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Novel Sparse Planar Array Synthesis Model for Microwave Power
Transmission Systems with High Efficiency and Low Cost

Jianxiong Li1, 2, * and Shengjia Chang1, 2

Abstract—A novel algorithm is developed to realize the optimal synthesis of a sparse nonuniform-
amplitude nonuniform-distribution planar array (SNANDPA) in microwave power transmission (MPT)
systems. The dual compression factor particle swarm optimization (DCFPSO) algorithm and the
subarray partition technique are adopted to realize the optimal synthesis of SNANDPA. The DCFPSO
algorithm first optimizes beam collection efficiency (BCE ) and side-lobe level outside the receiving
region (CSL) of SNANDPA which ensure efficient energy transmission of an MPT system and suppress
the influence of electromagnetic wave radiated by antenna array on the environment. The subarray
partition technique then simplifies the feed network to minimize the system cost. SNANDPA parameters
including transmitting aperture, receiving aperture, BCE, CSL, power pattern, element weight, and
element distribution, can be obtained efficiently via the proposed method. Representative numerical
cases under the different numbers of subarray and elements conditions are analyzed and compared
with those of other two traditional MPT array models. Experimental results show that, when the
transmitting aperture is 4.5λ× 4.5λ and the square receiving region u0 = v0 = 0.2, BCE and CSL are
94.96% and −17.09 dB, respectively, and only 64 elements and 8 amplifiers are required. We conclude
that the proposed model can be used to create an efficient and low-cost MPT system.

1. INTRODUCTION

Microwave power transmission (MPT) is an innovative technique for long-distance wireless power
transfer system. MPT can wirelessly deliver energy from one location to another inaccessible or
hazardous location [1–5]. Many scholars have investigated MPT systems [6–10] as per their wide range of
potential application scenarios. The transmitting antenna and rectenna are two necessary components
for an MPT system; the first concentrates radiated power toward a faraway receiver, while the second
collects and converts incoming microwave power [9, 10]. Unlike traditional array systems, MPT systems
deal with power transfer rather than information transmission. Efficient energy transmission is vital to
an effective MPT system. Although many parameters are related to the total efficiency of MPT system,
beam collection efficiency (BCE ), the ratio of the power obtained by the rectenna to the power radiated
by the transmitting antenna, is particularly important.

Strong array performance is necessary to satisfy the demands of MPT system, and system cost
should be minimized. Synthesis techniques have been proposed for accomplishing both of these
objectives, including transmitting array antenna obtained by stochastic approaches [11–14] and subarray
partition technique [15–17]. Besides, the maximum BCE for a linear array and planar array can be
solved by discrete prolate spheroidal sequences (DPSSs) [18] and generalized eigenvalue problems [19].
Uniform-amplitude nonuniform-distribution planar array (UANDPA) synthesis model in [14] simplifies
the array feed network to reduce system cost, but its BCE is relatively low at 91.06% which degrades
array performance. Nonuniform-amplitude uniform-distribution planar array (NAUDPA) synthesis
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model in [19], for example, achieves BCE with 96.45%; however, it needs a large number of array
elements and has a “quasi-Gaussian” excitation distribution which raises system cost.

Sparse array, which has larger element distance and fewer elements than fully populated array, is of
considerable interest in a large number of applications, such as radar and MPT. It can effectively reduce
the cost of the array while ensuring the performance of the array. Previous works have been done to
realize the sparse optimization through Compress Sensing (CS) technique [23], convex optimization [24],
and stochastic optimization [25–27]. Though it can be used to effectively realize the sparse distribution
of array elements, CS technique is applied to small or medium-sized arrays [23]. Convex optimization
technology solves the problems existing in CS technique to a certain extent, but there are still defects
in BCE [24]. Due to these facts, many researchers focus on stochastic optimization [25–27].

Previous studies on this subject have tended to center on simply optimizing array performance
or system cost individually. Thus, previously presented methods tend to have performance defects
or cost defects. In this paper, a sparse array synthesis method considering both array performance
and system cost is proposed. The proposed method first applies the dual compression factor particle
swarm optimization (DCFPSO) [20, 21] to improve sparse array performance by optimizing BCE, and
then simplifies the feed network with a subarray partition technique. In consequence, the optimized
synthesis model of sparse nonuniform-amplitude nonuniform-distribution planar array (SNANDPA) is
obtained.

