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An Analytic Model for Stripline/Microstrip Potential Using Infinite
Series with Mixed Boundary Conditions

James R. Nagel*

Abstract—This paper derives an infinite series solution to the Laplace equation for the electric scalar
potential of a stripline/microstrip transmission line. Due to the presence of a mixed Dirichlet/Neumann
boundary condition, traditional solution methods involving mode orthogonality cannot be applied.
Instead, three new solution methods are explored, which are collocation, minimum discrete-squared
error (MDSE), and minimum mean-squared error (MMSE). Results yield excellent agreement compared
to numerical simulation of capacitance per unit length. However, the Gibbs phenomenon appears to
bias the outcome with a small (≈ 0.5%) under-estimation of the true result.

1. INTRODUCTION

One of the most widely utilized embodiments within the field of microwave engineering is
stripline/microstrip transmission line [1, 2]. The structure is inexpensive to produce and has very high
precision, and it is readily integrated into high-speed electronic circuits [3]. This makes the stripline a
highly versatile tool, and full chapters are devoted to the subject in many standard textbooks.

Despite its popularity, the basic geometry has proved difficult to model using closed-form
mathematical expressions. One method that has historically found use is conformal mapping [6–9], but
the technique is not easily accessible to those with a typical mathematical background in engineering.
It is also a mixed analytic-numerical method that requires both numerical integration and matrix
inversion to calculate a solution. Alternatively, one could apply a crude approximation to the model by
representing the charge density along the stripline as constant [5]. Thus, by sacrificing a little accuracy,
a tractable mathematical solution is gained. A third option is to synthesize a closed-form expression that
merely approximates the exact solution over a limited set of parameters [2, 4, 5, 10]. However, the result
does not provide a complete physical account of the electric field profile. Finally, there is always the
option of numerical simulation via the finite-difference/finite-element method or the boundary-element
method [11–13], but these are brute-force approaches that often require expensive commercial software
and specialized training in numerical methods.

In principle, there ought to exist an infinite series solution to the Laplace equation that models a
stripline geometry under appropriate boundary conditions. Usually, such a procedure would apply an
orthogonality relation to calculate the series coefficients [14]. For the special case of a stripline, however,
the existence of a mixed Dirichlet/Neumann boundary condition makes this impossible. Historically, it
seems that this type of problem has been neglected in the literature, but recent publications have begun
to introduce new techniques. Most notably, W. W. Read discussed a number of methods in 2007 [15],
thus giving us the mathematical tools to finally calculate a series solution.

In this paper, the author will apply three techniques to the classic stripline geometry: collocation,
minimum discrete squared error (MDSE), and minimum mean-squared error (MMSE). In theory, each
technique is exact, provided that the series solution is allowed to contain an infinite number of terms.
Thus, the only approximation is a result of truncation to a finite series. If the stripline boundaries are
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allowed to approach infinity, then the geometry also converges to that of a microstrip. In this case,
there is also the added approximation due to finite truncation of the domain itself.

The practical advantages of this new mathematical approach are numerous. First, most upper-
division students of electrical engineering are already familiar with the basic formalism for solving the
Laplace equation under specified boundary conditions, and the application to a mixed condition is only
a small extension of this training. Furthermore, not all organizations have access to (or training in)
expensive simulation software, and so a series solution can be invaluable for designers with limited
resources (e.g., undergraduate students in microwave engineering). Computational speed is another
advantage, in that a series solution will almost always be much faster (and more accurate) to process
than a densely sampled simulation. Finally, the techniques presented in this paper can, in principle, be
applied to a much wider class of engineering problems. For example, the coupled stripline is common
embodiment encountered in high-speed digital communication [16, 17], and the geometry is very similar
to that of a single stripline in isolation.

2. GENERAL SOLUTION

Figure 1 shows the standard layout for a stripline geometry. A thin, conductive strip with width W
lies centered at the origin and is excited to an electric scalar potential of ϕ0 volts. The strip is then
enclosed in a perfectly conductive box that is grounded to a scalar potential of 0.0V. The box has a
width a > W , and it is divided into two vertical regions. The top region has a height h1 and is filled
with some dielectric material given by ϵr = ϵ1. Likewise, the bottom region has a height h2 and is filled
with its own dielectric material such that ϵr = ϵ2.

