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A Novel Triple Band MIMO Antenna Array for Simultaneous
Communications

Jangampally Rajeshwar Goud1, *, Nalam V. Koteswara Rao2, and Avala M. Prasad3

Abstract—A novel and compact triple-band two-element Multiple Input Multiple Output (MIMO)
antenna array is designed to provide simultaneous communications for uplink and downlink which
covers GSM, LTE, and sub-6 base station applications. The proposed MIMO system is a configuration
of four triple-band two-element arrays in which two are used for uplink and the other two for
downlink. This compact structure with separate antennas for uplink and downlink provides simultaneous
communication. For this proposed structure, the parameters like impedance bandwidth, efficiency, gain,
and cross polarization aspects are presented for all the three specified bands. To achieve good isolation,
uplink and downlink arrays are placed orthogonal to each other. Further, to enhance the isolation
a defected ground is incorporated for the antenna array structure, and isolation strips are provided
between uplink and downlink arrays. In addition, for the proposed structure diversity performance
with Envelope Correlation Coefficient (ECC) and diversity gains are also calculated. The simulated
and measured results are in acceptable correlation.

1. INTRODUCTION

MIMO antenna systems are absolutely necessary to provide high data rate and good channel capacity for
present mobile communications. Peculiarly, base stations need multiband antennas to cover 2G/3G/LTE
(4G)/5G bands, which drives researchers to develop multiband MIMO antenna systems [1]. A great deal
of research has been carried out towards developing multi-broadband and narrow band MIMO antennas
to cover these frequency bands. Broadband can be achieved using folded dipoles [2]. Dual broadbands
are accomplished by a pair of folded dipoles with parasitic elements [3], orthogonal dipoles [4],
trapezoidal dipoles [5], inverted π- and L-shaped antennas [6], and a magnetoelectric dipole [7]. Triple
broadbands are reported using a pair of rings with arrow-shaped dipoles [8] and a coupled-fed strip with
a parasitic arm [9].

Triple narrow bands are obtained with meander-line type inverted-L [10] and meander structure [11].
In these models, isolation is provided for uplink and downlink communications using guard period,
guard band, and discontinuous transmission. To minimize the interference, the base stations need to be
synchronized [12]. To address the problems of discontinuous transmission and interference, multi narrow
band antennas are in demand for achieving simultaneous communications for uplink and downlink.
Studies are reported [13] to provide simultaneous communications by using two independent U-slot
rectangular microstrip antennas.

The performance of MIMO systems also relies on the mutual coupling between the elements. Many
coupling reduction techniques have been reported using parallel coupled resonators [14], F-shaped stubs
in ground plane [15], fractal electromagnetic band gaps [16], two planar-monopole antenna elements [17],
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an S-shaped EBG structure [18], and a parasitic element structure with a single complementary split
ring resonator [19]. Consequently, it is noticed that there is a need for miniaturized multi narrow band
MIMO antennas for simultaneous communications with good isolation between the elements.

In this paper, the configuration of four triple-band two-element MIMO antenna arrays is proposed
for simultaneous communications. The detailed explanation of design and structure of the proposed
antenna and its feeding structure are also presented. Results and diversity performance of the proposed
MIMO array are discussed.

2. ANTENNA DESIGN AND STRUCTURE

2.1. Antenna Array Geometry

The geometry of a triple-band two-element array is shown in Figure 1. Initially, single triple-band
antenna is designed on FR4 (εr = 4.4) with substrate height (h) 1.6 mm, which covers GSM1800,
LTE2600, and sub-6 frequency bands. The upper band is achieved by choosing the appropriate lengths
(L1, L9 and L10) as shown in case I of Figure 2. Middle band is obtained by adding additional lengths
(L2, L6, L7, and L8) to L1 as shown in case II of Figure 2. Case III of the same figure illustrates how
lower band is achieved by adding lengths (L2, L3, L4, and L5) to L1. In the respective three bands, the

