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Machine Learning Approaches for Automated Stroke Detection,
Segmentation, and Classification in Microwave

Brain Imaging Systems
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Abstract—In this paper, an intracranial hemorrhage stroke detection and classification method using
microwave imaging system (MIS) based on machine learning approaches is presented. To create a
circular array-based MIS, sixteen elements of modified bow-tie antennas around a multilayer head
phantom with a spherical target with radius of 1 cm as an intracranial hemorrhage target are simulated
in CST simulator. To obtain satisfied radiation characteristics in the desired frequency band of 0.5–
5GHz a suitable matching medium is designed. Initially, in the processing section, a confocal image-
reconstructing method based on delay-multiply-and-sum (DMAS) beam-forming algorithms is used.
Then, reconstructed images are generated, which shows the applicability of the confocal method in
detecting a spherical target in the range of 1 cm. Separating and categorizing targets is a challenging
task due to the ambiguity in the extracted target from MIS. Thus, to distinguish between healthy and
unhealthy brain tissues, a new compound machine learning technique, including filtering, edge-detection
based segmentation, and applying K-Means and fuzzy clustering techniques, which reveal intracranial
hemorrhage area from reconstructed images is adopted. Simulated results are presented to validate the
proposed method effectiveness for precisely localizing and classifying bleeding targets.

1. INTRODUCTION

The objective of microwave imaging system (MIS) for human head imaging applications is to detect
cancerous tumors, brain injuries that cause ischemic or hemorrhage strokes, and brain activity
monitoring [1, 2]. There are several key factors in the imaging process, e.g., antenna dimension and its
radiation characteristics, image reconstruction methods, and post-processing techniques [3–5]. Several
imaging methods have been proposed to be utilized in medical imaging systems. These methods are
generally categorized in two main branches known as quantitative and qualitative methods. Quantitative
methods, such as the region of interest (ROI) tomography extract dielectric constant, are based on
iterative methods. The images reconstructed by these methods have good spatial resolution at the
cost of considerable computation time. On the other hand, qualitative methods, such as radar-based
methods, are based on reflected signal delays and are considered as a real-time method. These are faster
than the quantitative methods and thus more suitable for pre-hospital use.

A variety of methods have been proposed for reconstructing microwave images. However, in the
post-processing part, which adopts machine learning methods to classify different stroke types, much
research has not been done. On the other hand, there are many difficulties and challenges in classifying
stroke types due to the type of images extracted from radar systems. Machine learning techniques
applied to MIS have great potential in enabling segmentation, clustering, and classification cases [6–15].
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In [8], a neural network is combined with microwave imaging to learn the forward model for a complex
data-acquisition system. In addition, Franceschini et al. proposed a radial basis function neural network
to estimate the position and size of proliferated marrow inside bone tissue with microwave imaging [9].
Bevacqua et al. tried to take the benefit of a deep neural network to enhance the constructed images [10].
Their deep neural network was trained to take microwave images created using the back-projection
method as an input and had a much-improved image of the network output. In fact, they tried to bypass
the use of iterative techniques for solving the full nonlinear electromagnetic inverse problem. Also,
utilizing deep learning techniques to improve 2D microwave imaging for breast imaging application has
been investigated [11]. Researchers employing radar-based techniques have also investigated machine
learning approaches to detect breast lesions [12]. In [13], a new classification approach is presented
for the automatic diagnosis of reconstructed images based on microwave tomography, e.g., it can be
applied to discriminate a cancerous tumor inside breast tissue. Microwave tomography systems work
with reconstructed images created based on the medium dielectric properties. Other classification
types are directly based on the signal feature disregarding the dielectric property’s reconstruction. For
instance, a new method for distinguishing intracervical hemorrhage (ICH) from ischemic stroke (IS) is
presented in [14, 15].