Figure 1. Cross-sectional view of the basic stripline geometry. The center conductive strip lies at the
origin (0, 0) and is excited to a potential of ϕ0. The substrate has a thickness of h2 with a ceiling height
of h1. The side walls are then grounded to a potential of ϕ = 0.

Although any real stripline conductor must have finite thickness, typical real-world values are
usually so small as to be regarded as zero. It is also common to consider the special case where
a → ∞ and h1 → ∞. In this case, the stripline geometry converges to that of a microstrip. Thus, any
mathematical solution to the stripline can also be used to model a microstrip, provided that a and h1
are allowed to grow very large.

The governing equation for any source-free electrostatic system is the Laplace equation,

∇2ϕ = 0, (1)

where ϕ is the electric scalar potential. For the stripline, we assume a general solution of

ϕ(x, y) = [A cos(kx) +B sin(kx)]
[
Ce−ky +De+ky

]
. (2)

Since the geometry of our system has even symmetry about x = 0, we may drop the sine-dependence
and consider only the region defined by x ∈ [0, a/2]. It is also necessary to divide the solution into
an upper (y ≥ 0) and a lower (y ≤ 0) region with solutions ϕ1 and ϕ2, respectively. This implies two
general solutions with the form

ϕ1(x, y) = A cos(kx)
(
e−ky −Be+ky

)
[y ≥ 0], (3)
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and
ϕ2(x, y) = C cos(kx)

(
e+ky −De−ky

)
[y ≤ 0]. (4)

Letting each function equal zero beyond its respective region, we may write the total solution as simply
ϕ = ϕ1 + ϕ2.

We are now ready to impose our first boundary condition, which simply requires that

ϕ(a, y) = 0. (5)

This immediately forces us to conclude that the separation constant k satisfies an infinite set of possible
values, written as

kn =
(2n− 1)π

a
, n = 1, 2, 3 . . . (6)

Since each of these values represents a potential solution, any linear combination of solutions must also
be a solution. Our two potential functions therefore transform into infinite series with the form

ϕ1 =

∞∑
n=1

An cos(knx)
(
e−kny −Bne

+kny
)
, (7)

and

ϕ2 =

∞∑
n=1

Cn cos(knx)
(
e+kny −Dne

−kny
)
. (8)

Next, we require the potential at the top and bottom boundaries to be zero, giving us

ϕ1(x,+h1) = 0, and (9)

ϕ2(x,−h2) = 0. (10)

This condition rapidly forces us to conclude that

Bn = e−2knh1 , and (11)

Dn = e−2knh2 . (12)

We also require that the potential be continuous across the boundary at y = 0:

ϕ1(x, 0) = ϕ2(x, 0). (13)

This condition implies the relationship

An(1−Bn) = Cn(1−Dn). (14)

We next define the ratio

αn =
1−Bn

1−Dn
(15)

so that Cn = αnAn.

3. ELECTRIC FIELD PROFILE

Once a solution has been obtained for ϕ, we may now calculate the electric field profile given by
E = −∇ϕ. Starting with the top region (y > 0), the x- and y-components satisfy

Ex1 =

N∑
n=1

Ankn sin(knx)
(
e−kny −Bne

+kny
)
, (16)

Ey1 =
N∑

n=1

Ankn cos(knx)
(
e−kny +Bne

+kny
)
. (17)

Likewise, the bottom region (y < 0) yields

Ex2 = +

N∑
n=1

Cnkn sin(knx)
(
e+kny −Dne

−kny
)
, (18)

Ey2 = −
N∑

n=1

Cnkn cos(knx)
(
e+kny +Dne

−kny
)
. (19)
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4. MIXED BOUNDARY CONDITIONS

Clearly, the only remaining step is to calculate the series of Fourier coefficients represented by An.
Ordinarily, this would involve one final boundary condition along the plane at y = 0, but the stripline
geometry presents an unusual obstacle. Rather than impose a simple Dirichlet or Neumann boundary
condition, we must instead impose a condition known as a mixed boundary condition. It means that the
boundary at y = 0 is composed of a combination of Dirichlet and Neumann conditions simultaneously.

