ini and SDfnl

denote respectively the initial and final standard deviation values, and mod represents the nonlinear
modulation index, usually equal to 3 as in [20].

(5) Dynamic mutation: unlike the classical IWO, spatial disperse is modified using a mutation process.
Initially, a probability Pm is given. If Pm is less than a random value in the interval [0, 1], the
actual value of the standard deviation SD itr will be replaced by its initial value SD ini. Otherwise,
the standard deviation SD itr will be calculated using Eq. (13).

The proposed algorithm is as follows:
Step 1: A random number is generated.
Step 2: A fixed probability of mutation Pm is chosen.
Step 3: If the random number is greater than Pm, then
SD itr = SDini;
Else
SD itr is calculated from Eq. (13).
Step 4: Repeat this algorithm for each iteration.

(6) Limitation: if the number of plants in the colony achieves its maximum value (pop max), we will
keep just the pop maxth plants in the colony and discard the other plants.

(7) Stop criteria: the phases (2) to (6) will be repeated until a maxim number of iterations is reached.
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Figure 2. Dynamic IWO strategy.
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The mutation rate is determined adaptively over each iteration. To avoid a premature convergence in a
local minimum, a nonuniform mutation is used, in which the probability of mutation will be decreased
iteratively as:

Pm (itr) = 1 − P

(
1− itr

itrmax

)
o (14)

Note that the initial value of the mutation probability Po is fixed to 0.8.
The mutation process makes the search space moving toward auspicious regions that may include

the global optimum. This dynamic search space permits the IWO to increase the diversity of the plant
colony with new solutions compared to the fixed search space (Fig. 2).

4. SIMULATION RESULTS

Dynamic IWO described in the previous section has been implemented to find the array weights
(amplitude and/or phase) yielding an array pattern with some desired characteristics for both topologies
cited previously.

4.1. Uniform Linear Array

In the first part of this study (2N = 12, 16, and 20 elements), dynamic IWO is used to find deep nulls
imposed at the position of the third null of the reference pattern (uniform array: In = 1 and d = λ/2).
The third null is placed at (θ = 60◦, 120◦) for the first example and at (θ = 68◦, 112◦) for the second
example (2N = 16), while the third null of the last example (2N = 20) is imposed at (θ = 72.5◦, 107.5◦).
The constraint is to reduce the SLLs and minimize the dynamic range ratio (DRR) while keeping the
beamwidth close to that of the reference pattern. Here, the amplitude weights of current distribution
along the array are controlled with an optimal inter-element spacing d. These amplitude weights can
vary from 0 to 1, the current distribution is assumed symmetric, and d can vary from λ/2 to λ. Each
plant in the population is considered as a vector of the amplitude excitations and the inter-element
spacing of the array elements. The problem dimension becomes (N + 1), where the first N values
represent the amplitude weights, and the (N + 1)th value represents the inter-element spacing.

Figures 3, 4, and 5 illustrate linear array patterns with an improved null at the third null for
2N = 12, 16, and 20 elements, respectively. As can be seen, the optimized array patterns, for 2N = 12,
16, and 20, present an improved null, on each side of the main beam, at the third null position of

Figure 3. Comparison of different normalized array factors with excitation coefficients by DIWO (solid
line), RGA (dashed line) and uniform array (dotted line) for 2N = 12, nulls towards 60◦ and 120◦.
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Figure 4. Comparison of normalized array factors with excitation coefficients by DIWO (solid line),
RGA (dashed line) and uniform (dotted line) for 2N = 16 with an improved null imposed at the 3rd
nulls (θ = 68◦ and θ = 120◦).

Figure 5. Comparison of normalized array factors with excitation coefficients by DIWO (solid line),
RGA (dashed line) and uniform (dotted line) for 2N = 20 with an improved null imposed at the 3rd
nulls (θ = 72.5◦ and θ = 107.5◦).

the corresponding uniform array pattern. The optimized array pattern using real genetic algorithm
(RGA) [18] is shown in Figures 3, 4, and 5. Also, these figures illustrate a reduction in the maximum
peak of the SLL (PSLL) with the obtained amplitude weights and the inter-element spacing, compared
to that of the corresponding reference pattern (In = 1 and d = λ/2).

