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Partial Electrical Equivalent Circuits and Finite Difference Methods
Coupling; Application to Eddy Currents Calculation

for Conductive and Magnetic Thin Plates

Saida Djemoui1, Hicham Allag1,
Mohammed Chebout2, *, and Houssem R. El-Hana Bouchekara3

Abstract—This paper presents a new integro-differential coupling between partial equivalent electrical
circuits (PEEC) and finite difference method (FDM) taking into account the magnetization effect. This
coupling is intended for thin plates having simultaneously significant conductive and magnetic properties
in the presence of exciting coils of complex topologies. These cases exist in eddy current nondestructive
testing (ECNDT), eddy current separation, induction or levitation melting devices, and more other
applications. The choice of FDM, is in relation with rectangular surfaces generated by numerical meshes
leading to mathematical integrations of magnetic and electrical quantities with independent variables,
unlike more complicated forms of surfaces generated by finite element method (FEM) or others. Fully
successful analytical expressions have been realized and implemented in overall coupling process. The
PEEC method is mainly used to calculate the magnetic field applied to the nodes of the plate from
different inclined polygonal coils. The results of magnetic field and eddy current distributions on thin
plates are presented, and parts of them are compared with those realized by Flux 3D software.

1. INTRODUCTION

Accidental or voluntary eddy currents generation in metal objects is a classical well-known phenomenon
used in various practical applications. Eddy current nondestructive testing (ECNDT) is one of
interesting tools to mainly detect serious cracks in metal plates by measuring impedance changes [1–3].
Eddy current separation is also a relevant method for extricating conducting and magnetic particles
from other ores, liquids or grainy manufactured products [4, 5]. In levitation melting, eddy currents
are responsible to heat, melt specific objects and already help to repel particles avoiding any direct
contact with the container [6, 7]. Another recent technology called electrodynamic sorting uses high-
frequency electromagnets to separate conducting metal particles from other of a different physical nature
container [8–10]. Electromagnetic damping signifies the creation of a resistive force that causes a
conductive object, in which eddy currents flow, to slow down without physically touching it. It is a
principle used on rail brakes to help high-speed rail carriages stop at certain points without the need
of physical brakes. From the cited applications of eddy currents, a great number of induced regions
can be considered as thin. The property of being thin can obey at two different aspects, geometrical
and electromagnetic geometrical ones, because the regions have at least one thickness incomparably
smaller than the other dimensions, electromagnetically thin, if the thickness is much smaller than the
penetration depth of the electromagnetic field [11]. The study and analysis of eddy current distributions
in systems containing a thin plate and complex topologies of coils need specific treatments. Several
research articles in the field of nondestructive testing (NDT) have addressed the cases of thin materials
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whether for the simultaneous measurement of the distance and the thickness of a thin metal plate based
on the analytical Deed and Dodd model [12], or the use of the multi-frequency and pulsed eddy current
technique for the same reason [13, 14]. Other work has overcome the problems generated by the modeling
of thin regions by the finite element method, based on the surface impedance approach [15, 16]. For
these types of 3D applications, the direct use of differential approaches, such as finite element method
(FEM) or others, is often difficult and may be sometimes inefficient because of meshes generation
(generating bi-dimensional elements for thin regions and three-dimensional elements for all other parts
of the concerned systems). The partial equivalent electrical circuits (PEEC) method is mainly used for
modelling complex electrical interconnections and can be applied to a large range of devices in which the
air region is really dominant [17–22]. The developments in classical PEEC method need to be applied
for conducting materials by calculating magnetic and electrical interactions (inductances, capacitances
for arbitrary oriented parallelepipedic elementary conductors). This technique has the advantage that
it is reasonably intuitive to many electrical engineers, and it is easy to integrate the field solver with
real circuit elements. Problems can be solved in the time domain or in the frequency domain [23–
26]. The major inconvenience of the PEEC resides in its incapability to treat magnetic materials
without associating other approaches. In this way, the newest works for coupling PEEC with FEM
were realized [27]. For such applications, there exist two types of meshes, the mesh of exciting inductors
generated for PEEC method and the mesh of the thin plate by 2D triangular finite elements. In [27–30],
the authors implement the magnetization and eddy current effects in thin plates by calculating the result
integrals among triangular surfaces of the 2D meshes. These calculations of integrals with dependent
geometric variables are not easy to solve, and they are actually issued by numerical ways. In this work,
we propose a new coupling between PEEC and FDM in which all the electromagnetic interactions can be
expressed analytically and integrated in the total global matrix system to gain more speed and precision
when dealing with these three-dimensional electromagnetic problems. Like that, we also benefit from
the advantages of the two methods, PEEC and FDM, for which the developments are ceaseless. For
FDM, the newest works were developed notably in grids considerations. [31] confirmed that the FDM
with hexahedral elements and edge element method have common features. The newest structures of
finite-difference schemes were exposed by [32, 33]. [34] proposed the high-order finite-difference schemes
for Navier-Stokes 2D equations. By this approach, we also think about 2D materials and thin films
caracterization and modelling [35]).

