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Multiple Sources Localization Based on Independent Doublets Array

Jiacai Jiang*

Abstract—In this paper, an iterative algorithm for the location of multiple sources based on
independent doublets arrays is proposed. The array brings a unified signal model for both near-field
and far-field incoming sources. The signal model refrains the bias of Fresnel approximate due to the
close displacement between elements of each doublet. Only exploiting the geometry of each doublet
in direction-of-arrival (DOA) estimation, the proposed algorithm can avoid synchronization technology
among different local oscillators of doublets, which means that elements among doublets could be
independent. The proposed algorithm employs all the data received by the independent doublets arrays
and can deal with more than two sources with only two coherent sensors in each doublet. The algorithm
provides a simple approach and obtains acceptable results. Simulation results are illustrated to verify
the effectiveness of the proposed algorithm.

1. INTRODUCTION

The source localization using a passive sensor array has been studied by researchers for its wide
applications including radar, radio astronomy, sonar, geophysics, oceanography, seismology, and
biomedical [1–4]. The problem of source location requires to estimate two types of parameters, direction
of arrivals (DOA) and range of sources to the sensor array. The problem is further subdivided into two
estimation problems under different assumptions as follows.

Compared with the aperture of the array, source-to-sensor distance is remarkably large. It means
that the received wavefront emitted from sources is planar, and DOAs whose each source impinges
on different sensors of array are approximately equal. In this situation, sources are recognized as far-
field sources, and only DOAs of sources are required to estimate. Focusing on far-field sources, lots of
algorithms have been proposed and summarized in [5], such as multiple signal classification (MUSIC) [6]
and estimation parameters via rotational invariance techniques (ESPRIT) [7].

When the range of sources to the sensor array is not sufficiently large compared with the diameter of
array, the wavefront of sources signal are spherical. Thus DOAs that each source impinges on different
sensors of array are different. The assumption of far-field sources is not suitable. In this situation,
sources are considered to locate at the near-field of an array. Both DOAs and range are required to
estimate. Mostly, algorithms for near-field sources exploiting subspace of source involve one or more
dimensions search [8–11]. In contrast to the subspace-based approaches, others employ the likelihood
function [12, 13] or linear prediction (LP) [14]. Those algorithms for near-field sources are based on
the Fresnel approximate model [15]. However, the model based on Fresnel approximation of near-field
sources is modeling-mismatch and introduces a systematic error [15, 16]. The bias between the real
model and Fresnel approximate model is non-random and adds towards random estimation errors with
the additive noise.

In this paper, we focus on multiple sources localization by employing independent doublets arrays.
The array is considered that each subarray involves two well calibrated elements, and elements between
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subarrays are independent for different oscillators. The received data model of the array can cope
with a unified form for both far-field and near-field sources. Besides, the model can overcome the
modeling-mismatch of near-field source.

The array appears like the array that bearing-only target location algorithms [17–20] employ.
Actually, it is different from bearing-only location algorithms since those algorithms require two or
more sensors in each subarray. Besides, bearing-only location algorithms are considered that bearings
of sources are measured by each subarray, without taking the whole data received by array into
consideration. Thus, those algorithms cannot obtain the optimal estimator. The proposed algorithm
utilizes the whole data efficiently and can handle multiple sources with only two sensors in each
doublet. Other location algorithms based on separated subarrays [21–23] also take all received data
into consideration. These algorithms imply that all elements of array exploit a common oscillator or
multiple well-synchronized oscillators. However, the array is hard to employ a common oscillator as the
aperture of array becomes large. Besides, the synchronization technology for multiple oscillators costs
too much and is difficult to apply. Since the proposed algorithm only utilizes the relationship between
elements of each doublet, it can avoid the complex synchronization among oscillators of doublets and
reduce the difficulty for application.

The proposed algorithm that we previously presented in [24] can only deal with the problem of
location for single source. In this paper, we present an iterative algorithm to estimate parameters
of multiple sources. The new algorithm exploits the iterative process to obtain angles that each
source impinges on every doublet of array. Based on the estimated angles, the type of sources can
be determined, and the range of near-field sources can be obtained by triangulation.