Table 1 shows some extracted characteristics from Figures 3, 4, and 5 such as peak SLL, beamwidth
(first null beamwidth), and null depth. The DIWO pattern has a maximum SLL of −22.08 dB for 12
elements, −22.13 dB for 16 elements, and SLL of −21.98 dB for 20 elements while RGA pattern has an
SLL of −16.76 dB for 12 elements, SLL of −25.39 dB for 16 elements, and −15.46 dB for 20 elements.
We can note that the SLL is reduced by more than 6 dB compared to the SLL achieved by RGA for
two examples (2N = 12 and 20). For the second example, (2N = 16), RGA presents the lowest SLL
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Table 1. Pattern properties of a linear array for 2N = 12, 16, and 20 elements (extracted from Figure 3,
Figure 4, and Figure 5).

uniform RGA DIWO

12

Null depth at 3rd null
position in (dB)

−45.01 −54.75 −87.41

Null direction in (◦) 60.20 58.66 59.66
FNBW in (◦) 19.56 19.56 17.55
PSLL (dB) −13.05 −16.76 −22.08

16

Null depth at 3rd null
position in (dB)

−40.10 −54.50 −73.27

Null direction in (◦) 68.20 68.20 67.70
FNBW in (◦) 14.54 24.54 13.54
PSLL in (dB) −13.13 −25.39 −22.13

20

Null depth at 3rd null
position in (dB)

−40.60 −65.40 −95.10

Null direction in (◦) 72.70 71.70 72.20
FNBW in (◦) 11.54 11.54 10.54
PSLL in (dB) −13.16 −15.46 −21.98

Table 2. Excitation results for the linear array using the dynamic IWO method.

Number of elements
Optimal current excitation (normalized);

d in function of λ DRR

12
RGA

0.84511 0.6556 0.8444 0.71671
0.47139 0.40992; 0.58005

2.0616

DIWO
0.9744 0.9656 0.7586 0.6933 0.5235

0.4873; 0.6672
1.9997

16
RGA

0.6013 0.5029 0.4866 0.4084 0.2438
0.1575 0.0173 0.0718; 0.5624

34.7572

DIWO
0.7216 0.7178 0.6641 0.5776 0.5358

0.4013 0.3668 0.3608; 0.6517
2.0002

20
RGA

0.5478 0.7969 0.5051 0.5722 0.6221
0.6894 0.5206 0.4061 0.3769 0.1785; 0.6049

4.4644

DIWO
0.8808 0.8253 0.8584 0.8543 0.5667

0.6537 0.5398 0.5076 0.4471 0.4406; 0.6748
1.9998

but with a big beamwidth. For the optimized array using RGA in [15], the achieved null depths are
−54.75 dB, −54.40 dB, and −65.40 dB, respectively, with a null direction towards 58.68◦ for 2N = 12
elements design, 68.20◦ for 16 elements design, and 71.2◦ for the last design problem.

For the first example (2N = 12 elements with third null towards 60◦), the first null at the third
null position (θ =60◦, 120◦) is deeper than −87.41 dB, and the second null imposed at the third peak
(θ = 68◦, 112◦) is deeper than −3.27 dB.

For each example, the optimized amplitude weights of current distribution with an optimal inter-
element spacing obtained using the proposed DIWO as well as with another method (RGA) are
illustrated in Table 2. For each case, the DRR is given to show the feasibility of the current distribution.
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In the presented examples, the optimized current amplitudes obtained using our DIWO have the lowest
DRR in comparison to those achieved using RGA as shown in Table 2.

The results depicted in Figures 3, 4, and 5 illustrate the robustness of the proposed DIWO in terms
of deep nulls, narrow beamwidth, and reduced SLL.

For the second example (2N = 16 elements), the SLL is reduced by more than 8 dB (from −13.13 dB
to −21.21 dB) using DIWO.

To show better the effectiveness and the robustness of the proposed method, another example
of 2N = 20 elements of linear array is synthesized. The optimized linear array must have an array
pattern with a low side lobe level and two nulls imposed at the second and third peaks positions of
the corresponding uniform linear array (In = 1 and d = λ/2). For this example, the nulls are imposed

Table 3. Pattern properties of a linear array for 2N = 20 elements (extracted from Figure 6).

