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A Rapid Microwave Imaging Approach for the Diagnosis
of Traumatic Brain Injury
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Abstract—This paper presents a method for rapid microwave imaging of traumatic brain injury based
on scattering parameters. The algorithm uses the integer order Bessel function and Born approximation,
which converts nonlinear inverse scattering problem into linear problem. After truncated singular value
decomposition, imaging can be performed without iteration. Simulations and experiments show that
the algorithm can not only reduce the amount of calculation for fast imaging, but also accurately image
a brain hematoma or foreign body.

1. INTRODUCTION

Traumatic brain injury is one of the most common clinical traumas, with the characteristics of high
incidence, high mortality, and high disability rate [1]. If the craniocerebral injury is treated in time,
the pressure on the brain can be relieved as soon as possible, and the formation of secondary cerebral
ischemia and cerebral herniation can be effectively prevented. Therefore, for brain injuries, timely and
efficient detection and treatment are essential [2, 3].

At present, the mainstream diagnostic methods for traumatic brain injury mainly include computed
tomography (CT) and nuclear magnetic resonance imaging (MRI), but both of them have the
disadvantages of bulkiness and poor portability. There is ionizing radiation in CT detection, which
may cause a little harm to the person. The spatial resolution of MRI is not as high as that of CT, and
it is relatively expensive and requires a longer scan time. This makes these two technologies fail to meet
people’s needs for safe, convenient, real-time and high-efficiency diagnostic methods for traumatic brain
injury.

Nowadays, biomedical microwave imaging technology gets more and more attention from
researchers. Compared with CT and MRI, microwave imaging has the advantages of safe use, no
radiation damage, low equipment cost, and easy portability. The research of microwave confocal
imaging technology has progressed earlier and faster in brain imaging. Researchers at the University
of Queensland proposed a method of using the Finite Difference Time Domain (FDTD) method to
simulate and calculate the scattering field parameters excited by the human brain, and then using
the microwave confocal imaging algorithm to reconstruct the two-dimensional image of the brain [4, 5].
Since then, researchers have successively tried to image strokes based on microwave confocal imaging
algorithms [6, 7]. The key technology of confocal imaging algorithm has also made certain breakthroughs,
especially in the elimination of clutter, surface estimation, virtual array technology, and other methods,
which effectively improved the accuracy of imaging [8–11].

In recent years, inverse scattering microwave imaging algorithms have received more and more
attention for brain microwave diagnosis. However, the electromagnetic inverse scattering problem is
a nonlinear ill-posed inverse problem. The existing Newton and Contrast Source Inversion algorithms
require iterative calculations, which take a long time [12–14]. In order to diagnose traumatic brain
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injury in time, the imaging method based on Born approximation is proposed, but the brain model
used is generally very simple [15].

This paper proposes an algorithm for rapid microwave imaging of craniocerebral injury. Based
on the Born approximation, the algorithm avoids nonlinear inverse scattering problem, which reduces
computational complexity. Furthermore, it can efficiently map the energy distribution in the three-layer
brain model and accurately identify the location of foreign bodies or blood clots.

This paper is organized as follows. Section 2 briefly introduces the choice of working frequency
band and three-layer brain model. Section 3 explains the fast microwave imaging algorithm in detail,
which uses the Born approximation to linearize the nonlinear inverse scattering problem. Section 4
describes the specific simulation implementation and experimental verification. Finally, Section 5 gives
a summary.

2. ULTRA-WIDEBAND ANTENNA AND BRAIN MODEL

2.1. Ultra-Wideband Antenna for Imaging

As shown in Figure 1(a), the ultra-wideband bow-tie antenna fed by coplanar waveguide is designed
for better microwave diagnosis of craniocerebral injury. The antenna uses the bow-tie-shaped opening
angle to broaden the equivalent width of the two arms of the antenna, and to achieve the fusion of
multiple resonance modes by appropriately extending the antenna length. In addition, the coplanar
waveguide transmission line is embedded in the arm of the bow-tie, which not only has a small effect
on the surface current distribution of the antenna, but also achieves a better conversion of the feed
end from unbalanced to balanced. The antenna substrate is made of FR4 material with a thickness of
1mm. The values of the different dimensions of the antenna mentioned in the geometric structure are
as follows (in mm): L = 56.5, W = 57, H = 1, w1 = 1, g1 = 1.5, w2 = 7.5, and g2 = 1.

