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A Novel Mirror Kirchhoff Approximation Method for Predicting
the Shadowing Effect by a Metal Cuboid

Xin Du*, Kentaro Saito, Jun-ichi Takada, and Panawit Hanpinitsak

Abstract—This paper proposes an efficient and accurate scattered field prediction method based
on Kirchhoff Approximation called ‘Mirror Kirchhoff Approximation’ (MKA) which is suitable for
evaluating the shadowing effect by a metal cuboid. The disadvantages of conventional methods, such
as low accuracy of Kirchhoff Approximation (KA) for metal cuboid and high computational complexity
of Method of Moment (MoM) for a shadowing object at millimeter wave (mmWave), have motivated
the establishment of an efficient and accurate prediction method for a metal cuboid at mmWave. The
proposed method solves the previous issues by introducing the ray-based reflection into conventional
KA. The idea and detail formulations of the proposed method are presented. The proposed method is
validated by comparing with MoM and KA in terms of complexity and accuracy. The results imply that
the proposed method presents good accuracy with low calculation time. The MKA has a maximum
8.3 dB improvement compared with conventional KA. Calculating time is improved by 67–915 times
compared with MoM.

1. INTRODUCTION

With the spread of 5G, millimeter-wave (mmWave) band radio has come to be used for
communication [1]. At mmWave, shadowing becomes more significant [2–4], and hence the prediction
technique of the shadowing effect is needed.

To simulate the shadowing effect for an item of a small furniture or a vehicle, conventionally,
full-wave simulation (e.g., Finite-Difference Time-Domain (FDTD) method [5], Method of Moment
(MoM) [6] and its fast variant Multilevel Fast Multipole Algorithm (MLFMA) [7], and Finite Element
Method (FEM) [8]) has been used. It solves Maxwell’s Equation directly by a numerical approach,
and hence it has good accuracy. However, it may call for unreasonable calculation time for large scale
problems at mmWave since the object is very large compared with the wavelength, which significantly
increases the number of meshes. Therefore, there is a need for a method based on high-frequency
asymptotic approximation, which can reduce the computational complexity at mmWave. High-
frequency asymptotic approximation can be divided into ray-based approximation (e.g., Geometrical
Optics (GO) [9], Geometrical Theory of Diffraction (GTD) [10], and Uniform geometrical Theory of
Diffraction (UTD) [11]) and source-based approximation (e.g., Physical Optics (PO) [12] and Kirchhoff
Approximation (KA) [13]). These methods approximate the electromagnetic wave as combining several
typical propagation phenomena such as incidence, reflection, diffraction, and scattering, and hence those
methods can deal with large scattering problems within a reasonable calculation time.

In this research, a method based on KA for calculating the shadowing gain of a thick object is
proposed. The reasons for selecting KA as the foundation are explained as follows. Firstly, KA is more
suitable for the forward scattering problem [14] compared with PO, and hence it is expected to deal
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with the prediction of shadowing. Secondly, since the scattered field is obtained by integration over the
lit region of the scattering surface in the source-based calculation [14], and KA can partially consider
the geometrical shape of the shadowing object, unlike ray-based GO, GTD, and UTD. Thirdly, KA
applying Fast Fourier Transform (FFT) or Inverse Fast Fourier Transform (IFFT) technique [15] is
extremely fast as opposed to FDTD, MoM, and FEM. These advantages show that KA is a reasonable
choice for further development.

However, the conventional KA has the accuracy issue to deal with a thick object. When KA predicts
the forward scattering problem for a thick object, and the diffractions are counted by the integration of
total field over the lit region of multi vacuum layers [16]. The diffraction wave is outstretched between
the two layers, and the reflection from the shadowing object is always neglected [16]. That is the
main accuracy issue of the conventional KA. Therefore, the restrictions of conventional methods have
motivated the establishment of an accurate prediction method for evaluating the shadowing effect by a
thick object with low calculation time.

Considering the aforementioned issues, this research aims to establish an efficient and accurate
prediction method of shadowing effect by a metal cuboid, which can be approximated by an item of
small furniture or a human body [17], at mmWave band. A novel method based on KA called ‘Mirror
Kirchhoff Approximation’ (MKA) is proposed to achieve the goal.