2. PROPOSED SIGNAL MODEL

Let us assume that there is a linear array composed of M doublets. As shown in Fig. 1, each doublet
is composed of two elements. The displacement d of each doublet is measured in half-wavelength, and
the displacement between m-th and (m+ 1)-th doublets is Dm, with m = 1, 2, . . . ,M − 1.

Figure 1. The subarray partition of the array.

The following assumptions are considered regarding the array, the signal sources, and the noise.

(i) The number of sources K is known, and it is smaller than the number of doublets M .

(ii) Sources are narrowband and independent of each other. Sources are located at the far-field of each
doublet.

(iii) The sensor outputs are observed for a common time interval, which is longer than the random
process correlation time and the time that sources wavefronts propagate across the array.

(iv) The amplitude gradient of the noisy signal across the array is negligible.
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(v) The noise is considered independent, identically distributed Gaussian random variables with zero
mean and σ2 variance.

(vi) Elements in each doublet share a common local oscillator, and elements between doublets employ
different local oscillators.

Sources are assumed to locate at the far-field of each doublet. It means that directions in which
each source impinges on the two elements of each doublet are quite close, and the wavefront of signal
source can be regarded as planar. Sources are also considered to locate at the near-field of the array;
therefore, directions in which each source impinges on different doublets are quite different, and the
wavefronts of signal source are regarded as circular. It is clear that sources located at the far-field of the
array is a special case, and the sources are also located at the near-field of the array, where directions,
whose each source impinges on different doublets, are the same. Suppose the kth source impinging upon
the array from angle θk,m and range rk,m corresponding to the mth doublet. Thus, the aperture d of
each doublet handles rk,m ≫ 2d2/λ, with m = 1, 2, . . . ,M and k = 1, 2, . . . ,K.

2.1. Signal Model

The phase shift associated with propagation time that the k-th source impinges on the element Am of
array is

τk,m = 2πrk,m/λ, (1)

where λ is the wavelength of sources. Then, the received data of element Am of the array are

xAm (t) = ϕm (t)
K∑
k=1

exp(jτk,m)sk (t) + nAm (t)

= ϕm (t) cAms (t) + nAm (t) , (2)

where ϕm(t) is the phase of the m-th local oscillator of the m-th doublet, sk(t) the voltage at the
terminals of the array element of the k-th source, nAm(t) the received noise of array element Am, and
cAm is a 1×K steering vector, given by

cAm = [exp(jτ1,m), exp(jτ2,m), . . . , exp(jτK,m)]. (3)

The vector s(t) = [s1(t), s2(t), . . . , sK(t)]T is the K × 1 waveform vector. The symbol (·)T represents
the transposition.

Assume that the down-converter frequency of receivers equals the carrier frequency of sources, then
the phase ϕm(t) is given by

ϕm (t) = exp[jφm(t) + jφm,0], (4)

where φm(t) is the phase noise of the m-th local oscillator of the m-th doublet, and φm,0 is the
corresponding initial phase. Generally, the cost of synchronisation for time and frequency of different
oscillators is less than that of phase. The synchronisation methods for time and frequency have been
developed [25–27]. Typical global positioning system based (GPS-based) oscillators with 10MHz [28–
30] are with short-term stability of σAllan(∆t = 1s) = 10−12 and short-term accuracy of 10−11. Besides,
the sample time of typical system for sources location is less than 1ms. As a typical example, assuming
1GHz center frequency location system, the phase produced by frequency bias varies slightly [31] and is
less than 1◦, which can be considered to be fast-time [32], and the phase noise of oscillator is negligible.
Therefore, ϕm(t) can be approximated to a constant,

ϕm (t) ≈ ϕm = exp(jφm,0). (5)

Thus, Equation (2) can be rewritten as

xAm (t) = ϕmcAms (t) + nAm (t) . (6)

Under the assumption that sources are located at the far-field of each doublet, the received data of
element Bm of the array are

xBm (t) = ϕm

K∑
k=1

υk,mexp(jτk,m)sk (t) + nBm (t)

= ϕm (υm ⊙ cAm) s (t) + nBm (t) , (7)
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where υk,m = exp(j 2πdλ sin (θk,m)) is the phase difference for that the k-th source impinges on the
elements Am and Bm. nBm(t) is the received noise of array element Bm. υm is given by

