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Improvement of IR Pyroelectric Detector Performance in THz
Range Using Wavelength-Scale Sphere-Based Terajet Effect
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Abstract—An infrared (IR) pyroelectric detector for applying to the terahertz (THz) waveband that
uses diffraction-limited focusing of the THz beam on the sensitive area of the detector is studied. The
signal to be detected is coupled to the optical window of the detector through a two-wavelength diameter
polytetrafluoroethylene spherical particle-lens based on the terajet effect. We have experimentally
demonstrated an enhancement of the IR detector sensitivity by 5.6 dB at 0.2THz without degradation
of the noise equivalent power value. The results show that the proposed method could be applied to
increase the sensitivity of various commercial IR sensors in the THz range, requiring no modification of
the internal structure and may be applied also to acoustics and plasmonics.

1. INTRODUCTION

Terahertz (THz) waves have recently received unprecedented interest in product quality control,
medicine, biology, chemical composition or water content analysis, 5G and 6G communications,
nondestructive testing, and homeland security applications, to name a few [1–15] that cannot be achieved
in the optical or infrared (IR) electromagnetic bands.

Golay cell [16] is a device commonly used for THz radiation detection. Bolometers are cooled and
highly sensitive detectors in which the conductivity of the material changes with temperature induced by
the THz radiation. Uncooled pyroelectric detectors (PDs), in which the output current is proportional
to the rate of change in temperature of the film material [17], have some important advantages. Several
types of special THz PDs have been developed in the last decade. A PD based on lithium tantalate
crystal and film was considered in [18]. A tetraaminediphenyl-based PD was investigated in [19], and a
THz PD based on a pyroelectric polyvinylidene fluoride (PVDF) film coated with a metal oxide layer
was developed in [20, 21]. It has been shown that the thickness of the pyroelectric film should be reduced
to reduce the noise equivalent power (NEP) value. However, all these and other similar developments
require either a new detector design or the replacement of the material in the existing commercial
detector. Moreover, the present PDs designed especially for THz waves are still expensive.

On the other hand, PDs are widely used in the IR range and are produced by industry. Today
IR PDs are one of the best devices in uncooled IR detectors, providing a high efficiency of detection of
the illuminating radiation, relative short response time, high signal-to-noise ratio, low cost, and high
reliability [22–25].

A THz detector based on an IR PD (LHI778, Perkinelmer), initially designed for the wavelength
range of 7–14µm and used in THz imaging applications, was studied in [26]. A special amplification
circuit to amplify and capture the signal from the sensor was designed. A responsivity about 1200V/W
at 1.89THz was achieved. But direct application of conventional IR PDs to the THz waveband faces
the problem of decreasing detection sensitivity.
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However, it is found that the commercial IR MG-30PD [27] is a good substitute for special THz
detectors. Though it is designed for IR radiation, it retains good sensitivity at THz frequencies. A
single-element MG-30 PD has a response within the radiation wavelength range of 3–20µm and is
based on a free organic film of the PVDF type [21]. A sensor sensitive area of 1×1mm ensures that the

sensitivity threshold in the IR range is lower than 5× 10−10W×Hz1/2, and the volt-watt sensitivity is
greater than 105V/W [28].

To enhance the PD performance in the millimeter-wave band, the combination of an MG-
33 detector, originally designed for sensing IR radiation, with a metasurface-enabled absorber was
considered in [29]. The differences between MG-33 and MG-30 IR detectors are the standard package
and window diameters (KT-3 package and window diameter of 3.5mm for MG-33). Efficient frequency-
and polarization-selective detection of electromagnetic waves within the frequency band of 100–180GHz
was demonstrated with a degradation of the NEP value by a factor of 2. However, this scheme required
a change in both the design of the detector itself (the diameter of the optical window was specially
increased from 3.5mm to 5mm in [29]) and the development of a new absorber, which is far from
always available to the common user. In addition, due to the nature of the metasurface, the detector
has a pronounced resonance character.

The aim of this work is to demonstrate the possibility of effective use of commercially available IR
PDs in the THz range without changing their internal design.

One of the new approaches to increasing the sensitivity of THz detectors is based on the so-called
terajet effect [30–33]. It is based on a reduction of the focused beam caustic size up to the sub-
diffraction value at a distance close to the shadow surface of a wavelength-scale particle-lens made from
a conventional dielectric material [34]. The effect of such a dielectric particle-lens on the THz wave is
similar to that of a photonic nanojet, which was first discovered in optics and consists of subwavelength
focusing of a plane wavefront incident on a dielectric particle near its shadow surface. It has recently
been demonstrated that placing a dielectric cube in front of the sensitive area of a strained silicon field
effect transistor [35, 36] and a point contact detector [37] allows to increase the sensitivity of the THz
detectors due to the localization of the incident radiation with a slight decrease of the NEP value. In
this work, we demonstrate that the same method allows to increase the sensitivity of commercial IR
detectors in the THz range for room temperature operation.

