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Modern Applications of the Bateman-Whittaker Theory

Ioannis M. Besieris1, *, Peeter Saari2, 3, and Amr M. Shaarawi4

Abstract—The Bateman-Whittaker theory, which was developed a century ago, is shown to be a
comprehensive basis for deriving a large class of null spatiotemporally localized electromagnetic waves
characterized by intriguing vortical structures. In addition, it provides the modeling for studying
topological structures dealing with linked and knotted electromagnetic waves.

1. INTRODUCTION

Electromagnetic waves are most conveniently expressed in terms of a complex-valued vector, first
introduced by Riemann [1] and afterwards by Silberstein [2]. Let �E(�r, t) and �B(�r, t) denote, respectively,
the real-valued electric and magnetic fields satisfying the homogeneous Maxwell equations in free space.
Then, the Riemann-Silberstein vector in SI units is defined as follows:

�F =
√
ε0
2

(
�E + ic �B

)
. (1)

It obeys the equations

∇× �F = i
1
c

∂

∂t
�F , ∇ · �F = 0, (2)

which are exactly equivalent to the original Maxwell equations for the real fields.
Several important physical quantities associated with the real fields can be expressed conveniently in

terms of �F (�r, t). Specifically, the Poynting vector, electromagnetic field energy density, electromagnetic
momentum density, and electromagnetic angular momentum density can be written as

�P = �E × �H = −ic �F ∗ × �F ,

wem =
1
2

(
ε0 �E · �E + μ0

�H · �H
)

= �F · �F ∗,

�M =
1
c2
�E × �H = −i1

c
�F ∗ × �F ,

�J = �r × �M = −i1
c
�r ×

(
�F ∗ × �F

)
,

(3)

respectively.
Using a variation of the Hertz vector potential approach, a general solution to Eq. (2) can be

written as follows [3]:

�F (�r, t) = ∇×∇× �Π +
i

c

∂

∂t
∇× �Π;

�Π(�r, t) = �aψ (�r, t) .
(4)
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Here, �a is a constant vector, and ψ(�r, t) is a complex-valued solution to the homogeneous scalar wave
equation.

2. BATEMAN-WHITTAKER THEORY

Possibly motivated by Whittaker’s two-scalar potential theory [4], Bateman [5] introduced two complex-
valued scalar functions α(�r, t) and β(�r, t), known as the Bateman conjugate functions, so that an
arbitrary functional φ[α(�r, t), β(�r, t)] obeys the nonlinear characteristic (eikonal) equation(

∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2

− 1
c2

(
∂φ

∂t

)2

= 0. (5)

Furthermore, two functionals φ1,2[α(�r, t), β(�r, t)] obey the Bateman constraint relation

∇φ1 ×∇φ2 = i
1
c

(
∂φ1

∂t
∇φ2 − ∂φ2

∂t
∇φ1

)
. (6)

Next, the Riemann-Silberstein vector is defined as

�F =
√
ε0
2

(
�E + ic �B

)
=

√
ε0
2
c∇× �A =

√
ε0
2
cαp−1βq−1∇α×∇β, (7)

in terms of the complex-valued vector potential �A = (ε0/2)1/2c(pq)−1αp∇βq = �Ae + i �Am, where
p, q = 0, 1, 2, 3, . . .. By virtue of its construction, the Riemann-Silberstein vector in Eq. (7) obeys
Eq. (2). Therefore, �E = (1/c)∇× �Ae and �B = ∇× �Am. The real electric and magnetic vector potentials
can be used to determine the total electric and magnetic helicities, viz.,

he =
∫

R3

d�r �Ae · �E, hm =
∫

R3

d�r �Am · �B. (8)

Another consequence of the specific construction of the Riemann-Silberstein vector is the nullity
property:

�F (�r, t) · �F (�r, t) = iε0I2 +
ε0
2
I1 = 0;

I1 =
∣∣∣ �E (�r, t)

∣∣∣2 − c2
∣∣∣ �B (�r, t)

∣∣∣2 = 0,

I2 = �E (�r, t) · �B (�r, t) = 0.