υm = [υ1,m, υ2,m, . . . , υK,m] , (8)

the symbol ⊙ denotes the Hadamard product.
The received data of subarray {A1, A2, . . . , AM} are

xA (t) = [xA1 (t) , xA2 (t) , · · · , xAM
(t)]T

=
(
ΦC̄A

)
s (t) + nA (t)

= CAs (t) + nA (t) , (9)

where Φ = diag (ϕ1, ϕ2, . . . , ϕM ). C̄A =
[
cTA1

, cTA2
, · · · , cTAM

]T
. CA , ΦC̄A.

The received data of subarray {B1, B2, . . . , BM} are

xB (t) = [xB1 (t) , xB2 (t) , · · · , xBM
(t)]T

=
[
Φ
(
Υ⊙ C̄A

)]
s (t) + nB (t)

= CBs (t) + nB (t) , (10)

where Υ representing the phase shift matrix is given by

Υ =
[
υT
1 ,υ

T
2 , · · · ,υT

M

]T
. (11)

CB is the matrix defined by CB , Φ
(
Υ⊙ C̄A

)
.

The entire data received by the array are

x (t) =
[
xT
A (t) xT

B (t)
]T

=

[
CA

CB

]
s (t) +

[
nA (t)

nB (t)

]
. (12)

Theorem 1 [33] Let D ∈ CM×M be diagonal matrix, and matrix A ∈ CM×N and B ∈ CM×N , then

D(A⊙ B) = (DA)⊙ B = A⊙ (DB).
With Theorem 1, the relationship between matrices CA and CB can be given by

CB = Φ
(
Υ⊙ C̄A

)
= CA ⊙Υ = Υ⊙CA. (13)

3. PROPOSED ALGORITHM

A maximum-likelihood (ML) estimator is derived in Appendix A. However, the ML solution is
computationally prohibitive in most practical applications. In this section, the optimization model
for the signal model and corresponding iterative estimation is presented.

3.1. Generalized ESPRIT and Optimization Model

The covariance matrix of x(t) is

R = E[x (t)xH (t)]

=

[
CA

CB

]
Rs

[
CA

CB

]H
+ σ2I, (14)

where Rs = E
[
s(t)sH(t)

]
denotes the diagonal matrix of sources power; σ2 is the variance of noise; the

symbol (·)H denotes the conjugate transpose of matrix.
By eigen-decomposition of the covariance matrix R, it is obtained that

R = UΣUH = UsΣsU
H
s +UnΣnU

H
n , (15)
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where Us and Un are the signal subspace and noise subspace, respectively.

Since the column space R {Us} of Us equals the column space R
{[

CA

CB

]}
, there must exist a

non-singular matrix F, satisfying [
CA

CB

]
= UsF =

[
Us1
Us2

]
F, (16)

where Us1 and Us2 are the two M ×K submatrices of Us.
Therefore, it can be obtained that

Us1 = CAF
−1

Us2 = CBF
−1 = (Υ⊙CA)F

−1.
(17)

where the superscript (·)−1 denotes the inverse.
It can be obtained that

Us2 = [Υ⊙ (Us1F)]F
−1, (18)

Equation (18) shows the inner relationship between the signal subspaces and steering matrices of array.
The matrixΥ involving in all angles can be obtained by solving the following minimization problem:

min
Υ,F

∥∥Us2 − [Υ⊙ (Us1F)]F
−1
∥∥
F
,

s.t.


rank (F) = K

rank (Υ) = K

|υm,k| = 1

.
(19)

where ∥·∥F is the Frobenius matrix norm, and υm,k is the m-th row and k -th column element of matrix
Υ. m = 1, 2, . . . ,M . k = 1, 2, . . . ,K.

3.2. Solution Method

3.2.1. Alternating Iterative Technique

It is clear that Equation (19) is a noncovex multi-dimensional optimization problem. Its globally optimal
solutions can be gained with huge computational load. In this section, we propose an alternating
iterative technique to reduce the computation.