2. MATHEMATICAL DERIVATION OF THE MAXIMUM BCE

The physical model of MPT system is shown in Fig. 1. The mathematical derivation of the maximum
BCE is presented in this section.

Assume that an MPT system has N = Nx × Ny radiating elements separately distributed on the
coordinates (xn, yn), n = 1, 2, ..., N , where the radiating elements are distributed on the antenna surface
with the aperture of Lx × Ly on the XOY plane. The rectenna is located in far-field zone. The array
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Figure 1. Physical model of MPT system.
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factor can be defined as:

F (u, v) =

N∑
n=1

wne
ik(uxn+vyn) (1)

where u = sin θ cosφ and v = sin θ sinφ are direction parameters; wn represents element weight;
k = (2π/λ) is the wave number; and λ is the wavelength. eik(uxn+vyn) can be defined as vn(u, v)
so that the array factor can be rewritten as

F (u, v) =

N∑
n=1

wnvn(u, v) (2)

As a matter of convenience, we can rewrite Eq. (2) in matrix form as

F (u, v) , wHv(u, v) (3)

where w , [w1, w2, ..., wN ]H and v(u, v) = [e−ik(ux1+vy1), e−ik(ux2+vy2), ..., e−ik(uxN+vyN )]H are weight
vector and steering vector, respectively. The superscript “H” indicates complex-conjugate transpose.
BCE is expressed as:

BCE , PΨ

PΩ
=

∫
Ψ
|F (u, v)|2dudv∫

Ω
|F (u, v)|2dudv

(4)

where PS =
∫
S |F (u, v)|2dudv denotes the power flowing through the angular region S = {Ψ,Ω} where

Ψ and Ω , {(u, v) : u2 + v2 ≤ 1} are the (u, v) — angular region identifying the radiated area and the
whole visible range, respectively. Eq. (5) is obtained by substituting Eq. (3) into Eq. (4):

BCE =

∫
Ψ
wHv(u, v)vH(u, v)wdudv∫

Ω
wHv(u, v)vH(u, v)wdudv

=
wHAw

wHBw
(5)

where A , [
∫
Ψ v(u, v)vH(u, v)dudv] is the receiving matrix of the system, and B ,

[
∫
Ω v(u, v)vH(u, v)dudv] is the transmitting matrix of the system.

Based on Eq. (5), the optimal weight vector of the elements, wopt, is determined as

wopt = arg

[
max
w

(
wHAw

wHBw

)]
(6)

According to the optimal theoretical synthesis in [19], the maximum BCE and its corresponding weight
can be obtained by calculating the generalized eigenvalues and corresponding generalized eigenvectors
of the matrix equation. The matrix equation is:

Awopt = BCEmaxBwopt (7)

where BCEmax (maximum BCE ) is the maximum generalized eigenvalue of Eq. (7) and wopt the
corresponding eigenvector. The closed-form solution of receiving matrix A and transmitting matrix
B can be seen in the Appendix.

3. OPTIMAL SYNTHESIS OF SNANDPA WITH HIGH BCE AND LOW COST

3.1. SNANDPA Synthesis of Transmitting Array

Section 2 introduces the optimal theoretical synthesis of planar array [19], which can solve the maximum
BCE and optimal element weight of array. Reference [19] only discussed the fully populated uniform
distribution condition, but the optimization of the array element position was not considered. In this
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study, we develop an optimal SNANDPA synthesis method which optimizes the distribution and the
weight of elements simultaneously.

The stochastic algorithm can be used to solve the planar array synthesis problem to obtain an
optimal SNANDPA model. Eq. (7) indicates that every array distribution has a corresponding optimal
weight. The array excitation can thus be optimized via the optimization of the array distribution. The
correlation between the distribution and the weight of array elements in Eq. (7) can be helpful for
simultaneously optimizing both the array distribution and the array weight, which give the optimized
model strong array performance. Therefore, the optimal generalized eigenvalue in Eq. (7) is used here
as the fitness function of a stochastic algorithm. The optimization model can be expressed as:

find X = [x1, x2, ..., xn, ..., xN , y1, y2, ..., yn, ..., yN ]

maximize f(X) = BCEmax(X)

subject to (a)
√

(xn − xm)2 + (yn − ym)2 ≥ dmin

m ̸= n, and m, n ∈ {1, 2, ..., N}
(b)−Lx/2 ≤ xn ≤ Lx/2, n = {1, 2, ..., N}

−Ly/2 ≤ yn ≤ Ly/2, n = {1, 2, ..., N}

(8)