In this paper, the advantages of using machine learning technique for localizing and detecting
hemorrhage stroke in a precisely modeled full head phantom in compact multi-static imaging system
are explored. In this context, a modified compact matched bow-tie antenna design with a matching
balun in the feed-line is presented. By adopting these modified structures, the usable frequency of
the proposed slot antenna is progressed from 0.5GHz to 5GHz. Then, 2D images are reconstructed
based on the confocal image reconstruction algorithm. Because in a radar-based microwave imaging
system, images are extracted from the return signals recorded by a reconstruction algorithm based
on the display of energy concentrated at each focal point, there are many challenges in detecting
location and related boundaries. There is a purpose to the image. From this point of view, this
paper tries to simulate the image extracted from the simulation environment with real scenarios by
the existing methods in image processing by adding parameters such as noise. Also, using intelligent
segmentation and categorization methods, the boundaries of the main purpose of the image should
be clearly defined. These techniques can be used to help to clearly decide the purpose of the target
and its exact location. Due to the clustering importance to discernment of hemorrhage from IS after
generating an image from the ROI, a novel combined post-processing method is applied. Thus, the
detailed procedures like filtering, contrast enhancement, and edge detection are first applied. Then, the
post-processing phase involves segmentation and applying K-Means and fuzzy clustering methods. The
validity of the presented system and its target detection algorithm accuracy are verified by simulations.
Results obtained by the proposed multi-static imaging system prove that the proposed machine learning
approach based system has a good ability to locate and separate the intracranial hemorrhage strokes
area inside a multi-layer head phantom.

2. THE PROPOSED MICROWAVE IMAGING SETUP AND ANTENNA
CONFIGURATION DESIGN

The proposed simulated microwave head imaging schematic scenario with sixteen UWB bow-tie antennas
is presented in Fig. 1. To realize this system, the precisely multi-layer human head phantom model
is created in CST simulator [16]. In order to calibrate the coordination of imaging scenario, the head
model with realistic shape and size as the human head is constructed (with dimensions x = 220mm
and y = 170mm). The configuration of the antenna different positions around the head is shown in
Fig. 1. As shown in Fig. 3, sixteen positions of the proposed setup encircle the head at equal distances
20mm from the skull layer. The signals are collected by changing the antenna position in each 22.5
degrees. The head phantom contains all anatomical details of the human head, including all head layers,
from the skin to white brain matter, for ease of modeling and imaging. All electrical characteristics
of the utilized head phantom’s materials are given in Table 1. In addition, as shown in Fig. 1(a), all
sixteen proposed antennas encircle the head at an equal distance of 10mm from the skin layer, and a
hemorrhage stroke is located inside the head, as shown in Fig. 1.

It is well known that printed microstrip antennas have a variety of applications, especially
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(a) (b)

Figure 1. Multi-static UWB MIS schematic for haemorrhage stroke detection, (a) simulated head
model with a hemorrhage stroke in CST medium, (b) multi layer structure of the designed head phantom
and antenna’s positions.

Table 1. Electrical characteristics of the multi-layer brain phantom.

Layer R (mm) r (mm) Depth (mm)

Skin 120 80 2

Fat 118 78 1.4

Skull 116.6 76.6 4.1

CSF 113.4 73.4 0.5

Gray Matter 112.9 72.9 7

White Matter 105 65 Inner part

Blood – 10 10

in biomedical applications, due to their simple structure and omnidirectional radiation pattern
properties [17]. The proposed antenna structure is depicted in Fig. 2, which is a modified version
of the antenna presented in [18]. The modifications in the antenna size allow for a higher frequency
bandwidth to make it more applicable to the present study. The basic antenna structure consists of a
radiating patch and a balun type feed line. The radiating patch is printed on a Rogers 5880 substrate
with a dimension of 22× 22mm2, a thickness of 1.5mm, a dielectric constant of 2.2, and a loss tangent
of 0.001. The feeding line is printed on a Rogress 6010 substrate with a dimension of 8 × 40mm2, a
thickness of 1.27mm, a dielectric constant of 10.2, and a loss tangent of 0.001. All antenna dimensions
are specified in Table 2.

The antenna design in microwave brain imaging is quite different from free-space antenna design.
It includes the antenna, matching medium, and a brain phantom. For this purpose, the antenna type
is more important than the radiator part shape. Normally, simpler shapes yield better results, and
microwave brain imaging is considered as an ultra-short range sensing method in lossy medium. Most
papers studying this area have opted for simple antenna forms, e.g., bow-tie, dipole, and slot [1–5]. For
the radiating section, one of the proposed structures in previous studies was modified [18], and then, in
the presence of the phantom used in the present work, an appropriate matching medium was designed
to obtain a suitable frequency bandwidth (BW) range for brain imaging applications (0.5–5GHz). The
reasons for choosing the proposed bow-tie antenna for this study are as follows:

- Constant phase center at different frequencies; To maintain a constant phase center is of utmost
importance in image reconstruction algorithms. The antenna radiating patch center is the starting point



196 Roohi et al.

(a) (b)

Figure 2. The proposed matched bowtie antenna with matching balun schematic, (a) patch and feeding
line, and (b) side view [13].