2N Uniform RGA DIWO

20
Null depth (dB)

2nd peak −17.61 −71.00 (not towards the peak) −66.5
3rd peak −20.40 −78.92 (not towards the peak) −67.1

FNBW in (◦) - 11.54 11.96 12.36
PSLL (dB) - −13.16 −13.85 −24.21

Table 4. Excitation results for the 2N = 20 elements linear array for nulls imposed at the second and
third peaks using the dynamic IWO method.

Number of elements Optimal current excitation (normalized); d in function of λ DRR

20
RGA

0.6163 0.5076 0.7290 0.4194 0.7148 0.2845 0.8719
0.3889 0.2575 0.5260; 0.5221

3.38

DIWO
0.9747 0.9767 0.9679 0.8423 0.7220 0.6315 0.6866

0.4284 0.4281 0.4309; 0.5865
2.28

Figure 6. Comparison of normalized array patterns with excitation coefficients by DIWO (solid line),
RGA (dashed line) and uniform (dotted line) for 2N = 20 with nulls imposed at the 2nd (θ = 104.4◦)
and 3rd (θ = 110.3◦) peaks.
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at the location of the second peak (θ = 75.6◦, 104.4◦) and at (θ = 69.7◦, 110.3◦) for the third peak
location. The dynamic range ratio (DRR) is taken into account.

Figure 6 illustrates the array patterns for 2N = 20 elements with nulls imposed at the second peak
(θ = 75.6◦, 104.4◦) and at the third peak (θ = 69.7◦, 110.3◦). As tabulated in Table 3, the first null at
the location of the second peak is deeper than −66.5 dB while the second null imposed at the location
of the third peak is deeper than −67.1 dB with a dynamic range ratio equal to 2.28 as indicated in
Table 4.

4.2. Circular Array

In this last section, the dynamic IWO is applied to the design of circular arrays with different numbers
of elements (M = 8, 10, and 12). The main goal of the synthesis problem is to achieve an array pattern
having some desired characteristics by controlling element positions and amplitude excitations of the
nonuniform circular array. The FNBW of uniform circular array having M equally spaced elements and
uniform excitation is selected as a beamwidth reference. Table 5 illustrates some characteristics of the
uniformly excited and equally spaced circular antenna array of M = 8, 10, and 12 elements.

Table 5. Initial value of SLL uniform circular array for In = 1 and equally spaced d = 0.5λ.

N of Elements SLL (dB) HPBW (◦) FNBW (◦)
∑∑∑

di(λ)
8 −4.170 32.32 69.98 4
10 −3.597 25.84 55.66 5
12 −7.165 21.52 46.22 6

In the first example, the circular array of M = 8 elements is synthesized using our dynamic IWO
to achieve an array pattern with low SLL and two deep nulls placed at −142◦ and −72◦ while keeping
beamwidth equal to that of the reference pattern. The optimal positions and amplitude excitations
are presented in Table 6. The optimal amplitude excitations using dynamic IWO have low DRR. The
obtained array pattern is shown in Figure 7 in comparison to other array patterns obtained using
IWO/WDO [22], FA [23], and COA [8].

Figure 7. Normalized array patterns for NUCA, for M = 8 elements using DIWO in comparison to
other similar results.
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Table 6. Position and amplitude of the nonuniform circular array, for M = 8 elements using DIWO.

N Position (dn) Excitation amplitude (an)
1 0.3095 0.8041
2 0.6661 0.1392
3 0.1328 0.3432
4 0.8116 0.8703
5 0.5772 0.9044
6 0.8221 0.4102
7 0.8453 0.8592
8 0.2934 0.1784

Table 7. Some characteristics of the NUCA, for M = 8 elements using DIWO in comparison to other
similar results.