2. MATHEMATICAL MODELING

2.1. Problem Description

The adopted electromagnetic model for our problem is the same as those approached in [27–30]. The
formulation contains the electric potential and magnetization for the thin plate:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇2 �T − jωμσ

(
μr

μr − 1

)
�M = 0

�M (�r)
μr − 1

+
�∇
4π

∫
V

�M (�r)∣∣∣�r − �r′
∣∣∣3 ×

(
�r − �r′

)
dV ′ − 1

4π

∫
V

�∇∧
[
�T
(
�r′
)
· �n
]
×
(
�r − �r′

)
∣∣∣�r − �r′

∣∣∣3 dV ′ = �H0

(1)

In this formulation, eddy currents are assumed to flow tangentially to the plate allow us to consider
only a normal component of the electric potential T. The entire problem is composed of a three-
dimensional oriented massive coil above a conducting and magnetic thin plate located at the xOy plane
of the cartesian coordinate system, Figure 1. The normal applied magnetic field H0 on the plate issued
from the massive conductor coils is entirely calculated by PEEC method. From Equation (1), the two
integrals will be developed analytically and integrated in FDM process. Applying FDM to the thin
plate, we obtain the total matrix system according to Equations (1) and presented as:[

[A] [B]
[C] [D]

]
.

[
[T ]
[M ]

]
=
[

[0]
[H0]

]
(2)

All the elementary squares matrices (A, B, C, and D) have the same size according to the total number
of grid nodes.
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Figure 1. Electromagnetic system.

2.2. Matrices Developments

2.2.1. Matrix [A]

Matrix [A] is in relation with Laplacian operator ∇2. Generally in FDM, the rectangular physical region
is composed of a uniform grid. As shown in Figure 2, the ascendant numbering is made respective to
x axis (it can also be done for y axis). This regular mesh has a uniform discretisation in the two axes
respecting constant steps Δx and Δy. With these considerations, the Laplacian is given:

∇2T =
∂2T

∂x2
+
∂2T

∂y2
=
T (i+ 1, j) − 2T (i, j) + T (i− 1, j)

Δx2
+
T (i, j + 1) − 2T (i, j) + T (i, j − 1)

Δy2
(3)

According to the grid shown at Figure 2, we can partially express the Ax and Ay matrices in direct

relation with
∂2T

∂x2
and

∂2T

∂y2
, as:

Ax =
−1
Δx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

2 −1 . . . 0
−1 2 −1 . . .
... 0

. . . 0
0 . . . −1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦ . . .

⎡
⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 −1 . . . 0
−1 2 −1 . . .
... 0

. . . 0
0 . . . −1 2

⎤
⎥⎥⎦ . . .

⎡
⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦

...
...

. . .
...⎡

⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦ . . .

⎡
⎢⎢⎣

2 −1 . . . 0
−1 2 −1 . . .
... 0

. . . 0
0 . . . −1 2

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

A little difference is obtained for Ay. The two adjacent values will be situated in different
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Figure 2. Finite difference mesh adopted for thin plate.

submatrices:

Ay =
−1
Δy2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

2 0 . . . 0
0 2 . . . 0
... 0

. . . 0
0 0 . . . 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1 0 . . . 0
0 −1 . . . 0
... 0

. . . 0
0 0 . . . −1
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⎥⎥⎦ . . .
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0 0 . . . 0
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⎥⎥⎦

⎡
⎢⎢⎣

2 0 . . . 0
0 2 . . . 0
... 0

. . . 0
0 0 . . . 2

⎤
⎥⎥⎦ . . .