The proposed MKA solves the accuracy issue of KA by introducing the reflection from an object
into the diffraction of conventional KA. More details of the proposal and mathematical formulations
are presented in Section 2.

Section 3 introduces the MoM simulation for validating the accuracy of the proposal. The details
of the scenario, parameter setting, simulation environment are described.

Section 4 shows the simulation results of shadowing gain. Meanwhile, the calculation time is
compared among the conventional KA, MoM, and proposed method.

Section 5 concludes this work, as well as the limitation of this method and the future work.

2. PROPOSAL AND FORMULATIONS

In this Section, the idea of the proposal will be introduced. The detailed mathematical formulations
both in finite object height case and infinite object height case will be explained.

2.1. Conventional KA and Idea of Proposed MKA

The model of the proposal shown in Fig. 1 explains the idea in an easily understood manner. Initially,
the location of a transmitter (Tx), receiver (Rx), and shadowing object is described as follows. A
cuboid is considered as the shadowing object. Tx faces the front surface of the cuboid, and Rx faces
the back surface of the cuboid. Tx and Rx are set at the same height. The z-axis parallel to the interior
normal vector of the front surface is defined in a Cartesian coordinates system. The Tx-Rx line is set
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Figure 1. Model of proposal (y-z vertical view).
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parallel to the z direction. Several geometric terminologies are defined as follows. The infinite large
planes expanded from the front and back surfaces of the cuboid are defined as Expanded Front Plane
(EFP) and Expanded Back Plane (EBP), respectively. Additionally, the infinite plane through Rx and
paralleling to EFP or EBP is defined as Expanded Observation Plane (EOP). The plane equations of
EFP, EBP, and EOP can be defined as z = zF, z = zB, and z = zRx, respectively.

The use of conventional KA on those multi-planes for predicting the radio wave shadowed by an
object is presented in [16]. To understand the issue of the conventional KA, a brief review is provided
here. KA assumes that the total electric field on the shadowed region is zero. The total electric
field on the lit region can be represented by the incident electric field only [13, 14]. The total electric
fields EEFP(x, y, zF) distributed on the first plane EFP everywhere can be determined by KA. Then,
the scattered fields from this region can be obtained by the surface integration of induced current
corresponding to the normal derivative of the total field [18]. Those scattered fields considered as
secondary Huygens’ sources propagate to the point (x, y, zB) on the next plane EBP. By applying
KA again, the total electric fields EEBP(x, y, zB) distributed on EBP can be calculated. Repeating
the approach in the same manner, the total electric fields EEOP(x, y, zRx) distributed on EOP can be
calculated as well. The receiving electric field ERx is identical to EEOP(xRx, yRx, zRx). Finally, the
shadowing effect can be evaluated by comparing ERx and the receiving electric field in free space.

It can be pointed out that the propagation wave in the above review is outstretched between the
two planes, and the reflection effect from the shadowing object is neglected. This technique works well
in [16] since [16] focuses on radio-wave propagation for suburban or a rural environment where instead of
the reflection effect, the diffraction effect is dominant. However, the conventional KA always considers
the shadowing object as an absorber, which may cause inaccuracy due to ignoring the shadowing
object’s real physical property. To compensate the deficiency, MKA is proposed in this work. Different
from conventional KA, MKA considers the GO reflection effect that shadowing object reflects incident
wave generated by the vacuum region of EFP to the vacuum region of EBP as shown in Fig. 1. By
introducing ray-based GO into source-based KA calculation, the boundary condition corresponding to
the real physical property of PEC can be satisfied. Since the introduction of GO reflection uses mirror
image theory, this method is named ‘Mirror Kirchhoff Approximation’.

2.2. Formulations in the Finite Object Height Case

The following procedures are proposed to establish MKA in the finite object height case. The first step
is the calculation of fields distributed on the first plane EFP. To compute numerically, as shown in Fig. 2,
the existence of field distributed on EFP, EBP, and EOP is truncated from the infinite large planes to
the square aperture planes with the size of T × T . The center of each aperture plane is identical to the
projection of Tx onto EFP. The number of grids in each aperture plane is M ×M , where M is set to
2l for employing FFT.