We use the DCFPSO algorithm [20, 21] to find the optimal element distribution, X, and the

corresponding optimal element weight, wopt , [wopt
1 , wopt

2 , ..., wopt
n , ..., wopt

N ]H . In the process of
optimization, the optimal element distribution is constrained by the minimum element distance, dmin,
and array apertures, Lx × Ly. This model realizes an optimal synthesis of transmitting array, but due
to the inadequate consideration of the relationship between the array apertures constrain and minimum
element distance constrain, the search for the optimal element distribution is still difficult. To remedy
this, we rewrite the decision variables, X, with two matrixes

X,



x1 xNx+1 · · · xNx×(Ny−1)+1

x2 xNx+2 · · · xNx×(Ny−1)+2

...
...

...

xNx xNx×2 · · · xNx×Ny

y1 yNx+1 · · · yNx×(Ny−1)+1

y2 yNx+2 · · · yNx×(Ny−1)+2

...
...

...

yNx yNx×2 · · · yNx×Ny



=



dx1 dxNx+1 · · · dxNx×(Ny−1)+1

dx2 dxNx+2 · · · dxNx×(Ny−1)+2

...
...

...

dxNx
dxNx×2 · · · dxNx×Ny

dy1 dy
Nx+1

· · · dyNx×(Ny−1)+1

dy2 dy
Nx+2

· · · dyNx×(Ny−1)+2

...
...

...

dyNx
dyNx×2 · · · dyNx×Ny


+



0 0 · · · 0

dmin dmin · · · dmin

...
...

...

(Nx − 1)× dmin (Nx − 1)dmin · · · (Nx − 1)× dmin

0 dmin · · · (Ny − 1)× dmin

0 dmin · · · (Ny − 1)× dmin

...
...

...

0 dmin · · · (Ny − 1)× dmin


=

[
(Dx)Nx×Ny

(Dy)Nx×Ny

]
+

[
(Dmin x)Nx×Ny

(Dmin y)Nx×Ny

]
(9)

where X decision matrix, Dx, represents x-direction decision variables of the array; Y decision matrix,
Dy, is the y-direction decision variables of the array; Dmin x is the minimum element spacing matrix
in x-direction and Dmin y minimum element spacing matrix in the y-direction. Through Eq. (9), we
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can obtain the following model:

find D =

[
Dx

Dy

]
maximize f(D) = BCEmax(D)

subject to (a)−Lx/2 ≤ dxNx×i+1 < dxNx×i+2 < ... < dxNx×i+Nx
≤ Lx/2− (Nx − 1)dmin

(i = 0, 1...Ny − 1)

(b)−Ly/2 ≤ dy1+i < dyNx+1+i < ... < dyNx×(Ny−1)+1+i
≤ Ly/2− (Ny − 1)dmin

(i = 0, 1...Nx − 1)

(c) dx1 = dxNx×(Ny−1)+1
= −Lx/2, dy1 = dyNx

= −Ly/2

(d) dxNx
= dxNx×Ny

= Lx/2− (Nx − 1)dmin

dyNx×(Ny−1)+1
= dyNx×Ny

= Ly/2− (Ny − 1)dmin

(10)

As a result, the decision variables change from X to D. Through this way, the unconstrainted particle
distribution, (xn, yn), can be indirectly transformed into constrained particle distribution, (dxn , dyn),
and the search space can be reduced from {[−Lx/2, Lx/2], [−Ly/2, Ly/2]} to {[−Lx/2, Lx/2 − (Nx −
1)dmin], [−Ly/2, Ly/2− (Ny − 1)dmin]}. Finally, the difficulty of searching the optimal decision variable
is overcome, and the synthesis problem can be solved more efficiently.