(9)

It requires, specifically, that the two relativistic invariants I1,2 vanish identically. The corresponding
real fields �E(�r, t) and �B(�r, t) are called null electromagnetic fields. Such fields are transverse with
respect to the local flow of energy, which is equipartitioned between the electric and magnetic fields,
and the modulus of their local energy transport velocity equals the speed of light in vacuo, although this
velocity can vary both spatially and temporally. The simplest electromagnetic null field is a plane wave.
More complex null fields are characterized by “helical” or vortex structures on planes transverse to the
direction of propagation and, in general, are relatively simple so that explicit calculations can be made
of the total energy and the total angular momentum they carry.

3. MOTIVATION FOR THE BATEMAN CONJUGATE FUNCTIONS

Courant and Hilbert have pointed out that “relatively undistorted” progressive solutions to the
homogeneous scalar wave equation in free space assume the form ψ(�r, t) = g(�r, t)f [θ(�r, t)], where f(·)
is essentially an arbitrary function; θ(�r, t), referred to as the “phase” function, is a solution to the
nonlinear characteristic equation [cf. Eq. (5)]; g(�r, t) is an “attenuation” function; the latter depends
on the choice of θ(�r, t), but not in a unique manner.

The nonlinear characteristic equation has an infinite number of phase solutions θ(�r, t). Once a
solution has been found, one introduces the Courant-Hilbert ansatz into the wave equation in order
to determine the accompanying attenuation function g(�r, t). Although straightforward, this procedure
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is usually laborious. Recently, efficient and encompassing methods for realizing attenuation and phase
functions have been developed in connection with the derivation of spatiotemporally localized waves [6].
Such wave pulses exhibit distinct advantages in their performance in comparison to conventional quasi-
monochromatic signals. It has been shown that such wavepackets have extended ranges of localization
in the near-to-far field regions. Among the localized waves, the subclass of solutions conforming to the
Courant-Hilbert ansatz yields indirectly specific realizations of the attenuation function g(�r, t) and the
phase function θ(�r, t).

4. SPATIOTEMPORALLY LOCALIZED WAVES

A very general class of luminal localized solutions to the homogeneous scalar wave equation is given by
ψL (�r, t) = gL (�r, t) f [θ (αL, βL)] ;

gL (�r, t) =
1

a1 + i (z − ct)
,

αL (�r, t) = a2 − i (z + ct) +
x2 + y2

a1 + i (z − ct)
.

βL (�r, t) =
x− iy

a1 + i (z − ct)
,

(10)

where z ± ct are the characteristic variables of the one-dimensional scalar wave equation, and a1,2 are
positive free parameters. The functions αL(�r, t) and βL(�r, t) are, indeed, Bateman conjugate functions
obeying the nonlinear characteristic equation, as well as the Bateman constraint. Therefore, they can
be used in conjunction to Eq. (7) to derive luminal null electromagnetic field solutions to Maxwell’s
equations.

As a specific example of a scalar luminal spatiotemporally localized wave, the finite-energy
azimuthally symmetric modified power spectrum (MPS) pulse, derived originally by Ziolkowski [7],
follows from the choice

f [αL (�r, t)] = exp [− (b/p)αL (�r, t)] (a2 + αL (�r, t) /p)−q

in Eq. (10). Here, a2, b, p, and q are free positive parameters. For
f [αL (�r, t) , βL (�r, t)] = [a2 + αL (�r, t)]−q βm

L (�r, t) ,
with a2, q > 0 and m a nonnegative integer, one obtains the asymmetric version of Ziolkowski’s
scalar splash wave mode. For m = 0, this solution follows from the MPS pulse under the restrictions
b = 0, p = 1. Finally, for b = p = β, a2 = 0 and q = 0, it reduces to the infinite-energy focus wave
mode (FWM).