The spatial parameters x, y can be discretized by Eq. (1), where u, v are the discrete spatial indexes.

x =
u

M
T (u = 0, 1, 2 . . . ,M − 1) , y =

v

M
T (v = 0, 1, 2 . . . ,M − 1) (1)

The time-harmonic incident electric field EInc
3D (u, v) at the point (u, v) on EFP from Tx based on

KA is determined by Eqs. (2)–(13).

EInc
3D (u, v) = E0 ×

λe−jkInc(u,v)·r(u,v)

|r(u, v)|
(2)

where E0 is the electric field of the source with the direction depending on polarization. The magnitude
of E0 can be arbitrary since the calculation of shadowing cancels E0 by Eq. (14). λ is the wavelength.
kInc(u, v) is the incident wave vector pointing to the point (u, v) on EFP. k is the wave number. r(u, v)
is the distance vector pointing from Tx to the point (u, v) on EFP.

Assume that the set of all the points existing in the aperture of EFP excluding the front surface
of the cuboid is A and that the set of all the points existing in the front surface of the cuboid is
F . According to KA, the total electric fields distributed on an aperture of EFP EEFP(u, v) can be
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Figure 2. Aperture plane (x-y cross-section view).

determined by Eq. (3).

EEFP(u, v) ≈

{
EInc

3D (u, v) (for (u, v) ∈ A)

0 (for (u, v) ∈ F )
(3)

The fields distributed on EBP and EOP can be determined by using vector potentials [18], and
surface integration can be calculated by Ludwig numerical approach [19]. However, the complexity
of vector potentials computing all the surface integrations determined by both the positions of source
points on EFP and the positions of observation points on EBP is too much when the region of interest
is large. It is more efficient to use the Angular Spectrum Method (ASM) [15, 20] by applying FFT
for aperture plane since the complexity of computation can be reduced from O(N2) to O(N log2N),
where N is the point number of one vacuum plane. ASM requires the fields to satisfy the homogeneous
vector wave equation in the source-free region [20], while there is a shadowing object existing between
EFP and EBP. The inhomogeneous region is needed to separate into several homogeneous regions by
using the window function. Assume that the major propagation mechanisms are the diffraction from
the left and right sides. Then, the left window region and right window region, where fields make a
major contribution, are needed to be separated into two homogeneous regions as shown in Fig. 3.

x

y

Figure 3. The region of window function (x-y cross-section view).
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The implementation of window function based on the Fresnel Zone Number (FZN) [21] is for
truncating the whole region to the major propagation mechanism region. FL, FR, BL, BR are defined
as the abbreviations of left window region on EFP, right window region on EFP, left window region
on EBP, and right window region on EBP, respectively. The region I (I =FL, FR, BL, BR) is created
based on the Fresnel zone boundary. The window function W I(u, v) for point (u, v) in the region I is
determined by Eq. (4).

W I(u, v) =


1

2

{
cos

(
nI
p(u, v)− nI

s

nI
b − nI

s

π

)
+ 1

}
(for (u, v) ∈ I)

0 (otherwise)

(I = FL, FR, BL, BR) (4)

where nI
p(u, v) denotes the FZN of point (u, v) in the region I. nI

b denotes the FZN of the window

boundary of the region I. nI
s denotes the FZN of the stationary point in the region I. For the NLoS

case, the stationary points are two diffraction points for both sides. For the LoS case, the stationary
points are a phase center for one side and a diffraction point for another side. The definition of NLoS
or LoS is whether the phase center is inside the cuboid or not. The phase center means the point which
is the intersection between the Tx-Rx line and front of the cuboid. The size of window for the region I
is determined by the value of ∆n = nI

b − nI
s.

The electric fields EFL(u, v), EFR(u, v) distributed on FL and FR, respectively, can be calculated
by Eq. (5).