Figure 1. Triple-band two-element array. Dimensions — Downlink antenna (in mm): L1 = 11, L2 = 5,
L3 = 6, L4 = 17, L5 = 2, L6 = 3.5, L7 = 14.5, L8 = 1.5, L9 = 5, L10 = 5, W1 = 2, W2 = 1, FL = 4,
FW = 4, F1 = 5.5, F2 = 2, F3 = 7, F4 = 1, F5 = 12.5, F6 = 1.5, F7 = 6, F8 = 2, F9 = 3, F10 = 2,
E1 = 1.5, E2 = 3, E3 = 3.35, E4 = 1.8, E5 = 3, J = 5, GL1 = 20, GW1 = 4, GL = 72, GW = 10.
Uplink antenna (in mm): L1 = 11, L2 = 5, L3 = 6, L4 = 17, L5 = 4, L6 = 3.5, L7 = 14.5, L8 = 1.7,
L9 = 5, L10 = 5, W1 = 2, W2 = 1, FL = 4, FW = 4, F1 = 5.5, F2 = 2, F3 = 7, F4 = 1, F5 = 12.5,
F6 = 1.5, F7 = 6, F8 = 2, F9 = 3, F10 = 2, E1 = 1.5, E2 = 3, E3 = 3.35, E4 = 1.8, E5 = 3, J = 5,
GL1 = 20, GW1 = 4, GL = 72, GW = 10.

Figure 2. Return loss of triple band MIMO array.



Progress In Electromagnetics Research M, Vol. 102, 2021 161

Table 1. Power divider dimensions of uplink and downlink arrays.

Parameter Value (mm)
Length of 50 Ω microstrip line (F1) 0.047λ
Width of 50 Ω microstrip line (F2) 0.017λ

Length of 100 Ω microstrip line (F3) 0.06λ
Width of 100 Ω microstrip line (F4) 0.0086λ
Length of 70.7 Ω microstrip line (F5) 0.108λ
Width of 70.7 Ω microstrip line (F6) 0.013λ
Length of 50 Ω microstrip line (F7) 0.052λ
Width of 50 Ω microstrip line (F8) 0.017λ
Length of 50 Ω microstrip line (F9) 0.026λ
Width of 50 Ω microstrip line (F10) 0.017λ

resonance is obtained when the individual strip length in each case is approximately equal to quarter
wavelength. A compact structure is achieved by bending the strips. The exact resonant frequency is
achieved by varying the length of the strip, and the impedance matching is accomplished by adjusting
the width of the strip (W ). The antenna feeds with a microstrip line having length (FL) and width
(FW ). Beneath the microstrip line, the ground plane is provided with length (GL1) and width (GW1).

To improve the gain and directivity, a two-element array is designed which is shown in Figure 1.
The spacing between the elements is considered approximately half wavelength for upper band, one
third wavelength for middle band, and quarter wavelength for lower band. Corporate feeding technique
is employed for the array. The feed network is designed by using T-shaped power dividers such that
equal amplitude with equal phase is fed to the antenna elements. Quarter wave transformers and also
mitering the corners of the bends are used for impedance matching. Power divider dimensions of uplink
and downlink arrays are shown in Table 1 and are indicated in terms of λ (Wavelength of middle band).
Beneath the corporate feed the ground plane is printed with length (GL) and width (GW ).

2.2. MIMO Array Geometry

To meet the requirement of simultaneous communications, it is required to design the uplink and
downlink antennas separately. Desired frequencies of uplink and downlink communications are obtained
by considering the proper length of strips. The proposed MIMO antenna consists of four triple-band

(a) (b) (c)

Figure 3. Triple band two element MIMO antenna array. (a) Geometry. (b) Fabricated antenna (top
view). (c) Fabricated antenna (bottom view). Dimensions (in mm): SL = 120, SW = 120, H1 = 55,
H2 = 2, K = 12.
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two-element antenna arrays in which two are used for uplink and the other two for downlink as shown
in Figure 3. Ports P1 and P2 are assigned for downlink MIMO antenna arrays and ports P3 and P4
assigned for uplink MIMO antenna arrays. The proposed antenna simulation results are carried out
using HFSS, and its structure is fabricated on an FR4 substrate (120mm×120 mm) with height 1.6 mm.

As shown in Figure 3, ports P1 and P2 of downlink antenna arrays are diagonally located. Similarly,
ports P3 and P4 of uplink antenna arrays are also placed. Further, ports P1, P3 and P2, P4 are right
angle to each other. Isolation strips are placed for reducing the mutual coupling between these uplink
and downlink antenna arrays which also results in an improved diversity performance. The triple-
band two-element MIMO antenna array geometry and fabricated antenna are shown in Figure 3. The
proposed MIMO antenna array is easy to integrate with the practical system of relevant applications
due to its compact and planar structure.