Figure 1(b) shows the change characteristics of return loss with frequency obtained by three-
dimensional full-wave simulation analysis. It can be seen that in the frequency range of 0.52–4GHz,
the return loss is less than −10 dB. The working frequency band of the microwave signal will directly
affect the results of brain imaging. The higher the signal frequency is, the shorter the wavelength is,
which means a higher resolution [16]. But at the same time the attenuation in propagation will also
become larger, that is, the penetration ability of signal becomes weaker. Therefore, these two factors
need to be considered comprehensively. For this reason, we measure scattering parameter for imaging
at frequency f = 0.6GHz.

(a) (b)

Figure 1. Coplanar waveguide-fed ultra-wideband bow-tie antenna. (a) Geometric structure. (b)
Return loss with frequency.
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2.2. Brain Model Based on Electromagnetic Properties

The electromagnetic properties of the human brain mainly include relative permittivity ϵr and electrical
conductivity σ. In order to simplify the modeling complexity of the brain model and verify the feasibility
of rapid microwave imaging, we use cross-sectional slices of the brain to simplify the three-dimensional
brain problem into a two-dimensional brain model with a radius of 10 cm. At the same time, it assumes
that different brain tissues and the blood clot are a homogeneous medium, and its relative permittivity
and electrical conductivity are constant [17]. We use a three-layer brain model, which includes skin, skull,
and a mixture of brain gray matter and white matter. According to Debye equation, the electromagnetic
properties of the three-layer brain model are shown in Table 1.

Table 1. Electromagnetic properties of the three-layer brain model.

Tissue ϵr σ (S/m) Range (cm)

Skin 43.6 0.7 9.5–10

Bone 12.8 0.1 9.2–9.5

Mixture of brain gray and white matter 43.2 0.7 0–9.2

Blood clot 58 2.3 /

Matching medium 40 0.9 /

The three-layer brain model and the deployment diagram of the antennas are shown in Figure 2.
The yellow area represents the skin; the white area represents the bone; the gray area represents the
mixture of brain gray matter and white matter; the small red circle represents a blood clot; the light
blue area is the matching medium; and the small black circles represent antennas placed evenly in the
matching medium.

Figure 2. Three-layer brain model and deployment diagram of antennas: 1) antenna, 2) blood clot, 3)
three-layer brain model and 4) matching medium.

3. FAST MICROWAVE IMAGING ALGORITHM

In this section, the proposed method for rapid microwave imaging of traumatic brain injury based on
scattering parameters is introduced in detail. In order to reduce the amount of calculation, the algorithm
uses the Born approximation method to linearize the nonlinear inverse scattering problem.

Firstly, N antennas are placed evenly outside the brain. When one dipole antenna transmits
microwave signals, all the antennas receive and calculate the corresponding scattering parameters. The
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measured scattering parameters are constructed into the following scattering matrix T , whose size is
N ∗N :

T =


Sscat(1, 1) Sscat(1, 2) . . . Sscat(1, N − 1) Sscat(1, N)

Sscat(2, 1) Sscat(2, 2) . . . Sscat(2, N − 1) Sscat(2, N)
...

...
. . .

...
...

Sscat(N, 1) Sscat(N, 2) . . . Sscat(N,N − 1) Sscat(N,N)

 (1)

where Sscat(m,n) represents the scattered-field S parameter when the n-th dipole antenna transmits
the microwave signal, and the m-th dipole antenna receives. The elements on the diagonal of the
scattering matrix T are simultaneously affected by hematoma and antennas [18]. In order to reduce the
influence of the antenna on the imaging, the elements on the diagonal of the scattering matrix T are
set to 0, then T is:

T =


0 Sscat(1, 2) . . . Sscat(1, N − 1) Sscat(1, N)

Sscat(2, 1) 0 . . . Sscat(2, N − 1) Sscat(2, N)
...

...
. . .

...
...

Sscat(N, 1) Sscat(N, 2) . . . Sscat(N,N − 1) 0

 (2)

Perform truncated singular value decomposition on the scattering matrix T to obtain the left
singular vector corresponding to the largest singular value:

T = USV ∗ =
N∑

m=1

λmUmV ∗
m ≈ λ1U1V

∗
1 (3)

where λm is the singular value of T , Um the left singular vector, and Vm the right singular vector.
Based on the brain model that has been constructed, Sscat(m,n) can be expressed by the following
equation [19, 20]:

Sscat(m,n) =
−iπk2r2

4ωµb

(
ϵ (p)− ϵb

ϵb
+ i

σ (p)− σb
ωσb

)
Einc (an,p) ·Etot (p,am) (4)

where the wavenumber k = ω2µb(ϵb + σb/ω); ω is the angular frequency; µb, ϵb, and σb respectively
represent the magnetic permeability, relative permittivity, and electrical conductivity of the brain; r
is the radius of the hematoma; Einc(an,p) represents the incident electric field formed by the dipole
antenna an at the point p.