EFL(u, v) = WFL(u, v)×EEFP(u, v) , EFR(u, v) = WFR(u, v)×EEFP(u, v) (5)

The second step is the calculation of fields distributed on the second plane EBP by ASM. Applying
2D IFFT, each component of the fields EFL(u, v) and EFR(u, v) can be decomposed to angular-spectrum-
varying plane waves by Eq. (6).(

CFL
x (p, q) CFR

x (p, q)

CFL
y (p, q) CFR

y (p, q)

)
=

1

4π2

M−1∑
u=0

M−1∑
v=0

(
EFL
x (u, v) EFR

x (u, v)

EFL
y (u, v) EFR

y (u, v)

)
ej2π(

up+vq
M

)

(
T

M

)2

(6)

where EFL
x (u, v), EFL

y (u, v) are the x, y-components of EFL(u, v), respectively. EFR
x (u, v), EFR

y (u, v)

are the x, y-components of EFR(u, v), respectively. CFL
x (p, q), CFL

y (p, q), CFR
x (p, q), CFR

y (p, q) are the

weighting coefficients of EFL
x (u, v), EFL

y (u, v), EFR
x (u, v), EFR

y (u, v), respectively. p, q are the discrete

frequency spectral indexes from 1− M
2 to M

2 .
Applying 2D FFT, those plane waves propagating along z direction with a propagation distance of

z′ = zB − zF are superposed as secondary incident fields for EBP by Eqs. (7)–(8).(
EBL
x (u, v) EBR

x (u, v)

EBL
y (u, v) EBR

y (u, v)

)
=

M
2∑

p=1−M
2

M
2∑

q=1−M
2

(
CFL
x (p, q) CFR

x (p, q)

CFL
y (p, q) CFR

y (p, q)

)
e−j{2π(up+vq

M
)+kzz′}

(
2π

T

)2

(7)

kz =


+

√
k2 −

(
2π

T
p

)2

−
(
2π

T
q

)2
(
for k2 ≥

(
2π

T
p

)2

+

(
2π

T
q

)2
)

−j

√(
2π

T
p

)2

+

(
2π

T
q

)2

− k2

(
for k2 <

(
2π

T
p

)2

+

(
2π

T
q

)2
) (8)

where EBL
x (u, v), EBL

y (u, v) are the x, y-components of incident field EBL(u, v) at point (u, v) on EBP,

which is the superposition of the fields scattered by all the points of FL. EBR
x (u, v), EBR

y (u, v) are the

x, y-components of incident field EBR(u, v) at point (u, v) on EBP, which is the superposition of the
fields scattered by all the points of FR. kz represents spectral frequency parameters for z domain. There
is no need to calculate z-component of EBL(u, v) and EBR(u, v) since EBL

z (u, v) and EBR
z (u, v) are zero

for propagating along z direction.
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Figure 4. The establishment of mirror Kirchhoff approximation (y-z vertical view).

Based on the conventional KA which only considers the source from EFP as shown in Fig. 4(a),
the proposed MKA introduces reflection rays from shadowing object by using mirror image theory as
shown in Fig. 4(b). The proposed MKA calculates the total electric fields EEBP(u, v) distributed on
EBP by Eq. (9).

EEBP(u, v) ≈


WBL(u, v)×(EBL(u, v) +REBL(u, 2[vL]− v)) (for (u, v) ∈ BL)

WBR(u, v)×(EBR(u, v) +REBR(u, 2[vR]− v)) (for (u, v) ∈ BR)

0 (otherwise)

(9)

where R represents the reflection coefficient. For metal case, R = −1. [vL] is the discrete index
corresponding to spatial parameter yL which is calculated by Eq. (1), where [.] is the round function to
the nearest integer. [vR] is the discrete index corresponding to spatial parameter yR. E

BL(u, 2[vL]− v)
is the image field of EBL(u, v) by considering left side of cuboid as a mirror. EBR(u, 2[vR] − v) is the
image field of EBR(u, v) by considering right side of cuboid as a mirror.

The third step is the calculation of fields distributed on the third plane EOP based on ASM
again. This time, the separation of field distribution is not needed since the region between EBP and
EOP is homogeneous. On the EOP, the total electric fields EEOP(u, v) based on the conventional KA
approach, and the total electric fields EEOP(u, v) based on the proposed MKA approach, are determined
by Eqs. (10)–(11).(

CEBP
x (p, q)

CEBP
y (p, q)

)
=

1

4π2

M−1∑
u=0

M−1∑
v=0

(
EEBP
x (u, v)

EEBP
y (u, v)

)
ej2π(

up+vq
M

)

(
T

M

)2

(10)

(
EEOP
x (u, v)

EEOP
y (u, v)

)
=

M
2∑

p=1−M
2

M
2∑

q=1−M
2

(
CEBP
x (p, q)

CEBP
y (p, q)

)
e−j{2π(up+vq

M
)+kzz′′}

(
2π

T

)2

(11)

where EEBP
x (u, v), EEBP

y (u, v) are the x, y-components of EEBP(u, v). EEOP
x (u, v), EEOP

y (u, v) are the

x, y-components of EEOP(u, v). CEBP
x (p, q) and CEBP

y (p, q) are the weighting coefficients of EEBP
x (u, v)

and EEBP
y (u, v), respectively. z′′ = zRx − zB is the propagation distance between EBP and EOP.