3. RESULTS AND DISCUSSION

3.1. Downlink MIMO Antenna Array

The triple-band downlink antenna array is designed to operate in GSM1800, LTE2600, and sub-6 bands.
The ranges of frequencies 1805–1880 MHz and 2620–2690 MHz are used for downlink communication in
the first (GSM1800) and second (LTE2600) bands, respectively [20]. The third band (sub-6 n78 NR)
with frequency range 3300–3800 MHz is used for 5G uplink and downlink communications. Reflection
coefficients of all the ports are measured using KEYSIGHT N9915A Microwave Analyzer. The return
loss of downlink array is obtained by exciting port P1 and terminating all the other ports. The
simulated impedance bandwidths of the first, second, and third bands are obtained at 1790–1900 MHz,
2625–2670 MHz, and 3500–3690 MHz, respectively; however, the measured impedance bandwidths for
same bands are obtained at 1810–1920 MHz, 2650–2720 MHz, and 3510–3720 MHz which can be seen
in Figure 4. More than 70 MHz bandwidth is achieved in all the specified bands which are listed in
Table 2.

Simulated and measured radiation patterns of downlink antenna array are plotted at 1.85 GHz,
2.65 GHz, and 3.65 GHz as shown in Figure 7. Radiation patterns are obtained in far field region in
which horn antenna is used for transmission, and proposed antenna is used for reception. These patterns
are obtained when port P1 is used for reception, and all other ports are terminated with matched load.
The simulated and measured total gain patterns are plotted at Φ = 0◦ and Φ = 90◦. The simulated
half power beam widths 73◦, 68◦, 62◦ and measured 51◦, 46◦, 43◦ are achieved at 1.85 GHz, 2.65 GHz,
and 3.65 GHz, respectively. Similarly, efficiencies 65.74%, 69.26%, 74.76% are obtained in simulation
and 63.56%, 67.32%, 72.58% in measured results. Cross polarizations are more than 23 dBi, 20 dBi, and
18 dBi in both results. The peak gains are listed in Table 2. Gain verses frequency plot of downlink
antenna array is shown in Figure 6.

Figure 4. Return loss of triple band downlink
MIMO antenna array.

Figure 5. Return loss of triple band uplink
MIMO antenna array.
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Figure 6. Gain versus frequency of uplink and downlink MIMO array.

(a) (b) (c)

Figure 7. Radiation patterns of downlink antenna array. (a) 1.85 GHz, (b) 2.65 GHz, (c) 3.65 GHz.

3.2. Uplink MIMO Antenna Array

The triple-band uplink antenna array is designed to operate in GSM1800, LTE2600, and sub-6 bands.
The ranges of frequencies 1710–1785 MHz and 2500–2570 MHz are used for uplink communication in
the first and second bands, respectively [20]. The return loss of uplink array is obtained by exciting
port P3 and terminating all the other ports. The simulated impedance bandwidths of the first, second,
and third bands are obtained at 1720–1800 MHz, 2530–2600 MHz, and 3480–3690 MHz, respectively,
where the measured impedance bandwidths for the same bands are obtained at 1740–1810 MHz, 2540–
2620 MHz, and 3500–3710 MHz which can be seen in Figure 5. More than 70 MHz bandwidth is obtained
in all three specified bands.

Simulated and measured radiation patterns of uplink antenna array are plotted at 1.75 GHz,
2.55 GHz, and 3.55 GHz as shown in Figure 8. The simulated and measured total gain patterns are
plotted at Φ = 0◦ and Φ = 90◦.

The simulated half power beam widths 74◦, 66◦, 61◦ and measured 53◦, 47◦, 42◦ are achieved
at 1.75 GHz, 2.65 GHz, and 3.55 GHz, respectively. Similarly, efficiencies 65.21%, 70.42%, 75.83% are
obtained in simulation and 63.24%, 68.38%, 73.29% in measured results. Cross polarizations are more
than 22 dBi, 20 dBi, and 17 dBi in both results. The peak gains are listed in Table 2. Gain verses
frequency plot of uplink antenna array is shown in Figure 6.

In downlink antenna array, port-1 is excited, and all other ports are terminated with matched load.
The surface current is distributed in L1, L9, and L10 strips when the antenna resonates at upper band
which is shown in Figure 9(a). Similarly when the antenna resonates at middle band and upper band,
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Table 2. Comparison between proposed antenna and triple band antennas.