It should be emphasized that only the conjugate functions αL(�r, t) and βL(�r, t) enter into the
computation of the luminal null localized electromagnetic fields based on the Bateman-Whittaker theory.
The attenuation function plays no role. However, it is needed if the luminal scalar wave function in
Eq. (10) is used in conjunction to Eq. (4) to compute the Riemann-Silberstein complex vector. Although
the latter will obey Eqs. (2a) and (2b), it will not be null unless the vector �a in Eq. (4) is chosen
appropriately.

Analogous to Eq. (10), there exist expressions for subluminal and superluminal localized scalar
wave solutions, with corresponding Bateman conjugate functions.

A general class of superluminal localized solutions to the homogeneous scalar wave equation in free
space is given by

ψS (�r, t) = gS (�r, t) f [θ (αS , βs)] ;

gS (�r, t) =
1√

x2 + y2 + (a1 + iγς)2
,

αS (�r, t) = a2 − iγ (v/c) η +
√
x2 + y2 + (a1 + iγς)2.

βS (�r, t) =
x− iy

a1 + iγς +
√
x2 + y2 + (a1 + iγς)2

.

(11)
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Here, ς = z − vt, η = z − (c2/v)t, γ = ((v/c)2 − 1)−1/2, with v > c.
A particular example follows from the complex analytic signal

f [αS ] = exp [− (b/p)αS ] [a2 + (1/p)αS ]−q ,

where a2, b, and q are positive real parameters. The resulting solution is the finite-energy modified
focus X wave (MFXW) pulse derived by Besieris et al. [6] if p = 1.

It should be noted that both the general classes of luminal and superluminal localized waves given
in Eqs. (10) and (11), respectively, are characterized by two speeds. The first class is bidirectional
involving the characteristic variables z ± ct of the one-dimensional scalar wave equation. The latter
involves the superluminal speed v, as well as the subluminal speed c2/v.

A general class of unidirectional (along the z-direction) spatiotemporally localized waves in free
space is given by

ψU (�r, t) = gU (x, y, t) f [θ (αU , βU )] ;

gU (ρ, t) =
1√

x2 + y2 − [ct+ i (a1 + a2) /2]2
,

αU (�r, t) = i z + (a1 − a2) /2 +
√
x2 + y2 − [ct+ i (a1 + a2) /2]2,

βU (x, y, t) =
x+ iy

−ict+ (a1 + a2) /2 +
√
x2 + y2 − [ct+ i (a1 + a2) /2]2

,

(12)

where the free parameters a1,2 are positive. This class of solutions significantly extends the simple
unidirectional finite-energy pulse introduced by So et al. [8] recently.

5. NULL SPATIOTEMPORALLY LOCALIZED WAVES

The Riemann-Silberstein vector defined in Eq. (7) is null for any values of p and q. Specifically, for p = 1
and q = 1, the null vector �F (f) = ∇α×∇β will be called the fundamental Riemann-Silberstein vector.
The product of this expression with any functional of α and β results in a null Riemann-Silberstein
vector.

A general formula for constructing null luminal, superluminal, and unidirectional spatiotemporally
localized waves is as follows:

�FL,S,U = g−1
L,S,U (�r, t)ψL,S,U (�r, t) �F (f)

L,S,U ;

�F
(f)
L,S,U = ∇αL,S,U ×∇βL,S,U ;

�EL,S,U =
√

2
ε0

Re
{
�FL,S,U

}
, �HL,S,U =

√
2
μ0

Im
{
�FL,S,U

}
.

(13)

Here, the indices L, S, U stand for luminal, superluminal, and unidirectional, respectively. It should be
noted that the attenuation factors gL,S,U(�r, t) do not enter the derivation because ψL,S,Ug

−1
L,S,U (�r, t) =

Q[αL,S,U(�r, t), βL,S,U (�r, t)]. This is consistent with Eq. (7).
Examples of null luminal and superluminal localized waves have been given in Refs. [9] and [10].