The receiving electric field ERx at Rx is determined by Eq. (12).

ERx = EEOP([uRx], [vRx]) (12)

where [uRx], [vRx] are discrete indexes corresponding to coordinate of Rx point.
The total receiving electric field in free space EFree

3D is determined by Eq. (13).

EFree
3D = E0 ×

λe−jkd

d
(13)
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where d is the distance between Tx and Rx.
The shadowing gain SG3D is determined by Eq. (14).

SG3D = 20 log10
|ERx|
|EFree

3D |
[dB] (14)

2.3. Formulations in the Infinite Object Height Case

If the object has infinite height, the 3D problem can be simplified to the 2D problem. The 3D cuboid
can be considered as a rectangular plane in y-z plane, and the spatial variable u can be absent since
the whole environment in x direction is uniform. Since the same procedures for the general case of
polarization have already been explained in Section 2.2, here only a special case of the perpendicular
polarization is focused to explain the difference between 2D formulation and 3D formulation for the
sake of simplicity. In perpendicular polarization, only x-component of electric field works, and hence
the vector equations can be simplified to scalar equations. An electric line source with the cylindrical
wave is considered as Tx. Equations (2) can be replaced by Eq. (15).

EInc
2D (v) = −k2I0

4ωϵ
H

(2)
0 (kρ(v)) (15)

where EInc
2D (u) is the z-component of incident field arriving at point (v) on EFP in infinite object height

case. EFree
2D is the z-component of incident field arriving at Rx in infinite object height case. I0 is the

magnitude of electric field of source, and it can be arbitrary since the calculation of shadowing cancels
I0 by Eq. (22). ω is the angular frequency. ϵ is the permittivity of vacuum. ρ(v) is the distance vector

pointing from Tx to point (v) on EFP. H
(2)
0 (.) represents the second kind of Hankel function for 0 order.

In the ASM calculation, instead of 2D IFFT and 2D FFT, only the 1D IFFF and 1D FFT are
needed. Eqs. (6)–(8) and (10)–(11) can be replaced by Eqs. (16)–(18) and (19)–(20).

(
CFL
x (q) CFR

x (q)
)
=

1

2π

M−1∑
v=0

(
EFL
x (v) EFR

x (v)
)
ej2π(

vq
M

)

(
T

M

)
(16)

(
EBL
x (v) EBR

x (v)
)
=

M
2∑

q=1−M
2

(
CFL
x (q) CFR

x (q)
)
e−j{2π( vqM )+kzz′}

(
2π

T

)
(17)

kz =


+

√
k2 −

(
2π

T
q

)2
(
for k2 ≥

(
2π

T
q

)2
)

−j

√(
2π

T
q

)2

− k2

(
for k2 <

(
2π

T
q

)2
) (18)

CEBP
x (q) =

1

2π

M−1∑
v=0

EEBP
x (v)ej2π(

vq
M

)

(
T

M

)
(19)

EEOP
x (v) =

M
2∑

q=1−M
2

CEBP
x (q)e−j{2π( vqM )+kzz′′}

(
2π

T

)
(20)

For the final step in the infinite object height case, the total field in free space EFree
2D and the

shadowing gain SG2D are determined by Eqs. (21) and (22).

EFree
2D = −k2I0

4ωϵ
H

(2)
0 (kd) (21)

SG2D = 20 log10
|ERx|
|EFree

2D |
[dB] (22)
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3. SIMULATION

For validating the accuracy of conventional KA and proposed MKA, full-wave MoM was simulated.
However, for the scattering problem of an object in 3D space at mmWave, the validating time of MoM
was unreasonable. Therefore, the validation by 2D MoM was considered to reduce the validating time.
Thus a cuboid with infinite height was considered as a shadowing object for the sake of simplicity. The
perpendicular polarization was considered for all the methods.

z

y

Figure 5. The environment of simulation (y-z vertical view).