Method
MSLL
(dB)

ASLL
(dB)

Null depth at ∑∑∑
di(λ)−72◦ −142◦

Hybrid IWO/WDO −13.52 −22.39 −23.8 dB −26.20 dB 4.54
GA −9.81 −13.70 - - 4.40
PSO −12.04 −20.31 - - 4.43
BBO −9.84 −15.96 - - 4.58
FA −12.93 −15.48 −22 dB −14 dB 4.65
CS −10.31 −17.09 - - 4.46

COA −13.32 −22.60 −49 dB < −60dB 4.44
DIWO −13.41 −20.61 < −60dB < −60dB 4.46

Some characteristics, extracted from the obtained array pattern, are compared with other similar
results using reported stochastic methods in Table 7. The simulation results illustrate the performance
of the proposed dynamic IWO compared to the other methods in terms of low SLL, deep nulls, and
minimum circumference.

The obtained value of DRR (2.5357) using our dynamic IWO is better than the values achieved by
other methods. Indeed, the obtained DRR using COA is 6.3638 with a circumference of 4.44λ while the
achieved circumference using the dynamic IWO is 4.46λ, which is less than the circumference obtained
by the method IWO/WDO (

∑
di(λ) = 4.54λ). In the other similar results shown in Table 7, the DRR

is not taken into account.
In the second example, the dynamic IWO is used to synthesize a circular array of 10 elements. We

consider here the same constraints as those used in the first example. Our goal is now to achieve an
array pattern with low SLL and minimum circumference. As illustrated in Figure 8, the obtained array
patterns using dynamic IWO, COA [8], GA [21], GWO [24] are compared with the corresponding uniform
circular array pattern. These results clearly show the accuracy and performances of the proposed
algorithm compared to other algorithms of the literature.

Table 8 presents the comparison between multiple results obtained using different stochastic
methods, for the nonuniform circular array of 10 elements. These results show the optimal combinations
(positions & amplitudes excitation) obtained by employing our dynamic IWO and the other results
achieved by employing different stochastic methods in the literature for the same topology design. This
table shows that our results, obtained with our DIWO algorithm, are largely better than the recently
published results in terms of reduced DRR and minimization of circumference.

Table 9 shows that for obtained values of amplitude excitations and element positions using various
stochastic methods, NUCA gives lower SLL response (−12.50 dB) than UCA (−7.165 dB) for same
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Table 8. Position and amplitude of the nonuniform circular array, for M = 10 elements using DIWO.

Φnu2 = 27◦ Position (dn) in λ’s Excitation amplitude (an)

GA

[0.3641, 0.4512, 0.2750, 1.6373, 0.6902, 0.9415, 0.4657, 0.2898, 0.6456, 0.3282 ]⇒
Σdn = 6.0886

[0.9545 0.4283, 0.3392, 0.9074, 0.8086, 0.4533, 0.5634, 0.6015, 0.7045, 0.5948] ⇒
DRR = 2.8140

GWO

[0.6808, 1.0277, 1.8984, 1.5751, 0.5528, 1.1361, 1.5082, 0.8024, 0.8502, 0.6082] ⇒
Σdn = 10.6399

[0.3191, 0.3446, 0.2069, 0.5037, 0.4943, 0.1451, 0.2671, 0.0454, 0.3285, 0.4786] ⇒
DRR = 11.0947

COA

[0.3214, 0.9695, 0.3671, 0.9672, 0.3232, 0.3194, 0.9681, 0.3662, 0.9703, 0.3233] ⇒
Σdn = 5.8957

[0.5113, 0.2175, 0.4678, 0.4498, 0.7571, 0.7679, 0.5367, 0.5855, 0.5126, 0.6328] ⇒
DRR = 3.5306

PSO

[0.3170, 0.9654, 0.3859, 0.9654, 0.3185, 0.3164, 0.9657, 0.3862, 0.9650, 0.3174] ⇒
Σdn = 5.9029

[1.0000, 0.7529, 0.7519, 1.0000, 0.5062, 1.0000, 0.7501, 0.7524, 1.0000, 0.5067] ⇒
DRR = 1.9755

BBO

[0.3870, 0.9088, 0.3232, 0.2549, 0.8932, 0.5083, 0.8781, 0.6733, 0.8800, 0.3498] ⇒
Σdn = 6.0565