A specific example of a null unidirectional electromagnetic localized wave results from the algorithm in
Eq. (13) with

ψU (�r, t) =
1√

x2 + y2 − [ct+ i (a1 + a2) /2]
1
α3

U

βn−1
U . (14)

This is equivalent to deriving the Riemann-Silberstein vector �FU (�r, t) using the expression in Eq. (7)
with α = α−2

U , β = βn
U/(2n) and p = q = 1.

The group speed of the unidirectional pulse in Eq. (14), and as a consequence of the corresponding
null electromagnetic localized wave, is given by

vg (ρ, t) = cRe

⎧⎨
⎩ (a1 + a2) /2 − ict√

[(a1 + a2) /2 − ict]2 + ρ2

⎫⎬
⎭ , (15)
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where ρ =
√
x2 + y2 is the radial distance in cylindrical coordinates. It is seen that the group speed

depends on both the radial distance and time. A plot of the group speed (normalized with respect to
the speed of light in vacuum equal to unity) is shown in Figure 1 below for various values of ρ. On axis
(ρ = 0), vg = 1 for all values of time. At ρ = 2, the speed is subluminal (but very close to unity) for
small values of time, and it becomes luminal at t = 5, superluminal (again, very close to unity) for t > 5
and tends to unity for large values of time. A similar behavior is exhibited for larger values of ρ.

A few additional graphical results will be presented to gain a clearer view of some of the features
of the null unidirectional electromagnetic localized wave. The following notation will be used next:
ς ≡ z − ct is the local spatial coordinate around the pulse center; therefore, ct is the distance from the
“aperture” located at z = 0. For all the figures, the parameter values are as follows: a1 = 10−6m and
a2 = 10−3m. On the top row of Fig. 2, plots of |Ex| vs. ς̄ = ς/a1 and ρ̄ = ρ/(10a1) are shown on the
aperture plane (ct = 0) and on the planes ct = ±4× 10−4m. Similar plots are shown on the second row
for |Ez|.

On the top row of Fig. 3, plots of |Ex| vs. x̄ = x/(102a1) and ȳ = y/(102a1) are shown at
τ ≡ t− z/c = 0 and τ = ±10−6s. Similar plots are shown on the second row for |Ez|. An antisymmetric
“helical” structure to the left and right of the pulse center is clearly evident.

Figure 1. Plot of the normalized group speed vs. time for ρ = 0, 2 and 4m and parameter values
a1 = 10−1m and a2 = 10m.

Figure 2. |Ex| (top row) and |Ez| (lower row) vs. ς̄ = ς/a1 and ρ̄ = ρ/ (10a1) for the parameter values
a1 = 10−6m, a2 = 10−3m and n = 1.
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Figure 4 shows stream plots of the x and y components of the electromagnetic momentum (top
row) and electromagnetic angular momentum (lower row) vs. x and y for τ = 0 and τ = ±10s for the
parameter values a1 = 10−2m, a2 = 10 m and n = 1.

Figure 3. |Ex| (top row) and |Ez| (lower row) vs. x̄ = x/(102a1) and ȳ = y/(102a1) at τ = −10−6s, 0
and 10−6s for the parameter values a1 = 10−6m, a2 = 10−3m and n = 3.

Figure 4. Stream plots of the x and y components of the electromagnetic momentum (upper row) vs.
x and y at τ = −10s, 0 and 10s for the parameter values a1 = 10−2m, a2 = 10m and n = 1. Similar
plotsare shown on the second row for the electromagnetic angular momentum.
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6. TOPOLOGICAL STRUCTURES OF ELECTROMAGNETIC WAVES

Irvine and Bouwmeester [11] explored the physical properties of an exceptional solution to the free-
space Maxwell’s equations in vacuo that exhibit linked and knotted field line structures. The Irvine-
Bouwmeester solution was constructed originally by Ranãda [12] using Hopf maps (fibrations) and
belongs to a more general class of solutions to linear and nonlinear equations known as Hopfions. Besieris
and Shaarawi [13] have linked the Irvine-Bouwmeester solution to a known null luminal electromagnetic
wave. This work has been further extended by Kedia et al. [14] and Arrayás et al. [15].