As shown in Fig. 5, the scenario of the simulation was explained as follows. An open region was
considered as the environment, where there were only Tx, Rx, and a cuboid. The parameters of the
environment are shown in Table 1. w denotes the width of the cuboid. t denotes the thickness of the
cuboid. d1 denotes the distance between the center of the cuboid and Tx. d2 denotes the distance
between the center of the cuboid and Rx. f denotes frequency of simulation. ∆d denotes the distance
between the center of the cuboid and Tx-Rx line. ∆d was changed from −45λm to 0m with an interval
of 0.1λm. ∆d < 0 meant cuboid was located at the left side of the Tx-Rx line. ∆d > 0 meant cuboid
was located at the right side of the Tx-Rx line. t was changed from 0.001m to 0.3m with an interval of
0.001m. f was changed from 17GHz to 66.5GHz with an interval of 0.5GHz. The parameters of KA
and MKA are shown in Table 2.

Table 1. Environment parameter.

Parameter Value

f (GHz) 17 : 0.5 : 66.5

d1 (m) 2

d2 (m) 8

w (m) 0.5

t (m) 0.001 : 0.001 : 0.3

∆d (λ) −45 : 0.1 : 0

The parameter setting of KA and MKA is described as follows. The window size was set by
confirming the convergence of results. The aperture plane should be large enough for including the whole
surface of the shadowing object and ensuring a good resolution of frequency spectral parameters [15].
Grid interval should not be larger than half wavelength according to sampling theory [22]. Grid interval
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Table 2. KA and MKA parameter.

Parameter Value

Number of grid points M 217

Grid interval (m) 0.1λ

Window size ∆n 19

determined the distance interval, and hence the requirement of high distance resolution increased grid
points on the large aperture. This meant that the computational complexity was increased. The above
parameter setting considered the balance between accuracy and computation memory.

To validate the accuracy of KA and MKA, MoM [23] was simulated. The piecewise constant
function was selected as the basis function. MoM with point matching method was implemented by
using MATLAB. The implemented MoM was validated by the canonical problems [18]. To obtain the
convergence result, the mesh size was set to λ

10 , and there were 25 integration points for each mesh.

4. RESULTS AND DISCUSSION

Firstly, when the thickness was fixed, the frequency was fixed at 66.5GHz, and the distance was changed.
The shadowing gain results of KA, MKA,and MoM are shown in Fig. 6–Fig. 9 for t = 0.01m, t = 0.03m,
t = 0.1m, and t = 0.3m, respectively. The horizontal axis was ∆d (m) introduced in Fig. 5. The vertical
axis was shadowing gain result in decibel (dB) scale.
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Figure 6. The plot of distance and shadowing gain for t = 0.01m and f = 66.5GHz.

From the results, for each case, the proposed MKA was in good agreement with MoM. The
improvement of the proposal was validated by comparing it with conventional KA and MoM.
Additionally, it could be found that as the thickness of the cuboid increases, the improvement becomes
more significant.

Secondly, when the distance was fixed at 0m, the frequency was fixed at 66.5GHz, and the thickness
was changed. The relationship between thickness and shadowing gain is shown in Fig. 10. The horizontal
axis was t (m) introduced in Fig. 5.

From the result, the proposed method provided good prediction results for the object with any
thickness. The reflection in the secondary diffraction became larger and larger with increasing thickness.
For the case of f = 66.5GHz, ∆d = 0m, and t = 0.3m, the proposed MKA had 8.3 dB improvement
compared with conventional KA.

Thirdly, when the distance was fixed at 0m, the thickness was fixed at 0.3m, and the frequency was
changed from 17GHz to 66.5GHz. The relationship between frequency and shadowing gain is shown
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Figure 7. The plot of distance and shadowing gain for t = 0.03m and f = 66.5GHz.
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Figure 8. The plot of distance and shadowing gain for t = 0.1m and f = 66.5GHz.
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Figure 9. The plot of distance and shadowing gain for t = 0.3m and f = 66.5GHz.

in Fig. 11.
From the result, the proposed method provided good prediction results for the object with any

frequency. The reflection in the secondary diffraction became larger and larger with increasing frequency.
The frequency characteristics of shadowing can be predicted by MKA.
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Figure 10. The relation between thickness and shadowing gain for ∆d = 0m and f = 66.5GHz.
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Figure 11. The relation between frequency and shadowing gain for ∆d = 0m and t = 0.3m.