Table 2. The proposed slot antenna dimensions.

Parameter (mm) Parameter (mm)

Wsub 22 Lsub 22

Wb 40 Lb 8

W1 1.1 W2 1.75

W3 1.84 L1 7

L2 20 Hsub 1.5

Hsub (Balun) 1.27 D 1.5

location of all propagating waves at different frequencies, and reflected signals can be calibrated very
easily.

- High-fidelity factor; Only by modifying the matching medium thickness and the distance between
antenna and brain phantoms, the propagating wave front inside brain will be planar.

- It is very easy to use the vertical feed line, and it is suitable for embedding in hemisphere container.
The main challenge in antenna and wave-propagation section is designing a suitable matching

medium. It is possible to decrease the antenna and head phantom mismatch effects by shielding the
antennas in the matching medium [1]. To ensure electrical matching between the antennas and ROI
under test, a coupling medium is designed based on the parametric sweep of its electrical characteristics.
The calculated electrical characteristics of the coupling medium are εr = 20 and σ = 0.5 S/m. Six
samples of simulated reflection characteristics of the proposed antenna at different positions inside the
designed matching medium are illustrated in Fig. 3. It can be seen that by choosing an appropriate
matching medium permittivity and conductivity all sixteen antennas radiate from 0.5 to 5GHz.

To illustrate the applicability of the proposed MIS for hemorrhage stroke detection, the confocal
imaging algorithm is performed, and the results are analyzed and discussed. It is obvious that detecting
hemorrhage stroke from head phantom is an emergency diagnostic case and needs to be considered as
real-time data acquisition. All reflected signals obtained from the simulations are stored to reconstruct
the images in MATLAB. Delays must be compensated for the integration of coherent signals, because
the signals which are reflected in the multi-static structure have different path lengths. Therefore, an
initial calibration considering antenna position delays has to be done. Thus, the phase shifting among all
antennas have to be determined. This time delay is equal to the direct distance between the transmitter
and receiver divided by the wave velocity in the coupling medium [19]. Then, the hemorrhage stroke
location is extracted from the reflected signals. As this point is identified, all of the values are set as
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Figure 3. Six samples of the simulated return loss characteristics of the proposed antennas inside the
proposed matching medium.

zero before the delays are calculated.
A focused beamforming algorithm, such as confocal focusing algorithm, is needed to reconstruct

an image. Focusing algorithms are used to synchronize the signals collected during the data
acquisition phase with respect to each brain focal point. In radar based modality, focusing algorithms
include Delay and Sum (DAS), Delay-Multiply and Sum (DMAS), Improved Delay-And Sum (IDAS),
Coherence Factor Based Delay-And-Sum (CFDAS), Channel Ranked Delay-And-Sum (CRDAS),
Microwave Imaging via Space-Time (MIST), Multiple Signal Classification (MUSIC), Weighted Capon
Beamforming (WCB), Robust Weighted Capon Beamforming (RWCB), Generalized Likelihood Ratio
Test (GLRT), etc. [20–23]. All these focusing algorithms face performance degradation when being
applied in brain situations. In addition, it is noted from various clinical trials that the average dielectric
properties of brain tissues can vary substantially with geometry and density. This variation can impact
both the image quality and sensitivity of imaging. In 2020, Benny et al. demonstrated the effectiveness of
adopting parameter search algorithms to improve sensitivity of permittivity estimation techniques [21].
As a preliminary step, experimental phantoms (made of tissue mimicking materials) were imaged, and
reconstruction performances of DAS, IDAS, DMAS, CFDAS, CRDAS, and RWCB were compared.
Signal to Clutter Ratio (SCR), Signal to Mean Ratio (SMR), and localization error were selected as
the comparison metric. DMAS was the only algorithm that significantly improved the image quality
in terms of both SMR and SCR while keeping localization error within prescribed limits [23]. In 2018,
these six algorithms were compared using actual clinical data [22]. The basic DAS algorithm was noted
to be able to detect most malignancies, but the clutter level was significantly high. IDAS and CF-
DAS reported the highest SMR and hence reduced clutter levels; however, the responses often did not
correspond to the actual lesion locations from clinical reports. CR-DAS and RCB performed poorly
across all patients. DMAS showed the second highest SMR with an improvement of 44% in comparison
to DAS and comparable clutter suppression to IDAS. DMAS also ranked the best in terms of localization
of growths. The above-mentioned comparison studies were carried out without considering the inter-
patient variations in breast dielectric properties. From the results reported by various research teams
who compared the various focusing algorithms in radar imaging, DMAS is noted to have the most
balanced performance and may be suggested as a suitable choice for future research efforts in this
domain [24]. Then, the focal points are identified to calculate reflected signal energy patterns at these
points, which is done by coherence signal integration for multi-static imaging algorithm. Regarding
pulse-width and ROI dimension, 320 focal points are considered inside the ROI.