2. EXPERIMENTAL SETUP

The basic scheme of the commercial MG-3PD combined with the sensitivity-enhancing dielectric particle
is depicted in Fig. 1(a). To produce the terajet effect, we attached a wavelength-scale spherical dielectric
particle directly to the PD window, which is made of germanium and has a thickness around h = 110µm.
The MG-30 sensor in the standard 1203.15-1 package [27], which contains a primary amplifier located
on the sensor chip, is shown in Fig. 1(b).

(a) (b)

Figure 1. (a) Schematic of the commercial MG-30 PD combined with the dielectric particle (not to
scale); (b) MG-30 detector in the standard 1203.15-1 package with a standard window of diameter of
6.5mm.
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To increase the coupling efficiency of the PD with the THz radiation source (at a wavelength
of 1.5mm, which corresponds to a frequency of about 0.2THz), we used the terajet formed by a
polytetrafluoroethylene (PTFE) sphere (commercially available from Goodfellow) with a two-wavelength
diameter instead of a cubic particle, which has to be specially manufactured. The refractive index of
PTFE is n = 1.41 [38–40], and the beam waist of the terajet (in full width at half maximum) for
this dimension of the PTFE sphere is about 0.5 wavelengths. The maximum of the field intensity
enhancement was observed at a distance about 0.7mm from the shadow surface of the particle. When
the features of the construction assembly of the PD shown in Fig. 1(a) (the minimal distance between
the shadow surface of the window and sensitive element is not equal to zero and has a fixed value d,
determined by the manufacturer technology) are taken into account, the focal distance of the terajet is
selected to be equal to half of a wavelength (Table 1).

Table 1. Simulation results of focal length of spherical particle versus diameter.

D/λ 2 3 4

F/λ 0.47 0.52 0.58

As the radiation source, a backward-wave oscillator (BWO) [41] (“OV-1” type, Istok Co.) was
chosen for its special features such as stability, a relative high output power (6–15mW), good wavefront
quality, and frequency tunability from 177 to 260GHz.

The measurements (Fig. 2) show a linear dependence of the voltage (U) on the power at λ = 1.5mm
(this value gives the maximum output power from the BWO). A certified attenuator was used to control
the emitted power sent to the receiver. The method for measuring NEP was similar to that described
in [29].

Figure 2. Voltage-power characteristics of the MG-30 PD measured at a wavelength of λ = 1.5mm.
NEP ≈ 6× 10−9W×Hz−1/2, and Sens ≈ 2.6× 105V/W for the PD without the particle.

The idea of this configuration is to exploit the dielectric PTFE particle that has a wavelength-
scale diameter to concentrate the illuminating THz waves into the sensitive area of the PD with a
diffraction-limited size. This allows to increase the intensity of the signal to be measured such that
the signal-to-noise ratio can be improved. In the experiment, the PTFE particle was directly placed
and glued onto the optical window of the PD. The horn antenna of the BWO was placed at a distance
of approximately 220mm from the detector window (which corresponded to the far-field condition) to
form a quasi-plane wavefront.

3. EXPERIMENTAL RESULTS

Figure 3 shows the measured photo-response without the particle (black curve) and with the sphere
(red curve). To demonstrate the sensitivity enhancement, the detector was excited by the source at its
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Figure 3. Measured amplitudes with/without the PTFE sphere at 0.2THz.

lowest power when the signal from the receiver (without the particle) was at the noise level. Then we
the PTFE particle in front of the detector and observed the increase in the signal and the noise level.
The measured amplitude with the sphere placed in was 6.2 ± 0.06mV, which was 5.6 dB higher than
that from the standard MG-30 PD without the enhancer. The standard error was calculated from nine
distinct measurements and a Student’s t-distributions coefficient [42] of 2.132, corresponding to a 90%
two-sided confidence interval. The standard deviations of the amplitude were measured for the cases
without and with the PTFE particle, respectively. These results indicate that the proposed technique
could enhance the detected THz intensity by 5.6 dB at 0.2THz for the MG-30 PD.

4. CONCLUSION

It is demonstrated that the commercial IR PD performance can be improved in the THz range using
the terajet effect based on a commercially available non-resonant spherical dielectric particle. A gain
enhancement about 6 dB was experimentally observed at 0.2THz for a commercial IRMG-30 PD without
degradation of the NEP value. The research results confirm the prospects of using commercial IR
detectors in the THz range [26, 43, 44] while requiring no changes in their design. The entire setup
offers a cost-effective solution for sensitivity enhancement of IR PDs in the THz range, which can be
applied in many fields, including imaging systems [7], THz wireless communications [9, 45], etc. This
method of increasing the sensitivity of commercial sensors can also be applied to both acoustic [46] and
plasmonic [47] devices.
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