⎡
⎢⎢⎣

0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦

...
...

. . .
...⎡

⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦
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... 0
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⎡
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2 0 . . . 0
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... 0

. . . 0
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⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Finally, the full matrix [A] is reached by adding Ax and Ay (Equation (3)).

2.2.2. Matrix [B]

[B] is a diagonal matrix with the same dimension of A, and it is expressed according to Equation (1):

[B] =
jωμσμr

μr − 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
... 0

. . . 0
0 0 . . . 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
0 0 . . . 0

⎤
⎥⎥⎦ . . .

⎡
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0 0 . . . 0
0 0 . . . 0
... 0

. . . 0
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⎥⎥⎦
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0 0 . . . 0
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... 0

. . . 0
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⎥⎥⎦
⎡
⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
... 0
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⎥⎥⎦
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...⎡
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... 0

. . . 0
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⎤
⎥⎥⎦
⎡
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... 0
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⎥⎥⎦ . . .

⎡
⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
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=
jωμσμr

(μr − 1)
[Id] (6)
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[Id] is the identity matrix of the same size as [B].

2.2.3. Matrix [C]

All the original developments are made for constructing [C] and [D] matrices. The hardest work resides
in resolving multiple integrals and exploiting the obtaining analytical expressions for building the cited
matrices. For the matrix [C] corresponding to the present expression (see Equation (1)), we have the
term:

1
4π

∫
V

�∇∧
[
�T
(
�r′
)
· �n
]
×
(
�r − �r′

)
∣∣∣�r − �r′

∣∣∣3 dV ′ =
e

4π

∫
x′

∫
y′

�∇∧
[
�T
(
�r′
)
· �n
]
×
(
�r − �r′

)
∣∣∣�r − �r′

∣∣∣3 dx′dy′ (7)

First, we develop the expressions inside the volumic integral. Consequently, we obtain:

�∇∧ �T
(
�r′
)

=
(
∂T

∂y
�i− ∂T

∂x
�j

)
(8)

�∇∧ �T
(
�r′
)
×
(
�r − �r′

)
=
(
∂T

∂y

(
y − y′

)
+ −∂T

∂x

(
x− x′

))
�k (9)

The last expression to be integrated becomes:

e

4π

Δx′
2∫

−Δx′
2

Δy′
2∫

−Δy′
2

⎛
⎜⎜⎝

∂T

∂y
(y − y′)√

(x− x′)2 + (y − y′)2
3 +

∂T

∂x
(x− x′)√

(x− x′)2 + (y − y′)2
3

⎞
⎟⎟⎠ dx′dy′ (10)

After all integrations, we obtain a pure analytical expression:

3eT
2π

⎡
⎣
√

(x− x′)2 + (y − y′)2

(x− x′) (y − y′)

⎤
⎦

Δx′
2

−Δx′
2

∣∣∣∣∣
Δy′
2

−Δy′
2

= T
3e
2π

1∑
p=0

1∑
q=0

(−1)p+q

⎡
⎢⎢⎢⎢⎣

√(
x− (−1)p · Δx′

2

)2

+
(
y − (−1)q · Δy′

2

)2

(
x− (−1)p · Δx′

2

)
·
(
y − (−1)q · Δy′

2

)
⎤
⎥⎥⎥⎥⎦ (11)

In this last expression, we denote the presence of the variables (x, y) and (x′, y′). The x and y
present the calculation point coordinates in the thin plate, and x′ and y′ are the elementary element
coordinates from the thin plate interacting with all elements generated by the regular grid according to
FDM consideration Figure 3 and Figure 4.

To avoid possible singularities known in integral approaches and to have same matrices sizes, we
choose the calculation points identical to real nodes, but for integrals calculation, the corresponding
elements are generated by another fictive grid (see discontinuous lines configuration in Figure 4. For
simplifying the matrix forme, we can write the matrix [C] as:

[Cij] =
3e
2π

1∑
p=0

1∑
q=0

(−1)p+q

⎡
⎢⎢⎢⎢⎣

√((
xi − xj + (−1)p · Δx′

2

))2

+
((

yi − yj + (−1)q · Δy′

2

))2

((
xi − xj + (−1)p · Δx′

2

))
·
((

yi − yj + (−1)q · Δy′

2

))
⎤
⎥⎥⎥⎥⎦ (12)

The i and j indices correspond respectively to the observation point and the center of the rectangular
element.
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Figure 3. Calculation principle on the thin plate.