[0.8848, 0.5265, 0.3690, 0.3744, 1.0000, 1.0000, 0.6374, 0.5803, 0.8792, 0.5606] ⇒
DRR = 2.7100

FA

[0.3810, 0.7453, 0.2668, 0.3142, 1.0000, 0.6032, 0.9706, 0.5713, 0.8800, 0.3376] ⇒
Σdn = 6.0700

[0.7081, 0.2682, 0.3713, 0.4100, 0.8800, 0.9665, 0.4165, 0.5813, 0.7494, 0.5403] ⇒
DRR = 3.6037

DIWO

[0.3338, 0.9336, 0.4010, 0.9806, 0.3355, 0.3373, 0.9930, 0.3710, 0.9663, 0.3303] ⇒
Σdn = 5.9824

[0.5805, 0.2408, 0.4672, 0.5474, 0.6734, 0.7372, 0.5816, 0.4682, 0.6435, 0.6710] ⇒
DRR = 3.0614

sizes. We also show that results obtained with our method are better than results obtained with other
algorithms, in terms of low SLL, minimum DRR, and aperture size reduction. The obtained value of
DRR, using our algorithm, is 3.06. Note that the array pattern obtained using GWO has the lowest
SLL, but it has the highest DRR and the largest array aperture size.

In the last example, we have employed DIWO to synthesize a circular array of 12 elements.
Figure 9 illustrates the optimal array pattern that has a maximum side lobe level of −15.13 dB using
DIWO method. The maximum SLLs achieved using the GWO, GA, PSO, BBO, FA, and COA are
−17.37,−11.83,−13.67,−14.37,−14.21, 14.41 dB, respectively.

Table 10 presents a comparison between results obtained using different stochastic methods, for a
nonuniform circular array of 12 elements. This table shows well that the achieved results by employing
our DIWO are better than the recently published results in terms of low SLL, reduced DRR, and
minimization of circumference. The corresponding array patterns are presented in Figure 9.

In Table 11, the simulation results using the dynamic IWO are compared to those obtained using
other stochastic methods such as COA, FA, PSO, and GWO. The comparison concerns the SLL,
circumference, and DRR.
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Table 9. Some characteristics of the NUCA for M = 10 elements using DIWO in comparison to other
similar results.

Method MSLL (dB)
∑∑∑

di(λ) DRR
GWO −15.78 10.6399 11.0947
GA −11.03 6.0800 2.8140
PSO −12.30 5.9029 1.9755
BBO −11.65 6.0565 2.7100
FA −13.21 6.0700 3.6037
CS −10.68 5.7897 NR

COA −12.35 5.8957 3.5306
DIWO −12.50 5.9824 3.0614

NR = Not Reported.

Table 10. Position and amplitude of the nonuniform circular array for M = 12 elements using DIWO.

Φnu2 = 23◦ Position (dn) in λ’s Excitation amplitude (an)

GWO

[0.5405, 1.1054, 0.6674, 1.3622, 1.1974, 0.4424, 0.4915, 1.0998, 1.3784, 0.7841, 1.0462, 0.5198]

⇒ Σdn = 10.6351

[0.1268, 0.0886, 0.0410, 0.0629, 0.1162, 0.1842, 0.1541, 0.0705, 0.0916, 0.0868, 0.1421, 0.2185]

⇒ DRR = 5.3293

GA

[0.4936, 0.4184, 1.4474, 0.7577, 0.4204, 0.5784, 0.4520, 0.8872, 0.7514, 0.4202, 0.4223, 0.7234]

⇒ Σdn = 7.7724

[0.2064, 0.5416, 0.2246, 0.6486, 0.7212, 0.7913, 0.5277, 0.3495, 0.5125, 0.4475, 0.5233, 0.8553]

⇒ DRR = 4.1439

COA

[0.2455, 0.8558, 0.6575, 0.6897, 0.8595, 0.3400, 0.1807, 0.8317, 0.6493, 0.7115, 0.8168, 0.2724]

⇒ Σdn = 7.1104

[0.9978, 0.6237, 0.5823, 0.7456, 0.9990, 0.9961, 0.5042, 0.6460, 0.6017, 0.6818, 0.9632, 0.7271]