In this subsection, we use the optimal generalized eigenvalue (Section 2) as the fitness value of the
stochastic algorithm, then convert the array synthesis problem into an optimization problem formulated
in Eq. (7) which allowed us to obtain the optimal distribution of the array, X, and optimal elements
weight, wopt, of SNANDPA simultaneously. After the problem formulation, we adopt a decision
variables conversion strategy and convert the decision variables from X to D. Finally, the array
performance of MPT system can be markedly improved by this approach.

3.2. Subarray Partition Technique for Transmitting Array

The optimization of radiating elements can be realized by a stochastic algorithm as discussed in
Subsection 3.1. However, the resultant “quasi-Gaussian” excitation distribution increases the cost
of the array antenna, which limits the application of the algorithm in actual engineering scenarios.
We next attempt to optimize both the array performance and the system cost of the planar array
simultaneously by using a subarray partition technique. Through this technique, we can solve “quasi-
Gaussian” excitation distribution problem while maintaining relatively strong array performance.

The proposed subarray partition technique works by dividingN elements intoM subarray according
to the optimal element weight wopt. According to this idea, we first obtain an N ×M matrix, R, which
is given by

R =


R11 R12 · · · R1M

R21 R22 · · · R2M

...
...

. . .
...

RN1 RN2 · · · RNM

 (11)

Then we initialize the weight range, wrange , [wrange
0 , wrange

1 , ..., wrange
M ]H , which can be calculated by

wrange
m = wopt

min +
wopt
max − wopt

min

M
×m, (m = 0, 1, ...,M) (12)

where wopt
max and wopt

min are the maximum value and minimum value of wopt, respectively. In order to
define the matrix, R, we set the values of the elements in R by the following rule{

if wrange
m−1 ≤ wopt

n ≤ wrange
m , Rnm = 1

else, Rnm = 0
(13)

Through this way, we can realize the initialization of the matrix R. With the help of this matrix, we
can concisely describe the results of the subarray partition. Then we initialize the value of the subarray
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Figure 2. Schematic of SAD.

weight wsub , [wsub
1 , wsub

2 , ..., wsub
M ]H by solving the following formulation:

wsub
m =

N∑
n=1

Rnm · wopt
n

N∑
n=1

Rnm

, (m = 1, 2, ...,M) (14)

The optimal solution of SNANDPA obtained by this initialization is more stable than that obtained
by random initialization. And the resultant stepped amplitude distribution (SAD) schematic is shown
in Fig. 2. After that, we can obtain the optimal subarray weight wsub through a modified tabu search
(MTS) algorithm [22]. And the optimization model can be expressed as:

find wsub = [wsub
1 , wsub

2 , ..., wsub
m , ..., wsub

M ]H

maxmize f(wsub) = BCEmax(w
sub)

subject to (a)wopt
min ≤ wsub

1 , wsub
M ≤ wopt

max, m = 1, ...,M

(b)wsub
1 < wsub

2 < ... < wsub
m < ... < wsub

M , m = 1, ...,M

(15)

In this model, the optimal subarray weight, wsub, of the SNANDPA model is determined by the MTS
algorithm. In the process of optimization, the optimal subarray weight is constrained by the previous
optimal element weight wopt and the inner relation of its element. Finally, we can obtain the optimal
element weight after subarray partition,wfinal, which can be expressed as follows

wfinal = R ·wsub (16)

In this subsection, we use the MTS algorithm to realize the conversion of excitation distribution from
“quasi-Gaussian” to SAD and find the optimal element weight after subarray partition wfinal. This
process makes the SNANDPA model simplify the feed network, reduce the system cost, and maintain
good array performance.

4. SIMULATIONS AND NUMERICAL RESULTS

We conduct a series of simulations to examine the feasibility and effectiveness of the proposed model.
First, we use the proposed method to synthesize SNANDPAs with different sparsity parameters. Second,
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to validate the SNANDPA model, we compare the numerical results of the proposed model with those
of other two models under the same parameters: UANDPA [14] and NAUDPA [19]. Third, we compare
the DCFPSO algorithm and other PSO algorithms in terms of the performance. The PC used for all
simulations has an Intel Core i7-4510U CPU with 2.0GHz and 8GB Ram. We use MATLAB R2019b
software for all simulations.