Figure 4. Grids and nodes presentation.

2.2.4. Matrix [D]

The main influencing term in matrix [D] always has an integral form (Equation (1)). It can be expressed
by another manner as:

�∇
4π

∫
V

�M (�r)∣∣∣�r − �r′
∣∣∣3 ×

(
�r − �r′

)
dV ′ =

1
4π

∫
V

⎡
⎢⎣− �M

(
�r′
)

∣∣∣�r − �r′
∣∣∣3 + 3

�M
(
�r′
)
×
(
�r − �r′

)
∣∣∣�r − �r′

∣∣∣5
(
�r − �r′

)⎤⎥⎦ dV ′ (13)

The magnetization M is assumed to be co-linear with the applied magnetic field and normal to the
surface of the thin plate [1, 2]. In this case, the second term of Equation (13) will be neglected (scalar
product). From the last expression, the first term will only be considered:

�∇
4π

∫
V

�M
(
�r′
)
·
(
�r − �r′

)
∣∣∣�r − �r′

∣∣∣3 dV ′ =
−e
2π
M

⎡
⎣
√

(x− x′)2 + (y − y′)2

(x− x′) (y − y′)

⎤
⎦

Δx′
2

−Δx′
2

∣∣∣∣∣
Δy′
2

−Δy′
2

(14)
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We take the same considerations as in developing [C] matrix, and respecting Equations (1) and (2), we
obtain:

[D] =
1

μr − 1
([Id] + [Dij]) (15)

[Dij] =
e

2π

1∑
p=0

1∑
q=0

(−1)p+q

⎡
⎢⎢⎢⎢⎣

√((
xi − xj + (−1)p · Δx′

2

))2

+
((

yi − yj + (−1)q · Δy′

2

))2

((
xi − xj + (−1)p · Δx′

2

))
·
((

yi − yj + (−1)q · Δy′

2

))
⎤
⎥⎥⎥⎥⎦ (16)

2.2.5. Calculation of [H0] Vector by PEEC Method

Because of complex topologies of massive conductors for exciting coils near the thin plate, we develop a
three-dimensional procedure and compute the magnetic field in the thin plate according to the regular
mesh imposed by the FDM considerations. Our goal is to always consider the plate at the xOy plane
and the inclined configuration for the coil. Initially, we can realize the calculation procedure for an
arbitrary oriented conductor element of the coil, indicated by (n) Figure 5. The basis model consists
of a calculation of magnetic field produced by an elementary parallelepipedic conductor (n) carrying
constant current In in Xn direction and placed in a center of the local axis OnXnY nZn also defined
in global reference Oxyz, as shown in Figure 5. This model was adopted by us for only one angle
of inclination [36, 37]. In this case, two angles will be considered (Θ and Ψ for Euler transformations
consideration). The only component AXn is defined in its local reference. At any point M according to
OnXnYnZn, the magnetic vector potential component AXn is given as:

Axn =
μ0

4π

cn∫
−cn

bn∫
−bn

an∫
−an

⎛
⎝ Jx∣∣∣�R∣∣∣dXndYndZn

⎞
⎠ (17)

with ∣∣∣�R∣∣∣ =
√(

Xcn −Xn

)2
+
(
Ycn − Yn

)2
+
(
Zcn − Zn

)2
(18)

We can obtain the magnetic fields by:

�H =
�∇× �A

μ0
(19)

Figure 5. Arbitrary oriented coil conductor element.
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After all integrations of Eq. (17) and applying the rotational expression (19), the solution of magnetic
field components is given by intermediary variables, Un, Vn, and Wn.