In the confocal image reconstruction method, the picture pixel intensity (brightness) at the nth
range cell and direction θ is represented by Fi(n), given by the following relation:

Fi (n) =
N∑

n=1

fi ·Xi (n) · ejϕi (1)
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A spherical wave front is assumed for the propagated wave inside the brain medium. In Eq. (1), Xi(n) is
the complex value of the received signal from antenna, and N is the total number of receiving antennas.
Further, to consider the medium effects, phantom mediums’ attenuations, and propagation losses, fi
was added as weighting parameters. To compensate phase difference due to distinct traveling paths,
the phase component ϕi is utilized [24].

In this study, to create the image with increased target detection accuracy, the confocal image
reconstruction algorithm based on an improved beamformer DMAS has been used. Similar to DAS, the
DMAS works based on coherently energy integration by shifting the reflected signals in time-domain
to make them coherent, then by summing the results the energy in focal points can be calculated.
In the present study, the value of 36 for effective permittivity in the proposed multi-layer structure is
calculated as the optimal path loss in reflected signals. Based on DAS beamforming method, for applying
the confocal image reconstruction algorithm in the case of having M antennas and by considering Sn as
the ith return signal to nth antenna, the energy in each focal point position r = [x; y; z] can be denoted
as:

I (r) =

Tw∫
0

[
M∑
i=1

Sn (t− τi (r))

]2
dt (2)

where τi(r) = (2di(r))/(νTs) is indicated as the ith discrete time-delay. In this case, di(r) = |r − ri|
demonstrates the discrete time-distance from the ith transmitting antenna rn to the focal point r; v
indicates the average propagated wave velocity in the brain medium; Tw is the window length; and Ts is
the sampling interval. In a multistatic system M2 signals can be recorded. However due to reciprocity,
only M(M − 1)/2 signals are required for the energy profile calculation. In the DMAS, unlike DAS,
the multiplication of time-shifted signals are added together, and then in order to calculate the energy
at a focal point the products are summed. The energy related to the focal point r = [x; y; z] within the
brain medium is defined as:

I (r) =

Tw∫
0

M−1∑
i=1

M∑
j=n+1

Sn (t− τi (r))Sj (t− τj (r))

2

dt (3)

where M indicates the number of antennas in the multi-static imaging scenario.
Through processing raw data, the 2D reconstructed image using the differential imaging scenario

by subtracting a healthy brain image from the brain with stroke is shown in Fig. 4. As mentioned earlier
in conventional confocal, DMAS beamformer is used. As illustrated in Fig. 4, the reconstructed image
has a good resolution and contrast.

Figure 4. Reconstructed image from confocal image reconstruction method with DMAS beamforming.
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3. PROPOSED POST-PROCESSING METHOD FOR SEGMENTATION AND
CLASSIFICATION

After applying confocal image reconstruction algorithm as the processing section to separate the
hemorrhage target from the brain medium, a new approach for automatic classification of the
reconstructed images as healthy or unhealthy tissue using segmentation and classification algorithm
is proposed. Fig. 5 shows the proposed stroke segmentation and classification method flowchart. The
reconstructed image from the pre-possessing and processing sections is used as input for the proposed
post-processing algorithm.

Figure 5. Proposed algorithm flowchart for stroke detection, classification, and segmentation (including
each stage’s outcome).