By dropping all the rank constraints from Equation (19), the optimization problem can be relaxed
into the following equation

min
Υ,F

∥∥Us2 − [Υ⊙ (Us1F)]F
−1
∥∥
F
,

s.t. |υm,k| = 1.
(20)

In order to simplify the problem, it is suggested to denote the first F and second F of Equation (20)
as two independent matrices FB and FA, respectively. It follows that the conditional least squares
update of F̂A is given by

F̂A = U†
s2

[(
Us1F̂B

)
⊙ Υ̂

]
. (21)

where (.)† denotes the pseudo-inverse of matrix.

The matrix Υ̂ is estimated by

Υ̂ =
(
Us2F̂A

)
./
(
Us1F̂B

)
. (22)

where (./) denotes the division of each element of two matrices. Finally, matrix F̂B can be replaced by

the previous estimated F̂A.
Alternating iterative technique can be initialized by the ESPRIT algorithm under reasonable

assumption below. Note that the given initialized matrix F̂B may improve or maintain performance,
without significant deterioration. From this observation, the solution will convergence to (at least) a
local minimum following directly. The reasonable initial estimation can ensure that the global minimum
is reached, and the optimal solution is guaranteed.
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3.2.2. Initial Estimation

Obviously, when the range between sources and array is considered to be infinite, solutions of the
problem are easy to obtain. The relevant matrices Υ and F can be used as the initial value of the
alternating iterative method. In this section, the initial estimation method for matrices Υ and F is
considered.

(a) (b) (c)

Figure 2. (a) The source is located in the right region of the array. (b) The source is located in the
direct region of the array. (c) The source is located in the left region of the array.

The different relative relationships of direction between doublets and the sources are shown in
Fig. 2. It is clear that θk,1, θk,2, . . . , θk,M satisfy

{θk,1, θk,2, . . . , θk,M} ∈ [θk,1, θk,M ] , when, θk,1 6 θk,M , (23)

or
{θk,1, θk,2, . . . , θk,M} ∈ [θk,M , θk,1] , when, θk,M 6 θk,1. (24)

To obtain the initial estimation of parameter, approximate processing is required. The range of
sources is assumed to be large enough so that each source can be reasonably considered as a far-field
source. Thus the angles θk,1, θk,2, . . . , θk,M of the k-th source can be properly replaced with a common
angle θk,0 as shown in Fig. 2, where θk,0 is a virtual angle. Then the corresponding phase difference is

represented by a common value υk,0, υk,0 = exp[j 2πdλ sin (θk,0)]. Apparently, the common angle θk,0 for
each far-field source is the actual angle of it. Therefore, the approximation of Equation (11) is

Υ0 ≈


υ1,0 υ2,0 · · · υK,0

υ1,0 υ2,0 · · · υK,0
...

...
. . .

...
υ1,0 υ2,0 · · · υK,0

 . (25)

Then Equation (13) can be rewritten as

CB ≈ Υ0 ⊙CA = CAΨ0, (26)

where Ψ0 is a diagonal matrix, defined by Ψ0 = diag(υ1,0, υ2,0, . . . , υK,0).
Using Equation (26), Equation (16) can be rewritten as[

CA

CB

]
≈
[

CA

CAΨ0

]
= UsF0 =

[
Us1

Us2

]
F0, (27)

where F0 is the approximate matrix of F.
Therefore, it can be given by

Us1 ≈ CAF
−1
0

Us2 ≈ CBF
−1
0 = CAΨ0F

−1
0

. (28)
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Further, it can be written as

F0Ψ0F
−1
0 ≈ (Us1)

†Us2. (29)

By eigen-decomposition of (Us1)
†Us2, Ψ0 and F0 can be obtained. Then Υ0 can be computed by

Equation (25).

3.2.3. Iterative Estimation

With the obtained initial matrix F0, the iterative estimation method is described in Table 1.

Table 1. Operation of the iterative algorithm.

Initialization: Given N received snapshots xA (t) and xB (t), compute the covariance matrix R =
E[x(t)xH(t)], where x (t) = [xA (t) ,xB (t)]T . Compute the eigen-decomposition of R and obtain the
estimation of the initial matrix F0.
Iteration: For i = 1, 2, . . . until the recursion is halted

(i) Based on Equation (19), the i -th estimation of matrix Υ is

Υ(i) = (Us2F(i− 1)) ./ (Us1F(i− 1)) . (30)

(ii) Normalize all elements of the matrix Υ(i) and obtain

υm,k(i) = υm,k(i)/|υm,k(i)|, (31)

where υm,k(i) is the m-th row and k -th column element of matrix Υ(i).