⇒ DRR = 1.9814

PSO

[0.2569, 0.8509, 0.6607, 0.7057, 0.8540, 0.3734, 0.1609, 0.8321, 0.6464, 0.7079, 0.8330, 0.2682]

⇒ Σdn = 7.1501

[0.9554, 0.6441, 0.7109, 0.7769, 1.0000, 1.0000, 0.3958, 0.7162, 0.6746, 0.7695, 0.9398, 0.6145]

⇒ DRR = 2.5265

BBO

[0.4083, 0.6416, 0.7554, 0.7185, 0.6943, 0.3818, 0.3284, 0.8152, 0.9981, 0.3097, 0.7983, 0.3701]

⇒ Σdn = 7.2197

[0.6567, 0.3879, 0.6960, 0.4596, 0.5627, 0.9600, 0.4168, 0.5890, 0.5368, 0.6230, 0.6910, 1.0000]

⇒ DRR = 2.5780

FA

[0.3171, 0.8105, 0.5833, 0.7609, 0.8946, 0.4747, 0.9868, 0.2509, 0.2932, 0.7748, 0.6722, 0.3955]

⇒ Σdn = 7.2145

[0.9175, 0.3153, 0.5814, 0.6311, 0.9629, 0.9903, 0.3297, 0.4345, 0.6820, 0.4397, 0.7151, 0.7605]

⇒ DRR = 3.1408

DIWO

[0.2713, 0.8174, 0.5697, 0.7903, 0.9034, 0.4113, 0.1927, 0.8697, 0.5890, 0.6814, 0.7910, 0.3083]

⇒ Σdn = 7.1955

[0.8662, 0.6485, 0.4470, 0.6083, 0.9317, 0.9900, 0.4858, 0.6556, 0.5181, 0.5671, 0.9999, 0.6362]

⇒ DRR = 2.2370
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Figure 8. Normalized array patterns for NUCA, for M = 10 elements using DIWO in comparison to
other similar results.

Figure 9. Normalized array patterns for NUCA, for M = 12 elements using DIWO in comparison to
other similar results.

Table 11. Some characteristics of the NUCA for M = 12 elements using DIWO in comparison to other
similar results.

Method MSLL (dB)
∑∑∑

di(λ) DRR
GWO −17.37 10.6351 5.3293
GA −11.83 7.7724 4.1439
PSO −13.67 7.1501 2.5265
BBO −14.37 7.2197 2.5780
FA −14.21 7.2145 3.1408

COA −14.41 7.1104 1.9814
DIWO −15.13 7.1955 2.2370
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From the above circular array examples, it can be seen that the results obtained using our dynamic
IWO have the best combination of performance in terms of minimum circumference, reduced DRR,
and low SLL. This effectiveness makes the DIWO competitive with other stochastic methods and very
useful for antenna synthesis problem.

5. CONCLUSION

In this paper, a dynamic IWO was presented and successfully applied to the synthesis of two
antenna array topologies (uniform linear array (ULA) and nonuniform circular array antenna (NUCA)).
Moreover, the mutation process was used in the determination of the spatial dispersion (SD value) which
allowed a good exploration of the search space and escaping from falling in local minima. In consequence,
the convergence has been accelerated. For the first synthesis problem, the dynamic IWO was used to
find excitation current amplitudes of ULA elements leaving the phase unmodified. For NUCA synthesis
problem, positions and excitation amplitude were optimized to place deep nulls, minimize SLL, and
reduce physical size of the array. For both arrays, the dynamic range ratio was also taken into account.
Many simulation examples are illustrated, and the obtained results using dynamic IWO are compared
with data from reference arrays and with RGA for the linear array and other stochastic methods for
the optimized circular arrays such as COA, FA, and GWO. The achieved results show the robustness
and performance of the dynamic IWO in terms of deep nulls, minimum SLL, low DRR, and physical
size reduction.
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Commun. (AEÜ), Vol. 60, No. 10, 713–717, 2006.

22. Mahto, S. K. and A. Choubey, “A novel hybrid IWO/WDO algorithm for nulling pattern synthesis
of uniformly spaced linear and non-uniform circular array antenna,” Int. J. Electron. Commun.
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