Consider the variation of the luminal Bateman conjugate functions

α = 1 +
2
αL

∣∣∣∣
a1.2=−1

=
x2 + y2 + (z + i)2 − c2t2

x2 + y2 + z2 − (ct− i)2
,

β = 2
βL

αL

∣∣∣∣
a1.2=−1

=
2 (x− iy)

x2 + y2 + z2 − (ct− i)2

(16)

used in Ref. [14]. They have the property αα∗ +ββ∗ = 1. The surface |α2 − β2| = const. represents two
linked tori, |α2 − β3| = const. represents a trefoil knot, and |α2 − β5| = const. depicts a cinquefoil, for
any value of time (see Fig. 5).

Figure 5. Plots of |αp − βq| = const. for p = q = 2 (torus link), p = 2, q = 3 (trefoil) and p = 2, q = 5
(cinquefoil).

When the expressions for the Bateman conjugate functions given in Eq. (16) are used in Eq. (7),
the case p = 1 and q = 1, corresponding to the Hopf-Ranãda solution, yields linked electromagnetic
fields. Any two electric field lines are linked, any two magnetic field lines linked, and any electric field
line is linked to any magnetic field line for any instant of time. For p = 2, q = 3 and p = 2, q = 5 the
linkages are more complicated (see Fig. 6). The corresponding fields have finite energy.

A negative aspect of the Hopf-Ranãda solution is that the Bateman conjugate functions in Eq. (16)
contain equally weighted forward and backward components associated with the characteristic variables
z±ct. On the other hand, physically realizable localized waves have free parameters that can be tweaked
so that the wave packets have finite energy and propagate primarily along the z-direction. There exist
Bateman-type conjugate functions that lead to such types of null electromagnetic waves and also are
endowed with topological features similar to those of the Hopf-Ranãda solution. A particular example
is provided by the Bateman conjugate functions

α =
1
α2

L

=
(
a2 − i (z + ct) +

x2 + y2

a1 + i (z − ct)

)2

,

β = βL|y→−y =
x+ iy

a1 + i (z − ct)

(17)

The change in sign of y in the definition of β will result in a change in the sign on the right-hand side
of the first part of Eq. (2) and also, on the right-hand side of the Bateman constraint in Eq. (6). Due
to the presence of the positive free parameters a1,2, the Bateman conjugate functions no longer obey
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(a) (b)

Figure 6. EB field line linkages for (a) p = q = 1 and (b) p = 2, q = 3.

the relationship αα∗ + ββ∗ = 1. For p = 1 and q = 1, the resulting null electromagnetic fields have
all the topological linkage and knotted properties characterizing the Hopf-Ranãda solution. The main
difference is that for a1 � a2 the wave has primarily forward propagating components. Another set
of conjugate functions yielding a null spatiotemporally localized electromagnetic field having properties
similar to those arising from the set in Eq. (17) is provided by a complexified version of functions derived
by Hogan [16]; specifically,

α = − (b−AQ(x− iy) +BQ (a2 − i(z + ct)))2

(b (a1 + (z − ct)) +BQ (x2 + y2 + (a1 + i(z − ct)) (a2 − i(z + ct))))2
,

β = x+ iy − Q (a2 − i(z + ct)) (B(x+ iy) +A (a1 + i(z − ct)))
b−AQ(x− iy) + iBQ (a2 − i(z + ct))

,

(18)

where a1,2, b, A, B, and Q are free parameters. As in the case of the Bateman conjugate functions in
Eq. (17), the critical parameters required for the reduction of the backward propagating waves are a1

and a2.