We use two evaluation indicators to intuitively compare the results. One is BCE, and the other is
CSL defined as:

CSL (dB) = 10 lg
maxu,v /∈Ψ |F (u, v)|2

maxu,v∈Ω |F (u, v)|2
(17)

Assume that the receiving region is a rectangular area facing the transmitting array:

Ψ , {(u, v) : −u0 ≤ u ≤ u0,−v0 ≤ v ≤ v0} (18)

And the visible range of the transmitting array is the hemisphere facing the receiving region:

Ω ,
{
[u(θ, φ), v(θ, φ)] : θ ∈ [0,

π

2
], φ ∈ [0, 2π]

}
(19)

We also define two sparsity parameters. One is the ratio of amplifier sparsity γa, i.e., the ratio of the
amplifier number of the array to the element number of the array. The other is the ratio of element
sparsity γe, i.e., the ratio of the element number of the sparse array to that of the fully populated array.

4.1. Effects of Different Sparsity Parameters on Synthesized Results

As mentioned in Section 1, the transmitting antenna and receiving antenna are two key components of
the SNANDPA model. This paper focuses on the effect of γa and γe in the SNANDPA model, so we
set transmitting aperture as Lx = Ly = 4.5λ and receiving region as u0 = v0 = 0.2. This allows us to
focus on the optimization of the sparsity parameters γa and γe.

The value of subarray M determines the ratio of amplifier sparsity γa of SNANDPA. To find an
optimal subarray value Mopt of the SNANDPA model, we investigate the influence of M on synthesized
results of the SNANDPA model. We select an array with N = 8 × 8 and set the value of minimum
element distance dmin as the half wavelength λ/2. We find that the performance of the array becomes
stronger with M when M ≤ 8 and stable when M > 8; thus, the optimization of BCE can be realized
more efficiently when M ≤ 8 and becomes less efficient when M > 8. Fig. 3 and Table 1 show the

Figure 3. Behaviour of SNANDPA under different number of subarray (Lx = Ly = 4.5λ, u0 = v0 = 0.2,
N = 8× 8).
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Table 1. Synthesis numerical results of SNANDPA under different number of subarray.

Nx = Ny N M u0 = v0 BCE (%) CSL (dB)

8 64 6 0.2 91.09% −14.68

8 64 7 0.2 93.28% −16.03

8 64 8 0.2 94.96% −17.09

8 64 9 0.2 95.14% −17.47

For the convenience of the calculation, we set Nx = Ny

behavioral and numerical results of SNANDPA under different numbers of subarray. We conclude that
the optimal subarray number Mopt = 8 when the element number N = 8×8. After repeating the above
experiment under different element numbers, the array performance does not improve when M exceeds
a certain number. The value of Mopt for different element numbers can be determined accordingly.

After determining the optimal subarray number Mopt for different element numbers, we further
investigate the effect of γe on the synthesized results of the SNANDPA model. We select a set of
arrays with element numbers of N ∈ {6 × 6, 7 × 7, 8 × 8, 9 × 9} and subarray number M equal to the
corresponding optimal subarray number Mopt as determined previously. We find that the performance
of the array becomes stronger with N when N ≤ 8× 8 and stable when N > 8× 8, which means that
the optimization of BCE can be realized more efficiently when N ≤ 8 × 8 and becomes less efficient
when N > 8 × 8. Fig. 4 and Table 2 show the behavioral and numerical results of SNANDPA under
different numbers of elements. Finally, we find that the optimal element number Nopt is equal to 8× 8.

Figure 4. Behaviour of SNANDPA under different numbers of elements and its corresponding value
of subarray (Lx = Ly = 4.5λ, u0 = v0 = 0.2).

As per the analysis above, we obtain an optimal synthesis model with high array performance (e.g.,

[BCE ,CSL]|SNANDPA
N=64 = [94.96%,−17.09 dB]) and low cost. Its synthesis layout, excitation model, and

power pattern are given in Fig. 5.)

4.2. Comparison of SNANDPA with Other Two Models in Array Performance

After finding the optimal SNANDPA (Subsection 4.1), we compare the proposed model with
UANDPA [14] and NAUDPA [19] in terms of array performance. We find that for the same transmitting



Progress In Electromagnetics Research C, Vol. 115, 2021 253

Table 2. Synthesis numerical results of SNANDPA under different number of elements.