The first piece of our mixed boundary is a Dirichlet condition that imposes a constant scalar
potential along the stripline, which we can write as

ϕ(x, 0) = ϕ0 (x ∈ [0,W/2]). (20)

Substituting Eq. (7) therefore yields

ϕ0 =

∞∑
n=1

An cos(knx) (1−Bn) (x ∈ [0,W/2]). (21)

Next, the Neumann boundary represents the standard condition for a dielectric interface, and it requires
that

ϵ1
∂ϕ1

∂y
= ϵ2

∂ϕ2

∂y
(x ∈ [W/2, a/2]). (22)

Substituting Eqs. (17) and (19) thus yields the series equation

∞∑
n=1

Anγn cos(knx) = 0 (x ∈ [W/2, a/2]), (23)

where the γn coefficients are given by

γn = kn [ϵr1 (1 +Bn) + ϵr2αn (1 +Dn)] . (24)

The difficulty with a mixed boundary condition is that it does not allow for the usual exploitation
of orthogonality when calculating each An. As a result, there is no immediately obvious procedure
towards a stable solution. Fortunately, recent publications have begun to provide a number of workable
solutions [15], and the following sections will explore three of them with our present stripline problem.

5. COLLOCATION

One simple technique is called collocation, and it works by directly imposing the desired boundary
condition along a discrete set of N arbitrary points [18]. The series defined by ϕ1 and ϕ2 are then
truncated to N places, yielding a system of N equations with N unknowns. Thus, for every sample
satisfying xm ≤ W/2, we impose the condition

ϕ0 =

N∑
n=1

An cos(knxm) (1−Bn) . (25)

Likewise, for every sample xm ∈ [W/2, a/2], we impose the dielectric boundary condition to find that

0 =

N∑
n=1

Anγn cos(knxm). (26)

Next, we define the column vector a to represent an array of unknown coefficients such that

a = [A1, A2, A3, . . . , AN ]T . (27)

We further define the forcing vector b such that

bm =

{
ϕ0 xm ∈ [0,W/2]

0 xm ∈ [W/2, a/2]
(28)
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We now have a matrix-vector equation with the form

Ua = b, (29)

where the system matrix U is an N ×N matrix satisfying

Umn =

{
(1−Bn) cos(knxm) xm ∈ [0,W/2]

γn cos(knxm) xm ∈ [W/2, a/2]
(30)

The solution is thus the simple inversion a = U−1b.

6. MINIMUM DISCRETE-SQUARED ERROR (MDSE)

Another simple solution method expands on the collocation principle by sampling an arbitrary set of
M locations where M > N . Rather than force the boundary to be satisfied at all locations, however,
we add up the total squared error and then minimize it. The procedure begins by introducing the error
functions, E1 and E2, which represent the error between the truncated series expansion and the desired
boundary condition. Starting with the Dirichlet condition, we have

E1(xm) = −ϕ0 + w1

N∑
n=1

An cos(knxm) (1−Bn) . (31)

For the Neumann condition, we then let

E2(xm) = w2

N∑
n=1

Anγn cos(knxm). (32)

The weighting coefficients (w1, w2) are important, as they scale the relative significance of each error.
We can also think of them as constants of proportionality that equalize the units, given that E1 has
units of volts, and E2 has units of volts per meter. Strictly speaking, however, we are only interested in
the relative weight between the errors, since the absolute magnitude will be minimized either way. We
may therefore assume w1 = 1 and let w2 serve as the only variable in this context.