Furthermore, the calculation time was compared among the KA, MKA, and MoM. The platform
of calculating computer was Windows 10 Home. The processor of calculating computer was Intel(R)
Core(TM) i7-8750H CPU @ 2.20GHz. The usable installed memory of the calculating computer was
15.8GB. The system type of calculating computer was 64-bit Operating System, x64-based processor.
The simulation software was MATLAB. The result of the relation between thickness and calculation
time is shown in Fig. 12 for ∆d = 0m and f = 66.5GHz. The result of the relation between frequency
and calculation time is shown in Fig. 13 for ∆d = 0m and t = 0.3m. The vertical axis is calculation
time (s) on a logarithmic scale.

The calculation time of the conventional KA was about 0.08 s for any thickness or frequency. The
calculation time of the proposed MKA was about 0.21 s for any thickness or frequency. The calculation
time of MoM was about from 82.45 s to 192.12 s for increasing thickness at f = 66.5GHz and from
14.07 s to 192.12 s for increasing frequency at t = 0.3m. Compared with full-wave MoM, the MKA
could provide an extremely fast calculation speed. The errors of the accuracies were evaluated by
considering MoM as a reference and calculated by Eq. (23).

ϵ =

∣∣∣∣SGMethod − SGMoM

SGMoM

∣∣∣∣ (23)

where ϵ means the error of the accuracy. SGMoM means the shadowing gain calculated by MoM in dB
scale. SGMethod means the shadowing gain calculated by KA, MKA, or MoM in dB scale.

The comparisons of the error of the accuracy and computational time among the proposed method
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Figure 12. The relation between thickness and calculation time for ∆d = 0m and f = 66.5GHz.
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Figure 13. The relation between frequency and calculation time for ∆d = 0m and t = 0.3m.

and conventional methods are shown in Table 3 and Table 4. Table 3 is for the condition of changing
thickness at ∆d = 0m and f = 66.5GHz. Table 4 is for the condition of changing frequency at ∆d = 0m
and t = 0.3m.

Table 3. Comparison of proposed method and conventional methods for ∆d = 0m and f = 66.5GHz.

Method Error Computational time (s)

KA 3.9% ∼ 26.3% 0.08

MoM 0% 82.45 ∼ 192.12

This work 0.3% ∼ 3.2% 0.21

Table 4. Comparison of proposed method and conventional methods for ∆d = 0m and t = 0.3m

Method Error Computational time (s)

KA 23.1% ∼ 25.8% 0.08

MoM 0% 14.07 ∼ 192.12

This work 0.3% ∼ 2.7% 0.21
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From Table 3 and Table 4, the proposed method had a good balance between accuracy and
calculation time. Through reduced computational time, this technique was practical for 5G mobile
shadowing prediction in a large environment. This paper focuses on one shadowing object, while the
proposed technique could be utilized in multiple objects case by applying multiple extended planes.
The metal cuboid could be approximated by furniture including a refrigerator, air conditioner, or any
electrical device with a cuboid shape. In addition to mobile use, the car could also be considered as a
cuboid which might be applied in the autopilot field.

5. CONCLUSION

In this paper, a novel method MKA for predicting the shadowing effect by cuboid has been proposed.
The idea by introducing ray-based GO into source-based KA was presented. The detailed mathematical
formulations of the proposal were explained. The MoM was used as a reference for validating the
proposed method. From the validating result, the proposed MKA presented a good balance between
accuracy and calculation time. The MKA had a maximum 8.3 dB improvement compared with
conventional KA. Calculating time was improved by 67–915 times compared with MoM. Furthermore,
the use case of the proposal was discussed.

As the limitation of this work, MKA currently cannot deal with a curved surface. To solve this
drawback, the approximation of curved surface by the combination of several cuboids is considered for
future study. The extension of the applicable range is a future topic.
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