(iii) Based on Equation (19), compute

F(i) = U†
s2 [(Us1F(i− 1))⊙Υ(i)] (32)

to update the matrix of Fi.

(iv) Repeat steps (ii) and (iii), until the bias of Υ(i) and Υ(i− 1) is less than the threshold ε,

∥Υ(i)−Υ(i− 1)∥F < ε (33)

or iteration times are over the limit, the iteration ends.

Parameters Estimation: By exploiting the k-th column of Υ, angles θk,m(m = 1, 2, . . . ,M) that the
k -th source impinging upon each doublets can be obtained, and to near-field sources, the corresponding
distance rk that the source impinging on the reference element can be successively obtained.

The k-th column of Υ is υk, and it denotes the information of k-th source angles. With the
definition in Equation (7), angles can be estimated by

θ̂k,m = arcsin

(
(∠υk,m)λ

2πd

)
, (34)

where symbol (∠) denotes the phase angle of complex.
Using the estimated angles for the k-th source, the type of sources corresponding to the array can

be determined. When the estimated angles of the k-th sources satisfy∣∣∣θ̂k,1 − θ̂k,M

∣∣∣ 6 εNF , (35)

where εNF is the threshold. Note that if Equation (35) holds, the source is located at the far-field of
array. Otherwise, the source is located at the near-field of array.

It is obvious that when {θ̂k,1, θ̂k,2, . . . , θ̂k,M} for the k-th source are separated enough, the source
can be recognized to locate at the near-field of the array. Thus, the range of the k-th source can be
estimated based on triangulation. Consider that the k-th source is near-field source, the geometry
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relationship between the range rk,1 and angles {θk,1, θk,2, . . . , θk,M} corresponding to the k-th source
can be presented as

zr1 = b. (36)

where z , [sec (θk,2) , sec (θk,3) , . . . , sec (θk,M )]T , b , [b1, b2, . . . , bM−1]
T , with bm = csc(θk,1 −

θk,m+1)
m∑
i=1

Dm. Then the range r1 can be estimated by

r1 = z†b. (37)

While estimated angles {θ̂k,1, θ̂k,2, . . . , θ̂k,M} of the k-th source are close to each other and the angles

meet
∣∣∣θ̂k,1 − θ̂k,M

∣∣∣ 6 εθ, the source can be detected to locate at far-field of the array, and the range of

source cannot be estimated properly by employing Equation (37).

4. ANALYSIS AND SIMULATION

4.1. Analysis for the Proposed Signal Model

In this section, the advantage of the proposed signal model is analysed.

Figure 3. The geometry of two sensors array.

First, let us consider an array with two elements as shown in Fig. 3. The displacement between
the two sensors is δ. Suppose that the first element is the common reference element. The phase shift
associated with the propagation time delay between the first sensor and second sensor of the source
signal is

τ(δ) = 2π(r2 − r1)/λ, (38)

where r1 is the range between the source and reference element. r2 is given by

r2 =
√

r21 + δ2 − 2r1δ sin θ1. (39)

Utilizing Fresnel approximation, Equation (38) approximately equals

τ̂(δ) ≈ −2π

λ
sin θ1 +

πδ2

λr1
cos2 θ1. (40)

Therefore, the bias between the approximate phase shift τ̂(δ) and real phase shift τ(δ) is

∆τ(δ) = τ(δ)− τ̂(δ)

=
2πr1
λ

√1 +

(
δ

r1

)2

− 2
δ

r1
sin θ1 − 1

−

(
− δ

r1
sin θ1 + 2

(
δ

r1

)2

cos2 θ1

) . (41)
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Figure 4. The bias of Fresnel approximate against θ1 and δ/r1.