Since the radius of the brain hematoma is generally smaller than the wavelength of the detection
signal, by applying the Born approximation [21], Equation (4) can be approximated as:

Sscat(m,n) ≈ −iπk2r2

4ωµb

(
ϵ (p)− ϵb

ϵb
+ i

σ (p)− σb
ωσb

)
Einc (an,p) ·Einc (p,am) (5)

Furthermore, Einc(an,p) can be represented by Hankel function:

Einc (an,p) =
−i

4
H

(1)
0 (k |an − p|) (6)

F(p) = [Einc (a1,p),Einc (a2,p), . . . ,Einc (an,p)] (7)

where F(p) represents the incident electric field formed by dipole antennas at different positions; an is
the position vector of the n-th dipole antenna; an = |an|(cos θn + i sin θn); |an| represents the distance
from the n-th dipole antenna to the center of the brain; and θn represents the angle between the n-th
dipole antenna and the X axis of the Cartesian coordinate system with the center of the brain imaging
area as the origin. p is the vector from the center of the brain imaging area to the imaging point p and

represents the position of the imaging point p. H
(1)
0 is the zero-order Hankel function of the first kind,

when |an − p| ≫ 0.25/k:

H
(1)
0 (k|an − p|) ≈ 1 + i

4
√
kπ

eik|an|√
|an|

e−ikθn·p (8)
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It can be seen from Equation (5) that when the scattering matrix is subjected to singular value
decomposition:

U ′
m = V ′

m ≈ F(p) (9)

F(p) can be expressed by the first kind of zero-order Hankel function, then:

Um = V m ≈ 1√
N

[
e−ikθ1·p, e−ikθ2·p, . . . , e−ikθN ·p

]
(10)

Sscat(m,n) is mainly affected by blood clot in the brain, and suppose that the pixels in the blood
clot in the brain are p′, so:

Um = V m ≈ 1√
N

[
e−ikθ1·p′

, e−ikθ2·p′
, . . . , e−ikθN ·p′

]
(11)

In order to determine the location of the traumatic brain injury, the following calculations are
performed for each pixel in the brain:

Image(p) =
|⟨U1, G(p)⟩|

∥ U1 ∥∥ G(p) ∥
(12)

where G(p) = F(p)
|F(p)| , ∥ U1 ∥ and ∥ G(p) ∥ represent the 2-norm of the vector U1 and G(p), respectively.

According to the Jacobi-Angel expansion:

eix cos θ = J0(x) +
∑

isJs(x)e
isθ (13)

and:
θn ∗

(
p− p′) = ∣∣p− p′∣∣ ∗ cos (θn − θ) (14)

we can evaluate:

|⟨U1, G(p)⟩| =

∣∣∣∣∣− i

4N

1 + i

4
√
kπ

eik|an|√
|an|

[
e−ikθ1·p′

, e−ikθ2·p′
, . . . , e−ikθN ·p′

][
e−ikθ1·p, e−ikθ2·p, . . . , e−ikθN ·p

]T ∣∣∣∣∣
=

∣∣∣∣∣− i

4N

1 + i

4
√
kπ

eik|an|√
|an|

N∑
n=1

e−ikθn·(p−p′)

∣∣∣∣∣ (15)

|⟨U1, G(p)⟩| =

∣∣∣∣∣∣− i

4N

1 + i

4
√
kπ

eik|an|√
|an|

(
NJ0

(
k|p− p′|

))
+

N∑
n=1

∑
s∈Z&&s ̸=0

isJs
(
k|p− p′|

)
eis(θn−θ)

∣∣∣∣∣∣ (16)

where θ represents the angle between brain hematoma and the X axis of the Cartesian coordinate
system with the center of the brain imaging area as the origin. Because of the Bessel function J0(0) = 1
and Js(0) = 0 (s ∈ Z and s ̸= 0). According to the H older inequality: |⟨U1, G(p)⟩| ≤∥ U1 ∥∥ G(p) ∥ so
only when p = p′ calculating the pixels in the brain injury, Image(p) tends to 1; when calculating the
imaging points of the normal part of the brain, Image(p) tends to 0.