Nx = Ny N Mopt u0 = v0 BCE CSL

6 36 4 0.2 85.71% −10.80 dB

7 49 5 0.2 92.64% −15.57 dB

8 64 8 0.2 94.96% −17.09 dB

9 81 14 0.2 95.27% −18.04 dB

For the convenience of the calculation, we set Nx = Ny

(a) (b)

Figure 5. Synthesis result of SNANDPA (Lx = Ly = 4.5λ, u0 = v0 = 0.2, N = 8× 8). (a) Layout and
excitation, (b) power pattern.

aperture and receiving region, the nonuniform-amplitude nonuniform-distribution characteristics of the
SNANDPA model allow it to efficiently minimize environmental impact while maintaining relatively
high energy transmission.

Compared with UANDPA, the proposed model has significantly higher BCE and lower CSL (e.g.,

[BCE ,CSL]|SNANDPA
N=64 = [94.96,−17.09 dB] vs. [BCE ,CSL]|UANDPA

N=100 = [91.06%,−16.01 dB], Table 3).
Our synthesis results show that BCE of the proposed model is 3.9% higher than that of UANDPA, and
CSL of the proposed model is 1.08 dB lower than that of UANDPA. In conclusion, the proposed model
can concentrate radiated power more effectively with less environmental impact than UANDPA.

Overall, the proposed model has strong array performance compared with NAUDPA (e.g.,

Table 3. Comparison of synthesis numerical results among SNANDPA, UANDPA and NAUDPA.

SNANDPA UANDPA NAUDPA

N 64 100 100

M 8 1 100

γe 64% 100% 100%

γa 12.5% 1% 100%

BCE 94.96% 91.06% 96.45%

CSL −17.09 dB −16.01 dB −12.27 dB

u0 = v0 = 0.2, Lx = Ly = 4.5λ
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[BCE ,CSL]|SNANDPA
N=64 = [94.96%,−17.09 dB] vs. [BCE ,CSL]|NAUDPA

N=100 = [96.45%,−12.27 dB], Table 3).
The synthesis results show that although BCE of the proposed model is 1.49% lower than that of
UANDPA, and CSL of the proposed model is 4.82 dB lower than that of UANDPA; thus, the proposed
model has less environmental influence than NAUDPA. In consequence, compared with NAUDPA, the
proposed model has a markedly reduced environmental impact while maintaining high BCE.

In summary, SNANDPA is more suitable for MPT systems than other two traditional models
because it has better array performance.

4.3. Comparison of SNANDPA with Other Two Models in System Cost

For the same transmitting aperture and receiving region, the adoption of sparse array synthesis and
subarray partition strategy in SNANDPA reduces the number of array elements and amplifiers.

Unlike UANDPA, due to the sparse characteristics of the proposed model, it can effectively eliminate
invalid elements in the transmitting array. The element sparsity γe of the proposed model is 36% less
than that of UANDPA. The amplifier sparsity γa of the proposed model is only 11.5% more than that of
UANDPA ([γe, γa]|SNANDPA

N=64 = [64%, 12.5%] vs. [γe, γa]|UANDPA
N=100 = [100%, 1%], Table 3). In conclusion,

the proposed model can efficiently reduce the cost of the elements compared to UANDPA while the cost
of its amplifiers is relatively low.

Due to the subarray partition technique, compared with NAUDPA, the proposed model has some
noticeable differences in terms of excitation. The weight of NAUDPA with the “quasi-Gaussian”
excitation is shown in Fig. 6(a), and the weight of SNANDPA with the SAD excitation is shown in
Fig. 6(b). We find that element sparsity of the proposed model, γe, is 36% less than that of NAUDPA.
The amplifier sparsity of the proposed model, γa, decreases by 87.5% compared with that of NAUDPA
([γe, γa]|SNANDPA

N=64 = [64%, 12.5%] vs. [γe, γa]|NAUDPA
N=100 = [100%, 100%], Table 3). In summary, the

proposed model can efficiently reduce the cost of elements and amplifiers compared to the NAUDPA
model.

(a) (b)

Figure 6. Excitation of NAUDPA and SNANDPA along the axial direction. (a) The weight of
NAUDPA (Lx = Ly = 4.5λ, u0 = v0 = 0.2, N = 10× 10) along the axial direction (xn = yn). (a) The
weight of SNANDPA (Lx = Ly = 4.5λ, u0 = v0 = 0.2, N = 8× 8) along the axial direction (xn = yn).