The bias ∆τ(δ) varying with the direction of source θ1 and δ/r1 is shown in Fig. 4. Note that the
item 2πr1/λ is ignored in the simulation of Fig. 4. It is obvious that the bias ∆τ(δ) increases versus
δ/r1 when θ1 is fixed. With δ/r1 fixed, the bias also increases when θ1 is close to 0◦. It can also be seen
that the smaller the displacement δ is, the smaller the bias ∆τ(δ) is. It denotes that the bias ∆τ(δ) can
be diminished when the small displacement δ between two elements is exploited.

In the paper, it is assumed that sources are located at far-field of each doublet, thus the displacement
d of elements of each doublet satisfies r1 > 2d2/λ.

Based on numerical results in Fig. 4, the bias of different reference elements satisfies

∆τ(d) ≪ ∆τ(D) (42)

where ∆τ(d) and ∆τ(D) are the corresponding bias. It is obvious that the model can avoid the mismatch
of traditional Fresnel approximate model [15].

4.2. Threshold for the Iterative Algorithm

The matrix Υ(i)−Υ(i− 1) denotes the bias of two iterations, thus ∥Υ(i)−Υ(i− 1)∥2F is written as

∥Υ(i)−Υ(i− 1)∥2F =

M∑
m=1

K∑
k=1

|υk,m (i)− υk,m (i− 1)|2 (43)

where υk,m (i) = exp[j 2πdλ sin θk,m (i)]. ∥Υ(i)−Υ(i− 1)∥2F is the sum of the bias of all elements.
When the error margin εθ of DOA estimation is fixed, the norm of bias matrix can be obtained.

Suppose that when the error margin is εθ = |θk,m(i)− θk,m(i− 1)| ≥ 0, iterations end. Then every
element of matrix Υ(i)−Υ(i− 1) satisfies

|υk,m (i)− υk,m (i− 1)|2 ≈ 2− 2 cos {2πdεθ cos θk.m (i− 1)/λ} (44)

where εθ is considered to be less than 0.1◦.
Due to θk,m (i− 1) ∈

[
−π

2 ,
π
2

]
, cos θk.m (i− 1) ∈ [−1, 1]. Thus, Equation (44) can be obtained

|υk,m (i)− υk,m (i− 1)|2 6 2− 2 cos(2πdεθ/λ) (45)

The bias matrix is given by

∥Υ(i)−Υ(i− 1)∥F 6
√

2MK [1− cos(2πdεθ/λ)]

= 2
√
MKsin (πdεθ/λ) . (46)

Therefore, the threshold ε of the iterative algorithm can be set as

ε = 2
√
MKsin (πdεθ/λ) . (47)

Based on the number of doublets and the number of sources, it is easy to obtain the iterative threshold.
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4.3. Simulation

The first experiment is designed to illustrate iterative performance of the proposed algorithm. Two
sources (K = 2) impinging on the independent doublets arrays are considered. The array is constructed
by a linear array with 5 doublets. The sensor spacing of each doublet is d = 0.5λ, and the spacing
between doublets is Dm = 10λ, with m = 1, 2, . . . ,M − 1. λ is the wavelength of source. DOAs are
{θ1, θ2} = {−12◦, 40◦}, and the corresponding range is {r1, r2} = {200λ, 400λ}. It is obvious that the
source is located at the near-field of array and the far-field of each doublet. The performance of iterative
algorithm is evaluated with noise and noiselessness scenarios. The signal-to-noise ratio (SNR) is set to
5 dB. The number of snapshot is 2000.

The trend of ∥Υi −Υi−1∥F in Equation (33) against iteration times is shown in Fig. 5, and the error
of estimated parameters against iteration times is shown in Fig. 6. It is clear that though ∥Υi −Υi−1∥F
decreases steadily with iteration times increases, the estimation of parameters reaches stables values
when the iteration times is about 15. The corresponding ∥Υi −Υi−1∥F is about 10−4. The result
denotes that a suitable threshold can guarantee stable estimation results, whereas an improper threshold
may result in excessive meaningless calculation. The results in Fig. 6 also denote that the proposed
method is unbiased in the noise-free case.
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Figure 5. The trend of ∥Υi −Υi−1∥F against iteration times.