Now consider a sampling of error across M different locations. This implies a vector e of M unique
errors satisfying

e = −b+Ua, (33)

where the system matrix U is now M ×N . We next calculate the total squared error using

eTe = bTB− 2bTUa+ aTUTUa. (34)

Finally, we minimize the error by taking the derivative with respect to the vector a and then setting it
to zero. Solving for a then yields

a = (UTU)−1UTb. (35)

7. MINIMUM MEAN-SQUARED ERROR (MMSE)

Our third solution technique is a popular procedure used throughout electrical engineering and signal
processing. Rather than evaluate the error at a discrete location in space, we can minimize the total
mean-squared error across the entire boundary region. We begin by defining the mean-squared errors
Ē1 and Ē2 such that

Ē1 =
2

W

W/2∫
0

|E1(x)|2dx, and (36)

Ē2 =
2

a−W

a/2∫
W/2

|E2(x)|2dx. (37)
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Next, we substitute Eq. (31) into (36) to find

Ē1 = ϕ2
0 − 2ϕ0

N∑
n=1

unAn +

N∑
m=1

N∑
n=1

AmMmnAn, (38)

where the coefficients un and Mmn satisfy

un =
2

W

W/2∫
0

cos(knx)dx, (39)

Mmn =
2

W

W/2∫
0

cos(knx) cos(kmx)dx. (40)

Using matrix-vector notation, we can express this in a compact form as

Ē1 = ϕ2
0 − 2ϕ0u

Ta+ xTMa. (41)

Following a similar procedure, we express the second error term as

Ē2 = aTNa, (42)

where the matrix elements Nmn satisfy

Nmn =
2γnγm
a−W

a/2∫
W/2

cos(knx) cos(kmx)dx. (43)

For convenience, the solution to this integral is provided in Appendix A.
The last step is to combine our two errors and then minimize the sum. Begin by reintroducing the

weight coefficients (w1, w2) to define the weighted sum as

Ē = w1Ē1 + w2Ē2. (44)

As before, the absolute magnitude of the error is not important, but the relative error is. We therefore
let w1 = 1 and assume that w2 is the only parameter allowed to vary. When being expressed in
matrix-vector notation, this is evaluated to

Ē = ϕ2
0 − 2ϕ0u

Ta+ aTMa+ w2x
TNa. (45)

Finally, we again differentiate with respect to the vector a and then set it to zero. The solution is

a = (M+ w2N)−1(ϕ0u). (46)

8. DEMONSTRATION

As a demonstration case, Fig. 2 shows the calculation of electric scalar potential ϕ and electric field
intensity E for a typical stripline/microstrip geometry. The model parameters are given as follows:

ϕ0 = 1.0V

W = 4.0mm

a = 15mm

h1 = 1.25mm

h2 = 6.30mm

ϵr1 = 1

ϵr2 = 4.4

N = 255



Progress In Electromagnetics Research M, Vol. 107, 2022 237

(a)

(b)

Figure 2. (a) Electric scalar potential of a stripline with width W = 4.4mm. The substrate has a
height h2 = 1.25mm with a dielectric constant of ϵr2 = 4.4. (b) Corresponding electric field profile.

The solution was calculated using MMSE and required only 4.5ms to calculate the expansion coefficients
on a standard laptop computer.

The optimal choice of weight coefficients (w1, w2) is not immediately obvious, as there are many
possible reasons for preferring some values over others. For example, a very large value of w2 would
bias the solution towards extremely high accuracy for the Neumann condition while sacrificing accuracy
along the Dirichlet. In practice, however, it seems intuitive that the error in each region should at least
be equalized in scale. One straightforward technique for achieving this goal is to normalize the error E2
by γ1. For MMSE, this implies w2 = 1/γ21 . For MDSE, we then have w2 = 1/γ1.

It is interesting to note the distinct ripples in the electric field profile around the stripline itself.
This is a direct result of the Gibbs phenomenon, which is exacerbated whenever one attempts to fit
a Fourier series to a non-smooth function. Fig. 3 explores this behavior in detail by examining ϕ and
Ey2 along the boundary at y = 0. Using collocation, the Gibbs phenomenon appears to be mitigated
rather well along the stripline. Along the dielectric boundary, however, there appears to be significant
oscillation in the electric field, even as N grows very large. MDSE and MMSE, however, appear to
exhibit the opposite behavior. Fitting to the boundary along the strip is relatively weak, but the
electric field profile is smoother along the dielectric boundary. It is also interesting to note how MDSE
and MMSE appear to produce very similar results.