The post-processing section is implemented in MATLAB. Segmentation is done based on image
pixel value characteristics. The first step of this section is adding noise and employing denoising to
demonstrate the proposed algorithm robustness for unexpected real-world issues. In addition, adding
noise and applying noise removal methods also increase the efficiency of the algorithm in scenarios based
on images extracted from real samples. For noise removal from the noisy image, normal shrink denoising
algorithm is used. Then, the bilateral filter algorithm is applied to the output obtained image after
de-noising for edge preservation. Fig. 6 shows image initialization process with a noisy image and the
denoising section using normal shrink and also bilateral denoising filters effect on edge preservation [25].

The next step applied on the edge preserved image is the edge-based segmentation process. Here, a
Kirsch operator using a 3×3 mask was implemented [26]. In addition, Sobel operator using a 3×3 mask
was implemented. Then, an advanced Sobel operator using a 5 × 5 mask was adopted. Fig. 7 shows
the segmented images of the Kirsch operator using a 3 × 3 mask, Sobel operator using a 5 × 5 mask,
and OTSU method to perform automatic image thresholding. As seen in Fig. 7(c), target regions are
very well distinguished from the normal tissue regions by processing edge segmentation using the OTSU
segmentation. The main challenge with microwave images for separating targets is that the energies
accumulated from the antennas vary depending on the reflections in the simulation environment. The
concentrated energy has different values at each focal point. So, a threshold is assumed for the OTSU.
In image processing, Otsu’s method is used to perform automatic image thresholding [27]. In the
simplest form, the algorithm returns a single intensity threshold that separates pixels into two classes,
foreground and background. This threshold is determined by minimizing intra-class intensity variance,
or equivalently, by maximizing inter-class variance. Otsu’s method is a one-dimensional discrete analog
of Fisher’s Discriminant Analysis, is related to Jenks optimization method, and is equivalent to a globally
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(a) (b)

(c) (d)

Figure 6. Image initialization process (a) original image, (b) noisy image, (c) normal shrink applied
image and (d) bilateral de-noising filter applied image.

(a) (b) (c)

Figure 7. The segmented image using (a) Kirsch operator using a 3×3 mask, (b) Sobel operator using
a 5× 5 mask, and (c) using the OTSU segmentation.

optimal k-means [28] performed on the intensity histogram. The extension to multi-level thresholding
was described in the original paper [27], and computationally efficient implementations have since been
proposed [28].

After preparing the image for clustering purpose such that the healthy and unhealthy regions are
distinguishable, K-Means algorithm was applied, which is a clustering algorithm with a fixed number
of iterations and k value. The K-Means algorithm is based on an iterative framework, where in order
to minimize the variation related to each cluster and to expand the variation between clusters the data
components are replaced between clusters [29]. This clustering algorithm dedicates the pixel-based
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(a) (b)

(c) (d)

Figure 8. Clustered profiles while applying K-Means algorithm, (a) 1st cluster, (b) 2nd cluster, (c)
3rd cluster, and (d) 4th cluster.

segmentation of multi-band images. Each image stack is taken as a set of bands equivalent to the
same image. Fig. 8 shows the clustered profiles of the reconstructed image while K-Means algorithm
is applied. As shown in Fig. 8, for this study, the images consist of four bands, which are determined
by different target value thresholds. The process will be terminated, when no elements are swapped
over between clusters. In this study, the four K-Means algorithm clusters are considered based on four
normalized thresholds values; 0.4, 0.6, 0.8, and 1. For presenting an image, each pixel is defined by an
n-valued vector, where n indicates the number of bands. By having n vectors, each cluster is entitled
using its centroid in an n-dimensional plane. The proposed K-Means algorithm procedure is executed
as follows [30].