In the second example, we evaluate the performance of the proposed algorithm with multiple
sources. The root mean square of error (RMSE) of estimated angles is defined as

RMSE (θk) =

√√√√ 1

N

N∑
n=1

(
θk − θ̂k (n)

)2
, (48)

where N is the number of Monte Carlo runs. The normalized root mean square of error (NRMSE) of
estimated range is defined as

NRMSE (rk) =

√√√√ 1

N

N∑
n=1

(
rk − r̂k (n)

rk

)2

. (49)

Three sources impinging upon the array are considered in this example. The DOAs of three sources
are {θ1, θ2, θ3} = {−30◦, 40◦, 15◦}, and the range is {r1, r2, r3} = {200λ, 400λ, 300λ}. The number of
snapshots is 2000. The simulation results against SNR are reported in Fig. 7. It is displayed that
the proposed algorithm can deal with multiple sources that impinge upon independent doublets arrays,
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Figure 6. The error of DOA and range estimation against iteration times.
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Figure 7. RMSEs of DOA estimation and NRMSEs of range estimation against SNR.

and the estimation performance of parameters increases with SNR increases. Note that the traditional
algorithm can only deal with coherent array which employs a common oscillator, or different oscillators
with complicated phase synchronization device. Comparing those algorithms, the proposed algorithm
indicates that location problem only requires multiple doublets to decouple multiple sources. Therefore,
it can reduce the difficulty of implementation.

The third simulation experiment illustrates the advantage of the proposed algorithm, compared
with the cross location with multiple interferometers (CLMI). The CLMI method employs each doublet
as an interferometer to obtain the DOA of source [34] and then obtains the location of source by
triangulation as well as the proposed method. The CLMI can only deal with the location problem for
single source, thus this simulation entails one source (K = 1), with (angle, range) equal to θ1 = −12◦,
r1 = 200λ. The array is the same as the first experiments. The sample of snapshots snapshot is 2000.
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Figure 8. RMSEs of DOA estimation and NRMSEs of range estimation against SNR.
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Figure 9. RMSEs of DOA estimation against SNR and Snapshots.

The performance of algorithms against SNR is obtained over 1000 independent trials.
The results are shown in Fig. 8 in terms of angle and range RMSE, respectively. It is shown that

the performance of the proposed method and CLMI increases with SNR. When the SNR is higher than
4 dB, the estimation results of DOA and range are acceptable. The proposed method yields a better
performance improvement than CLMI. The performance gap is due to the effective utilization of the
doublets array.

In the fourth example, we compare the performance of the proposed algorithm with the ESPRIT
algorithm [7]. The array utilized is the same as the former experiment. The incoming signal is a far-
field source, with θ = −30◦. It is considered that the estimated DOA by ESPRIT is obtained with five
doublets, respectively, and the corresponding performance is gained by all the estimated DOA results.
The proposed algorithm uses all data received by the five doublets together, and the threshold of it
is ε = 10−5. The performance of estimated angle against SNR (with 10000 snapshots) and snapshots
(with 0 dB SNR) is obtained by 500 independent trials and shown in Fig. 9.
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The first result of Fig. 9 indicates that, for low SNR, the performance of the proposed algorithm
is better than the ESPRIT algorithm. When the SNR is higher, the proposed algorithm achieves close
performance to the ESPRIT. The second result suggests that the proposed algorithm has better DOA
estimation performance than ESPRIT against different snapshots. It shows that the iterative algorithm
performs better than ESPRIT, especially at lower SNR. Obviously, the proposed algorithm can gain
better performance for its effective exploitation of the array.

In the last simulation example, the scenario of mixed sources is considered. The scenario includes
one far-field source located at θ1 = −30◦, r1 = 2 × 106λ and one near-field source located at
θ2 = 45◦, r2 = 400λ, respectively. The threshold of iterative algorithm is set as ε = 10−4. The
SNR varies from 0dB to 20 dB. Fig. 10 provides the simulation result. It is observed that the proposed
method can deal with the scenario of mixed sources, and the conclusion that other algorithms cannot
handle far-field source in the previous analysis is verified.
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Figure 10. RMSEs of DOA estimation and NRMSEs of range estimation against SNR.