7. CONCLUDING REMARKS

Due to the complexity of ψ(�r, t) in Eq. (4) and the ensuing spatiotemporal differentiations, the resulting
real electromagnetic fields are, in general, quite complicated, and questions regarding total energy,
momentum, and angular momentum content become nontrivial. Some of this complexity is alleviated
in the case of null electromagnetic localized waves because the Riemann-Silberstein complex vector
associated with such structures is given by

�F (�r, t) = �F (f) (�r, t)ψ (�r, t) g−1 (�r, t) , (19)

in terms of the fundamental Riemann-Silberstein complex null vector, an arbitrary scalar localized wave
obeying the Courant-Hilbert ansatz, and the corresponding attenuation function. In these cases, the
structures of �F (�r, t) and the corresponding real electric and magnetic fields �E(�r, t) and �H(�r, t) are
simpler, thus facilitating the explicit computation of the total energy and angular momentum they
carry.

It has been mentioned that null electromagnetic waves can be derived using the variation of
the Hertz potential approach in Eq. (4). It turns out that the Hertz vector potential �Π(�r, t) =
{i, 0, 0}ψL(�r, t), with ψL(�r, t) any scalar spatiotemporally localized luminal wave solution constructed
according to Eq. (10), can result in such a solution. A specific example is the basic Hopfion that can
be derived using the scalar wave solution

ψL (�r, t) =
gL

aL
=

1
a1 + i (z − ct)

(
a2 − i (z + ct) +

x2 + y2

a1 + i (z − ct)

)−1

, (20)

with a1,2 = 0, and t→ t− i/c.
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There exist classes of scalar localized waves which do not conform to the templates based on the
Courant-Hilbert progressive wave theory discussed in Section 3. Interestingly, some of the localized
waves belonging to these classes arise from the superposition of elementary Courant-Hilbert progressive
LWs. A particular example is the Bessel-Gauss FWM

ψ
(BG)
L (�r, t) =

1
a1 + i(z − ct)

exp [−kαL (�r, t)] exp
[
− p2

4k
1

a1 + i(z − ct)

]
I0

[
p

√
x2 + y2

a1 + i(z − ct)

]
, (21)

which can be derived by an integration of weighted FWMs. In this expression, k and p are positive
free parameters with units of m−1, and I0(·) is the zero-order modified Bessel function. For p = 0,
ψBG

L (�r, t) reduces to the FWM. The general theory of luminal null electromagnetic localized waves does
not apply to the Bessel-Gauss FWM. In other words, although �FL = �F

(f)
L (�r, t)ψ(BG)

L (�r, t)g−1
L (�r, t) is a

null vector, it is not a Riemann-Silberstein complex vector. Specifically, it does not obey the expressions
in Eq. (2). The reason for this is that ψ(BG)

L (�r, t)g−1
L (�r, t) is not a pure functional of αL(�r, t), but it

has an additional dependence on space and time, as it is clearly seen in Eq. (21). It should be pointed
out, however, that it is possible to derive null Bessel-Gauss and other complicated spatiotemporally
localized luminal electromagnetic waves by other means. Useful toward this goal are two vector-valued
conformal techniques due to Cunningham [17] and Bateman [18] (See [9] for specific applications).

All the null electromagnetic localized waves discussed in this article are solutions to the
homogeneous Maxwell equations in vacuum. An important question concerns their physical realizability.
It is known that very close replicas of subluminal, luminal, and superluminal localized waves can be
launched from apertures constructed on the basis of the Huygens principle [19]. All experimental
demonstrations have been performed in the acoustical and optical regimes [20–28]. Work, however,
has been carried out at microwave frequencies recently [29–32]. Null localized electromagnetic waves
constitute a broad subset of ordinary spatiotemporally localized waves. Therefore, the experimental
techniques used to physically realize the latter should also be applicable to the former. It would be very
interesting, for example, to demonstrate experimentally a close replica of the basic Hopf-Ranãda (basic
Hopfion) and examine whether its features pertaining to the linked and knotted topological properties
of the electric and magnetic field lines can be exhibited.
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