First, the K number of the initial cluster centers with random values are selected. Next, the
samples, x, are distributed among the K clusters at the kth iterative step using the following relation:

τ
(t)
i =

{
xn :

∥∥∥xn − µ
(t)
i

∥∥∥2 ≤ ∥∥∥xn − µ
(t)
j

∥∥∥2 ∀j, 1 ≤ j ≤ K

}
(4)

Then, new cluster centers µ
(k+1)
i , j = 1, 2, ...,K can be calculated, by minimizing the sum of the squared

distances from all points in τi to the new cluster center. Here, the sample mean of τi can minimize this
set. Following, the new cluster center is considered in new iterative step:

µ
(t+1)
i =

1∥∥∥τ (t)i

∥∥∥
∑

xp∈τ (t)i

xp (5)

This step will be repeated until the assignments no longer change, i.e., when the algorithm has converged.
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Finally, for clustering, Fuzzy C-Means (FCM) clustering algorithm is used. FCM permits every
feature vector to belong to each cluster with a fuzzy truth-value. The FCM algorithm works to minimize
the objective function, which is the generalization of the method of least squares

Im =

N∑
i=1

c∑
j=1

umij ∥Xi − Cj∥2 1 ≤ m < ∞ (6)

In umij , the indexes i and j represent the object and its cluster membership value, respectively.
1 ≤ m < ∞ is expressed as the fuzziness degree or fuzziness agent in fuzzy clustering algorithm.
∥Xi −Cj∥2 represents the Euclidean distance between the object and cluster center. Clustering centers
are calculated after the membership values are randomly assigned. Cluster centers are detected as
below,

Cj =

(
N∑
i=1

umijXi

)/(
N∑
i=1

umij

)
(7)

The membership value in Eq. (7) is compared with the old value from the previous cycle. The process
is repeated until the comparison value is less than the minimum value ε [30].

uij =
1

C∑
k=1

(
∥Xi − Ci∥
∥Xi − Ck∥

)2/(m−1)
(8)

(a) (b)

(c) (d)

Figure 9. Clustering while applying FCM algorithm, (a) 1st cluster, (b) 2nd cluster, (c) 3rd cluster,
and (d) 4th cluster.
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The FCM clustering method specified briefly hereinabove has been utilized to separate the similarity
image into two separate clusters in the presented study. The center average of two clusters gives the
threshold value for edge detection, as shown in Fig. 9. Since the intensity of each pixel in the image
confirms the amount of energy concentrated at each focal point, clustering is required to represent
different amounts of this energy in each cluster. In other words, each cluster acts as an adaptive
threshold. As shown in Fig. 9, four clusters with different energy intensities of the peaks are displayed.
In the first case, there are large boundaries that represent the concentrated energy, while in the last
cluster, due to the high threshold for filtering this concentrated energy, almost no purpose is revealed.

In order to demonstrate the classification performance, in Table 3 a comparison between the
proposed method post-processing results and recently published similar papers in the literature is made.
It can be seen that not only the accuracy of the proposed method is better than the other methods [11, 12]
and [31], but also the extracted features and metrics show better results. It can therefore be concluded
that the proposed MIS has a good capability for classification and segmentation of cerebrovascular
targets. The algorithm was performed using Matlab R2019b tool in an IntelR CoreTMi7 processor@
3.60GHz based Windows 10 Enterprise 64-bit operating system, and it has 7856 MB NVIDIA Graphics
Processing Unit (GPU).

Table 3. Comparison of the proposed method to other published similar papers in the literature.

Method
Classification

Accuracy

Time

(second)

Processing

unit

SNR

level

Extracted

Features

numbers

The proposed

method
97% 13 s core i7 @ 1.8GHz 28 dB 12

Ref. [11] 96.1% 31 s Not mentioned Noise less 3

Ref. [12] 93% Not mentioned core i7 @ 3.6GHz Noise-less 7

Ref. [31] 88% 10 s core i7 @ 3.4GHz (45, 25, 10 dB) 3

4. CONCLUSION

In this paper, first, a UWB-MIS is presented to detect and locate hemorrhage stroke in a multi-layer
human head phantom using time-domain data. Then, the confocal method using DMAS beamforming
is used for image reconstruction. Further, a novel post processing method including segmentation and
K-Means and FCM based classification has been developed to distinguish between a healthy brain and
a brain with hemorrhage stroke. The K-Means segmentation has been done based on the image pixel
value characteristics. The FCM algorithm can efficiently separate the similarity image into two separate
clusters from the reconstructed image. The results show that the developed imaging system has a good
ability in detecting even small hemorrhage stroke targets with radius of 1 cm in a biological medium.
It can be seen from Table 3 that not only the accuracy of the proposed method is better than that for
recently reported methods [11, 12, 26], but also the extracted features and metrics have better results.
Therefore, the proposed MIS has a good capability of classifying and segmenting cerebrovascular targets.
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