5. CONCLUSION

In this paper, we have presented an iterative algorithm for the location of multiple sources based on
independent doublets arrays. Based on the array, the proposed algorithm introduces a unified signal
model for near-field sources or(and) far-field sources. Especially for near-field sources, the signal model
could passably avoid the bias of Fresnel approximate because of the close displacement between elements
of each doublet. Since only the rotational invariance relationship towards each doublet was employed,
the proposed algorithm could avoid complicated phase synchronization among doublets. Further, the
spacing between two adjacent doublets can be set larger to achieve greater array aperture for good
resolution. The proposed algorithm utilized the whole received data efficiently and could handle more
than two sources with only two sensors in each doublet. This algorithm also provides a simple calculation
method to reach acceptable estimation results. For far-field sources, the proposed algorithm achieved
better performance than ESPRIT. For near-field sources, the algorithm performs better than CLMI. To
sum up, the present algorithm based on independent doublets array has many benefits and reduces the
difficulty of implementation.

APPENDIX A. THE MAXIMUM LIKELIHOOD ESTIMATOR

In this section, the Maximum Likelihood (ML) estimator of parameters estimation is derived for source
location.
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Under the assumptions of the observation processX(tn), constitute a stationary zero mean Gaussian
random process, and its second-order moments are

Rx = E
[
X (t1)X

H(t2)
]

=

[(
CA

CB

)
Rs

(
CA

CB

)H

+ σ2I

]
δt1,t2, (A1)

where δt1,t2 represents the Kronecker delta.
The likelihood function of N snapshots X(t1), X(t2), . . . ,X(tN ) is

p
(
X (t1) ,X (t2) , . . . ,X (tN )| θ, r,Rs, σ

2,Φ
)
=

N∏
n=1

1

πM det (R)
e−XH(ti)R

−1X(ti), (A2)

The negative log-likelihood function is

− log
[
p
(
θ, r,Rs, σ

2,Φ
)]

= MN log π +N log det (R) +
N∑
i=1

XH (ti)R
−1X (ti). (A3)

Ignoring the constant term and normalizing by the number of snapshot N , the parameters
estimation is obtained by solving the optimization problem as follows,{

θ̂, r̂, R̂s, σ̂
2, Φ̂

}
= arg min

θ,r,Rs,σ2,Φ
l
(
θ, r,Rs, σ

2,Φ
)
, (A4)

where

l
(
θ, r,Rs, σ

2,Φ
)
= log det (R) +

1

N

N∑
i=1

XH (ti)R
−1X (ti) = log det (R) + Tr

{
R−1R̂

}
, (A5)

is the criterion function and

R̂ =
1

N

N∑
i=1

XH (ti)X (ti), (A6)

is the sample covariance matrix.
The estimates of the signal sources covariance matrix and the noise variance are [35, 36]

R̂s (θ, r,Φ) =

[
CA

CB

]† (
R̂− σ̂2 (θ, r,Φ)

){[
CA

CB

]†}H

(A7)

σ̂2 (θ, r,Φ) =
1

M −K
Tr
{
P⊥

A,BR̂
}
, (A8)

where the superscript (·)† denotes Moore-Penrose inverse. P⊥
A,B is the orthogonal projector onto the

null space of

[
CA

CB

]H
,

P⊥
A,B = I−

[
CA

CB

] [
CA

CB

]†
. (A9)

Substitute Equation (A7) and Equation (A8) into Equation (A5), then the parameters estimates
are obtained by solving the following optimization problem

{θ, r,Φ} = arg min
θ,r,Φ

log detG, (A10)

where G =

[
CA

CB

]
R̂s(θ, r,Φ)

[
CA

CB

]H
+ σ̂2(θ, r,Φ)I.

It is obvious that the ML algorithm is a multivariate nonlinear maximization and can be solved
with quite high computational load.
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35. Böhme, J. F., “Estimation of spectral parameters of correlated signals in wavefields,” Signal
Processing, Vol. 11, 329–337, 1986.

36. Ottersten, B., M. Viberg, P. Stoica, and A. Nehorai, “Exact and Large Sample Maximum Likelihood
Techniques for Parameter Estimation and Detection in Array Processing,” Radar Array Processing,
Vol. 25, 99–151, S. Haykin, J. Litva, and T. Shepherd (eds.), Springer, Berlin Heidelberg, 1993.