HY n =
Jx

4π

1∑
i=0

1∑
j=0

1∑
k=0

(−1)i+j+k

(
Un ln(rn − Vn) + Vn ln(rn − Un) +Wn tan−1

(
UnVn

Wnrn

))
(20)

HZn =
Jx

4π

1∑
i=0

1∑
j=0

1∑
k=0

(−1)i+j+k

(
−Un ln(rn −Wn) −Wn ln(rn − Un) − Vn tan−1

(
UnWn

Vnrn

))
(21)

with the intermediary variables, Un, Vn, and Wn, respectively:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Un = Xcn − (−1)ian

Vn = Ycn − (−1)jbn
Wn = Zcn − (−1)kcn
rn =

√
U2

n + V 2
n +W 2

n

(22)

It is interesting to define the magnetic field at the same point M(x, y, z) defined in the absolute reference
Oxyz and according to direct rotation using Euler transformations matrices (around z axis and y axis)[

Xcn

Ycn

Zcn

]
=

[ cos θn sin θn 0
− sin θn cos θn 0

0 0 1

][ cosψn 0 − sinψn

0 1 0
sinψn 0 cosψn

][
xj − αn

yj − βn

zj − γn

]
= [Tn]

[
xj − αn

yj − βn

zj − γn

]
(23)

[Tn] =

[ cos θn sin θn 0
− sin θn cos θn 0

0 0 1

][cosψn 0 − sinψn

0 1 0
sinψn 0 cosψn

]

=

[ cos θn cosψn sin θn − cos θn sinψn

− sin θn cosψn cos θn sin θn sinψn

sinψn 0 cosψn

]
(24)

⎧⎨
⎩
Un = (xj−αn) cos θn cosψn+(yj−βn) sin θn−(zj−γn) cos θn sinψn−(−1)ian

Vn = − (xj−αn) sin θn cosψn+(yj−βn) cos θn+(zj−γn) sin θn sinψn−(−1)jbn
Wn = (xj−αn) sinψn+(zj−γn) cosψn−(−1)kcn

(25)

From the vector potential component in the inclined local referential, we can now calculate the magnetic
field in the general basis referential Oxyz by the inverse transformation matrix.[

Hxn

Hyn

Hzn

]
= [Tn]−1

[ 0
HYn

HZn

]
(26)

[Tn]−1 =

[ cos θn cosψn − sin θn cosψn sinψn

sin θn cos θn 0
− cos θn sinψn sin θn sinψn cosψn

]
(27)

Hxn = −HY n sin θn cosψn +HZn sinψn (28)
Hyn = HY n cos θn (29)
Hzn = HY n sin θn sinψn +HZn cosψn (30)

To validate our developments, we apply this basic principle to calculate the magnetic field around
different coils. For all cuboidal elements (Nseg) of the closed coil, each segment is defined simultaneously
by its inclined angle and proper dimensions. The total magnetic vector potential becomes:

Hx =
Nseg∑
n=1

Hxn Hx =
Nseg∑
n=1

Hxn Hz =
Nseg∑
n=1

Hzn (31)

According to the thin plate placed in Oxy plane, only the Hz component will be considered. The
vector H0j is defined according to the node coordinates (xj , yj, and zi = cst)

H0j = Hzj (32)
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2.3. Calculation Summary

The total calculation steps for determining eddy currents and magnetization can be respectively sum-
marized as:

Partial equivalent electrical circuits (PEEC) Method

1. Number and dimensions of all (n) linear massive conductors (Nseg, an, bn, cn).

2. Centers coordinates of parallelipipedic conductors (αn, βn, γn).

3. Inclined angles (θn and ψn).

4. Rectangular grid coordinates of thin plate in Oxy plane (xj , yj and zj = cst).

5. Calculation of (XCn, YCn and ZCn) from Equation (23).

6. Calculation of (Un, Vn,Wn and rn) from Equation (22).

7. Calculation of local elementary magnetic field components in Equations (20) and (21).

8. Calculation of global magnetic field components in thin plate Equations (28) to (30).

9. Calculation of global field components from all coil in thin plate Equation (31).

10. From results, we calculate H0 the normal field component on thin plate Equation (32).

Finite difference method-FDM

11. Generating the matrices [A], [B], [C] and [D] from respectively Equations (4), (5), (6), (12)
and (16).

12. Resolving the global matrix system Equation (2).

2.4. Applications

2.4.1. Calculation of Magnetic Field on Thin Plate from Polygonal Arbitrary Oriented Coils

To compose aimed polygonal shapes, we demonstrate the manner to consider several topologies of
massive coils by generating multiple parallelipepedic conductors, to compose the aimed polygonal
shapes. Figure 6 shows rectangular and hexagonal coils. For hexagonal form, we have demonstrated
the numbering of conductor segments to reach the total number defined by Nseg = 6. Each segment is
inclined by θn and Ψn versus the global x axis (element 2 was chosen for demonstration).