Ref.
Size (mm)

(L × W × h)
Freq.

Band

Width (MHz)

Isolation

(dB)
ECC

Gain

(dBi)

[8] 152 × 152 × 12

f1: 2.4

f2: 3.5

f3: 5

BW1: 100

BW2: 300

BW3: 800

> 20 < 0.1

f1: 7.5

f2: 8.2

f3: 9.3

[9] 150 × 75 × 3.8

f1: 3.5

f2: 5.5

f3: 5.9

BW1: 500

BW2: 200

BW3: 775

> 10.5 < 0.12

f1: 3.2

f2: 3.5

f3: 4.2

[10] 100 × 65 × 1.6

f1: 0.9

f2: 1.8

f3: 2.6

BW1: 30

BW2: 50

BW3: 280

> 11 < 0.7

f1: 0.25

f2: 0.60

f3: 3.28

[11] 42 × 15 × 1.6

f1: 0.9

f2: 1.8

f3: 2.4

BW1: 30

BW2: 40

BW3: 30

NG NG

f1: 1.6

f2: 2.1

f3: 1.9

[13] 70 × 130 × 1.6

f1U : 0.82

f2U : 1.74

f3U : 2.34

BW1: 9

BW2: 23

BW3: 34
> 20 < 0.02

f1U : 2.26

f2U : 3.42

f3U : 2.84

f1D: 0.88

f2D: 1.83

f3D: 2.35

BW1: 8

BW2: 40

BW3: 37

f1D: 1.62

f2D: 2.36

f3D: 2.84

PROPOSED 120 × 120 × 1.6

f1U : 1.75

f2U : 2.55

f3U : 3.55

BW1: 70

BW2: 80

BW3: 210
> 26 < 0.13

f1U : 3.15

f2U : 4.65

f3U : 6.84

f1D: 1.85

f2D: 2.65

f3D: 3.65

BW1: 110

BW2: 70

BW3: 210

f1D: 3.37

f2D: 4.42

f3D: 6.37

f : Resonance frequency, BW: Band width, NG: Not Given, U: Uplink and D: Downlink

(a) (b) (c)

Figure 8. Radiation patterns of uplink antenna array. (a) 1.75 GHz, (b) 2.55 GHz, (c) 3.55 GHz.
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(a) (b) (c)

Figure 9. Current distribution of downlink antenna array. (a) 1.85 GHz, (b) 2.65 GHz, (c) 3.65 GHz.

(a) (b) (c)

Figure 10. Current distribution of uplink antenna array. (a) 1.75 GHz, (b) 2.55 GHz, (c) 3.55 GHz.

the current is distributed in (L1, L2, L6, L7, and L8) and (L1, L2, L3, L4, and L5) strips which are
shown in Figures 9(b) and 9(c), respectively. This is explained in detail using three different cases in
Section 2.1. In uplink antenna array, port-4 is excited, and all other ports are terminated with matched
load; current distribution is observed similar to downlink antenna array which is shown in Figure 10.

3.3. Isolation between MIMO Antenna Arrays

Mutual coupling is an important parameter in MIMO system. The MIMO system requires at least
12 dB isolation between the ports. The two uplink antenna array elements are placed diagonal to each
other, and in a similar way, downlink antenna array elements are also placed diagonal to each other
whereas uplink and downlink array elements are placed orthogonally to improve the performance of
MIMO system. Defected ground plane is used to decouple the array elements. Spacing (J) between the
edge of the substrate and location of the ground plane is optimized to reduce the mutual coupling [10].

The isolation between the downlink array elements (i.e., P1 and P2) and uplink array elements
(i.e., P3 and P4) is more than 30 dB achieved in simulation. Also, more than 23 dB simulated
isolation between uplink array and downlink array is obtained, i.e., (P1 and P3), (P1 and P4), (P3
and P1), and (P3 and P2). Placing isolation strips between the uplink and downlink antenna arrays
has experimentally resulted in an isolation of 26 dB. Figure 11 describes the comparison of isolation
parameters with and without strips. Spacing (K) between the edge of the substrate and location of the
isolation strip is optimized for obtaining a better isolation.