4. SIMULATION IMPLEMENTATION AND EXPERIMENTAL VERIFICATION

In order to verify the fast microwave imaging algorithm and imaging performance, the simulation
software CST STUDIO SUITE is used to simulate the incident electric field and S parameters. The
scattered-field S parameter is the simulated S parameter when the brain has a blood clot minus the S
parameter when the brain is normal. When 16 dipole antennas are placed outside the brain area, the
simulation setup diagram is shown in Figure 3.

In Figure 3, the big blue circle represents the matching medium; the three-tiered circle represents
the brain; and the red circle represents a blood clot. Figure 4 shows the distribution of the singular
values of the constructed scattering matrix T . It can be seen that the first non-zero singular value is
much larger than the other singular values. It is precisely because of the presence of blood clots in the
brain that the first non-zero singular is large. This not only proves the correctness of Equation (3), but
also further proves the rationality of the imaging algorithm.



76 Li et al.

Figure 3. Simulation diagram with 16 antennas.

Figure 4. Distribution of singular values.

When the blood clot with a radius of 1 cm is located at the point (10, 30), the imaging result is
shown as Figure 5.

The positioning accuracy is used to quantify the performance of the imaging algorithm. The metric
△d represents the difference between the center position of the predicted blood clot in the reconstructed
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Figure 5. Reconstructed images of simulation.

image and the center position of the blood clot in the model:

△d =∥ TC(x, y)−RC(x, y) ∥ (17)

where TC(x, y) represents the center position of the blood clot in the image, and RC(x, y) represents
the center position of the blood clot in the model. △d = 5.8mm in Figure 5. It can be seen from the
simulation results that the method proposed has high positioning accuracy.

The microwave experiment platform is built to further verify the imaging algorithm. As shown in
Figure 6, the experiment platform consists of a VNA, laptop, switch matrix, and simplified tested brain

Figure 6. Microwave experiment platform: 1) simplified tested brain model with 8 antennas around,
2) switch matrix, 3) VNA, and 4) laptop.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Validation of the proposed imaging approach. (a), (c), (e) Test chart. (b), (d), (f) Imaging
chart.
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model with 8 antennas around. The laptop sends commands to the VNA and switch matrix respectively
to generate signals and select antennas. In addition, the laptop captures and processes signals from
different antennas for imaging.

The simplified tested brain model is a glass container with a radius of 10 cm and a height of 10 cm.
Fill it with pure glycerin, and put a metal cylinder with a radius of 5mm in a specific position in the
glycerin to act as a foreign body in the brain. Figure 7 shows the test and imaging results of foreign
body in different positions when the frequency f = 0.55GHz.

According to the actual imaging diagram, it can be seen that the proposed microwave imaging
method can map the energy distribution in the simplified tested brain model. It accurately detects the
existence of a foreign body and predict its location to within a few millimeters.

5. CONCLUSION

A microwave imaging algorithm based on scattering parameters for the detection of craniocerebral
injuries in time has been presented. In order to eliminate the influence of the antenna on the imaging
effect, the algorithm constructs a scattering matrix without diagonal elements. In addition, it uses Born
approximation and the first kind of first-order Hankel function in the frequency domain to calculate
power distributions inside the simplified brain model. Thus, the presented approach removes the need
to solve time-domain or nonlinear inverse problems. After simulation and experimental verification, the
imaging algorithm quickly and accurately locates the location of small blood clots and foreign objects.
Future work will include refining the brain model and comparing several competing microwave imaging
algorithms.
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17. Persson, M., A. Fhager, and H. D. Trefná, “Microwave-based stroke diagnosis making global
prehospital thrombolytic treatment possible,” IEEE Transactions on Biomedical Engineering ,
Vol. 61, No. 11, 2806–2817, 2014.

18. Park, W. K., “Real-time microwave imaging of unknown anomalies via scattering matrix,”
Mechanical Systems and Signal Processing , Vol. 118, 658–674, 2019.

19. Haynes, M., J. Stang, and M. Moghaddam, “Microwave breast imaging system prototype with
integrated numerical characterization,” International Journal of Biomedical Imaging , Vol. 2012,
1–18, 2012.

20. Haynes, M. and M. Moghaddam, “Vector Green’s function for S-parameter measurements of the
electromagnetic volume integral equation,” IEEE Trans. Antennas Propagation, Vol. 60, No. 3,
1400–1413, 2012.

21. Haynes, M., J. Stang, and M. Moghaddam, “Real-time microwave imaging of differential
temperature for thermal therapy monitoring,” IEEE Transactions on Biomedical Engineering ,
Vol. 61, No. 6, 1787–1797, 2014.