We conclude that the proposed model has less system cost than other two traditional models.
Therefore, SNANDPA can be easily used to establish MPT systems.

4.4. Comparison of DCFPSO with Traditional PSO in Performance

We compare the DCFPSO algorithm applied to SNANDPA synthesis with the other three PSO
algorithms to test its stability and efficiency. The results are shown in Fig. 7.
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Figure 7. Simulation results of different PSO algorithm (Lx = Ly = 4.5λ, u0 = v0 = 0.2, N = 8× 8).

We find that DCFPSO realizes the optimization of the array synthesis after 230 iterations.
The standard particle swarm optimization (SPSO), compressed particle swarm optimization (CPSO),
and compressed particle swarm optimization with time-varying acceleration coefficient (TCPSO) have
comparatively lower fitness values and slower convergence rates than DCFPSO. The SPSO algorithm
targets the relationship between inertia weight and optimization weight and does not consider the
relationship between global optimization and local optimization. The CPSO algorithm targets the
relationship between global optimization and local optimization, ignoring the influence of inertia weight
on the optimization; the algorithm thus converges slowly and falls into the local optima. The TCPSO
algorithm includes a time-varying acceleration coefficient based on CPSO, which allows for dynamic
adjustment of the inertia weight, global optimization weight, and local optimization weight. Thus, the
TCPSO algorithm has better fitness value. The DCFPSO algorithm includes a common compression
factor and a time-varying acceleration coefficient, so its global convergence rate is much higher.

5. CONCLUSION

A novel sparse planar array synthesis model with nonuniform-amplitude and nonuniform-distribution,
SNANDPA, is developed in this study for MPT applications. We use the DCFPSO algorithm and
subarray partition technique to support the proposed model. By means of the DCFPSO algorithm, the
proposed method improves array performance by the simultaneous optimization of the distribution and
the weight of elements. The feed network is simplified by the subarray partition technique. To this
effect, the proposed method simultaneously optimizes array performance and system cost.

We conduct a series of simulations to test the effectiveness of the proposed method. First, we
investigate the effects of the ratio of element sparsity γe and the ratio of amplifier sparsity γa as
they both affect the practical application of the proposed method. For example, we can obtain the
optimal synthesis model with γe = 64% and γa = 12.5% when transmitting aperture is 4.5λ × 4.5λ,
and receiving region is u0 = v0 = 0.2. Second, by comparing SNANDPA with the other two planar
arrays (UANDPA [14] and NAUDPA [19]), we test the applicability of SNANDPA in MPT systems. We
find that SNANDPA has a simpler feed network and similar array performance compared to NAUDPA.
SNANDPA has much better array performance and similar system cost compared to UANDPA. Overall,
compared with the traditional models, SNANDPA takes into account array performance and the cost
of the system in the same time, so it can be better applied in MPT systems.

This is the first time that the DCFPSO algorithm is utilized for array synthesis, so we compare
DCFPSO with traditional PSO algorithms in a typical application scenario to evaluate its performance.
We find that the DCFPSO algorithm yields a faster convergence rate and higher BCE than the other
algorithms we tested, suggesting that it is an ideal fit for SNANDPA-based array synthesis in MPT
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systems.
In conclusion, the proposed SNANDPA has higher BCE, lower CSL, more concise array arrangement

and feed network, and has stronger applicability as a transmitting array of large-scale MPT systems
than the other models we tested.

In the future, we will further improve the proposed method from two main perspectives. First, our
algorithm does not consider the influence of mutual coupling between array elements on the synthesis
results. Although the minimum element spacing limit is set, there is still mutual coupling between
array elements. The mutual coupling may distort the actual power pattern of the array, which affects
BCE. Therefore, we will consider mutual coupling in our follow-up work. Second, the proposed model is
synthesized without error in excitation amplitude and phase. However, in an actual transmitting array,
there are random errors in microwave devices that alter the power pattern of the array. We will also
consider the influence of random errors generated by excitation amplitude and phase on BCE in our
follow-up work.