The arrangement of proposed structure without placing the strips in between the arrays is shown
in Figure 12(a) where Figure 12(b) shows the arrangement of arrays with strips. The corresponding



166 Rajeshwar Goud, Koteswara Rao, and Prasad

(a)

(b)

Figure 11. Mutual coupling between the MIMO array elements, (a) S12, S13 and S14, (b) S34, S31 and
S32.

(a) (b)

Figure 12. Current distribution of proposed MIMO antenna, (a) without isolation strips and (b) with
isolation strips.

surface current distributions are also indicated in the figures. It is noticed that there is an increment of
3 dB isolation by adding isolation strips between the uplink and downlink antenna arrays.

4. DIVERSITY PERFORMANCE OF MIMO ANTENNA ARRAYS

Envelope correlation coefficient (ECC) is a major parameter to estimate the diversity performance of
MIMO system. ECC and diversity gain are measured separately for uplink and downlink MIMO antenna
arrays. ECC can be calculated using two methods. In the first method, ECC (ρe) can be obtained by
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mathematically calculating from below expression using measured far field radiation patterns [21].

ECC(ρe) =

∣∣�
Ω [Ei (θ,Φ) · Ej (θ,Φ)] dΩ

∣∣2
�

Ω

[
|Eθi (θ,Φ)|2 + |EΦi (θ,Φ)|2

]
dΩ
�

Ω

[
|Eθj (θ,Φ)|2 + |EΦj (θ,Φ)|2

]
dΩ

(1)

where
Ei (θ,Φ) · Ej (θ,Φ) = Eθi (θ,Φ)E∗

θj (θ,Φ) + EΦi (θ,Φ)E∗
Φj (θ,Φ) (2)

Eθ and EΦ are the electric far field components along elevation (θ) and azimuth (Φ) angles, respectively.
For downlink MIMO antenna array, i corresponds to P1, and j corresponds to P2. Similarly for
uplink MIMO antenna array, i corresponds to P3, and j corresponds to P4. Electric field components
of downlink MIMO antenna array is calculated by exciting P1 and terminating the other ports with
matched load. Electric field components of all the other ports are obtained in a similar way, i.e., exciting
the respective ports and terminating the remaining ports. The ECC values below 0.13 and diversity
gain more than 9.88 dBi are obtained for all three bands of downlink and uplink MIMO antenna arrays.

In the second method, ECCs of downlink and uplink MIMO antenna arrays are obtained using S-
parameters [21]. The ECC and diversity gain of uplink and downlink antenna arrays can be calculated
mathematically using following expressions.

ECC(ρeD) =
|S∗

11S12 + S∗
21S22|2(

1 − |S11|2 − |S21|2
) (

1 − |S22|2 − |S12|2
) (3)

ECC(ρeU ) =
|S∗

33S34 + S∗
43S44|2(

1 − |S33|2 − |S43|2
) (

1 − |S44|2 − |S34|2
) (4)

Diversity Gain (Downlink) = 10
√

1 − |ECC(ρeD)|2 (5)

Diversity Gain (Uplink) = 10
√

1 − |ECC(ρeU )|2 (6)

The ECC values below 0.05 and diversity gain more than 9.95 dBi are obtained for all three bands of
both downlink and uplink MIMO antenna arrays which are shown in Figure 13. In both methods, it is
observed that ECC and diversity gain calculations are in the acceptable range [22].

Figure 13. ECC of triple band MIMO antenna array.

5. CONCLUSION

In this paper, a configuration of four triple-band two-element MIMO antenna arrays is presented and
finds applications for GSM1800, LTE2600, and sub-6 base stations for the purposes of uplink and
downlink communications. Better than −15 dB return loss is achieved in all three bands. Impedance
bandwidths of 70 MHz, 80 MHz, and 210 MHz are obtained practically for uplink antenna array whereas
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110 MHz, 70 MHz, and 210 MHz are noticed for the downlink antenna arrays, in respective three bands.
Further, experimental results show that the proposed antenna array achieves more than 3.15 dBi peak
gain, 17 dBi cross polarizations, and 63% efficiencies in all three specified bands. An isolation better
than 26 dB is found practically which in turn improves the diversity performance of MIMO system.
The calculated ECC values are less than 0.13 in all three bands. The proposed MIMO antenna array
is easy to integrate with practical system since it is compact and has planar structure. Simulated and
measured results are found in good agreement.
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