Figure 6. Arbitrary oriented polygonal coils.
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We generate regular polygons by respecting the chosen circle circumference. The θn angles are
increased by a constant angle equivalent to (360/Nseg) in degree. The Ψn angles are generally constant
and equal for all massive conductor’s bloc, and they are responsible of coil tilt. It is also possible
to generate more complex and arbitrary configurations by imposing corner points, which respectively
link two adjacent parallelepedic conductors. The conducting ferromagnetic plate has a conductivity
σ = 9.6 MS/m and relative permeability μr = 50 [1]. The thickness is e = 1.5 mm, and the dimension
is 200 × 200 mm. A square coil of dimension 100 × 100 mm is placed above this plate, inclined by 30◦
and supplied with a current of 1 A and cross section of the coil (2a× 2b = 6 × 6 mm) Figure 7(a).

(a) (b)

(c) (d)

Figure 7. Calculated magnetic field from different coil configurations.

With the same diametral distance and increasing the number of segments to Nseg = 20, we can
obtain a circular loop configuration and its magnetic field generated on the same plate Figure 7(b).
A hexagonal coil is obtained for Nseg = 6 Figure 7(c), and its generated magnetic field intensity is
situated between the square and circular loops because of the differences in elementary conductors
number and the enclosed surface. Figure 7(d) demonstrates a magnetic field concentration possibility
from an hexagonal pancake coil of 6 turns starting from an outer diameter. All the results of Figure 7
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were obtained by programming our approach in Matlab software. The FDM grid was imposed in XY
plane, and the coils were shaped by patch elements. By this way, we can also build more complex coils
configurations by implementing arbitrary shapes, hence the strength of this PEEC model is associated
with Euler’s geometric transformations.

2.4.2. Calculation of Eddy Currents on Thin Plate

After calculating eddy current distribution on a thin plate by PEEC/FD model, we now validate, in
Figure 8 and Figure 9, the same prototype under the equivalent physical considerations using Flux3D
finite element software. The curly shape of the currents for 50 Hz power supply is observed for the two
approaches. Globally, the two models present similar eddy current densities in which we can observe the
highest values in the closer zone between the coil and the plate. For more precise presentation results,
we choose one line segment on the plate parallel to y-axis, defined by the two points (0,−0.15) (0, 0.15)
Figure 10. For this line path, we display the calculated eddy currents by the two methods.

Figure 8. Eddy current calculation by FEM
Flux3D.

Figure 9. Eddy current calculation by
PEEC/FD.

Figure 10. Eddy current comparison between FEM and PEEC/FD.
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From these lasts, we can observe a good distribution of curves for the two approaches with slight
differences due principally to several factors. We can cite the differences on meshes topologies (numbers
of nodes and elements and their repartitions that cause the increase of iterations errors, the 3D elements
in FEM against totally 2D in FDM), and the interactions are calculated analytically and then inserted
in the global numerical systems for PEEC/FDM which offer more precision against the total numerical
procedure implemented for FEM. Adding to this, the PEEC/FD is very fast compared to FEM method
and can be implemented in many programming codes.

3. CONCLUSION

In the present work, we have proposed a new coupling procedure for calculating eddy currents in thin
conductive and magnetic plates. In the first step, we have presented the appropriate electromagnetic
model in which the currents circulate tangentially, and the magnetisation is considered by its
perpendicular effect. The choice of the FDM is justified by the creation of rectangular surface elements.
They are very suitable for analytically resolving the integrals in relation with the magnetization and
eddy currents expressions. By analytical results, we can get more precision and robustness leading
to a significant reduction in memory requirements and computation time. Another great advantage
in this work is the detailed manner for calculating magnetic field from arbitrary oriented complex
configuration coils, in which Euler transformations are mainly used for at least two considerable
directions. This approach has the potential to affect numerous 3D electromagnetic applications using
abundant programming languages, and it is also suitable for any optimization process. With the recent
developments in nonhomogeneous FDM and their use for modern 2D materials and thin films, this
approach can be an enormous asset in electrical characterization or simply in numerical modelling.
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