APPENDIX A. THE CLOSED-FORM SOLUTION OF RECEIVING MATRIX A

According to the definition of receiving matrix A and the receiving region as in Eq. (18), we obtain

Amn =

∫ u0

−u0

∫ v0

−v0

eik[u(xm−xn)+v(ym−yn)]dudv (A1)

We can simplify Eq. (A1) as:

Amn =

∫ u0

−u0

eiku(xm−xn)du×
∫ v0

−v0

eikv(ym−yn)dv (A2)

Therefore, the solution of Eq. (A2) in closed form is:

Amn =

(
eiku0(xm−xn) − e−iku0(xm−xn)

jk(xm − xn)

)
×

(
eikv0(ym−yn) − e−ikv0(ym−yn)

jk(ym − yn)

)
(A3)

For the convenience of calculation, we transform Eq. (A3) into

Amn =

(
2u0 sin[ku0(xm − xn)]

ku0(xm − xn)

)
×
(
2v0 sin[kv0(ym − yn)]

kv0(ym − yn)

)
= 4u0v0sinc[ku0(xm − xn)] · sinc[kv0(ym − yn)] (A4)

APPENDIX B. THE CLOSED-FORM SOLUTION OF TRANSMITTING MATRIX B

According to the definition of receiving matrix B and the visible range of the array as in Eq. (19), we
have

Bmn =

∫ π
2

0

∫ 2π

0
eik sin θ[(xm−xn) cosφ+(ym−yn) sinφ]dφ · sin θdθ (B1)

The integrable function can be simplified according to the auxiliary angle formula

Bmn =

∫ π
2

0

∫ 2π

0
e
i
√

[k sin θ(xm−xn)]2+[k sin θ(ym−yn)]2·sin
[
φ+arctan

(
k sin θ(xm−xn)
k sin θ(ym−yn)

)]
dφ · sin θdθ (B2)

According to the periodicity of definite integral, we can convert the upper and lower limit {φ : φ ∈
[0, 2π]} of internal integral into {φ : φ ∈ [−π, π]}

Bmn =

∫ π
2

0

∫ π

−π
e
i
√

[k sin θ(xm−xn)]2+[k sin θ(ym−yn)]2·sin
[
φ+arctan

(
k sin θ(xm−xn)
k sin θ(ym−yn)

)]
dφ · sin θdθ (B3)

Since the 0-th order Bessel function of argument β is defined as

J0(β)
1

2π

∫ π

−π
eiβ sinφdφ, (B4)
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we can simplify Eq. (B3) as

Bmn = 2π

∫ π
2

0
J0

{√
[k sin θ(xm − xn)]2 + [k sin θ(ym − yn)]2

}
sin θdθ

= 2π

∫ π
2

0
J0[k sin θ

√
(xm − xn)2 + (ym − yn)2] sin θdθ (B5)

By Taylor expansion of the 0-th order Bessel function, we can further simplify Eq. (B5) as

Bmn = 2π ·
∞∑

m=0

(−1)m
(
k
√
(xm − xn)2 + (ym − yn)2

)2m
(m!)222m

·
∫ π

2

0
sin2m+1 θdθ

= 2π ·
∞∑

m=0

(−1)m
(
k
√
(xm − xn)2 + (ym − yn)2

)2m
(m!)222m

· (2m)!!

(2m+ 1)!!

= π ·
∞∑

m=0

(−1)m
(k
√

(xm − xn)2 + (ym − yn)2)
2m

(2m+ 1)!
· (2m+ 1)!(2m)!!

(2m+ 1)!!(m!)222m−1︸ ︷︷ ︸
=2

= 2π ·
∞∑

m=0

(−1)m
(k
√

(xm − xn)2 + (ym − yn)2)
2m

(2m+ 1)!
(B6)

Notice that the sinc function is defined as

sinc(x) , sinx

x
=

∞∑
m=0

(−1)m
x2n

(2n+ 1)!
(B7)

Therefore, we can simplify Eq. (B6) as

Bmn = 2π ·
∞∑

m=0

(−1)m
(k
√

(xm − xn)2 + (ym − yn)2)
2m

(2m+ 1)!

= 2π ·
sin(k

√
(xm − xn)2 + (ym − yn)2)

k
√

(xm − xn)2 + (ym − yn)2

= 2π · sinc(k
√

(xm − xn)2 + (ym − yn)2) (B8)
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