9. SURFACE CHARGE DENSITY AND CAPACITANCE

Another useful parameter we are interested in is the characteristic capacitance between the stripline
and the ground plane. By definition, this is given as

C ′ =
Q′

ϕ0
, (47)
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Figure 3. An exploration of the convergence behavior for each solution method along the boundary at
y = 0. Plots of the left show the electric scalar potential ϕ(x, 0). Plots on the right depict Ey2(x, 0).

where C ′ has units of F/m, and Q′ is the linear charge density with units of C/m. Since the potential
difference ϕ0 is given, we only need to calculate Q′. Assuming a closed contour integral along the
clockwise direction, Gauss’ law dictates that

Q′ =

∮
ϵ0ϵrE · dn̂, (48)

where dn̂ is the differential unit normal vector along the contour. Since the contour itself is arbitrary,
we can imagine an infinitesimally thin rectangle that perfectly encloses the stripline. The contribution
from the x-component of the electric field is thus negligible, leaving just the contribution from Ey1 over
the top of the strip and Ey2 along the bottom. By exploiting symmetry about the origin, we can express
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the resulting integral as

Q′ = 2ϵ0

W/2∫
0

(ϵr1Ey1 − ϵr2Ey2)dx. (49)

If we then substitute the series expansions from Eqs. (17) and (19), the integral is evaluated to

Q′ = 2ϵ0

N∑
n=1

An(γn/kn) sin(knW/2). (50)

We can also use this expression to calculate the surface charge density σ(x) by imagining the differential
contribution dQ′ along the differential length dx. Letting dQ′/dx = σ(x), we then find

σ(x) = ϵ0

N∑
n=1

Anγn cos(knx). (51)

Figure 4. Surface charge density profile σ(x) along the stripline using N = 100 modes.

Figure 4 shows a calculation of σ(x) for a stripline under the same geometry as that in Fig. 2,
but with N = 100. As expected, the surface charge density diverges near the edge of the stripline,
which is consistent with the electrostatic behavior of a charged surface. This makes it intrinsically
difficult to capture the behavior of the surface charge profile using a Fourier series, and so we may
expect some inherent error when calculating C ′. To quantify this error, the same stripline geometry
was numerically simulated using the finite-difference method [11] under a grid spacing of ∆x = 12.6µm.
The characteristic capacitance was then calculated as a function of mode number N using each of the
three solution methods. The results of that comparison are summarized in Fig. 5.

The first interesting observation is that collocation tends to be highly unstable for this sort of
calculation. The cause appears to be the uniform grid sampling that was used to match the boundary
conditions. As a result, the grid sampling near x = W/2 tends to haphazardly catch or miss the
singularity around the edge, depending on the value of N . In the future, this can potentially be
remedied by enforcing a non-uniform grid sampling that always includes x = W/2. However, one must
be careful with this sort of procedure, as non-uniform sampling can potentially destabilize the solution.
For MDSE, we likewise observe a similar jitter, but it appears greatly reduced as a result of the over-
sampling with M = 2N . MMSE appears to be most stable of all, which is expected from the averaging
across each interval.

It is interesting to note that all three methods appear to consistently under-calculate the true
capacitance. Even at the comparatively large value of N = 1000, the calculation error is still about
−0.25%. Part of this is almost certainly due to numerical error with simulation itself, but we also
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Figure 5. Convergence of the characteristic
capacitance C ′ as a function of total modes N .

Figure 6. System matrix condition number as a
function of total modes N .

know that the Fourier series struggles with the singular behavior of σ(x) near the edge of the stripline.
In principle, this error ought to shrink to zero as N → ∞, but the computational effort required to
express that final piece of the model seems prohibitive. In practice, however, the error seems well
within tolerance for most applications, but it would still be worth the effort to explore any methods
that alleviate this final bit of uncertainty.

10. NUMERICAL STABILITY

In principle, the mathematical error of any series solution should reduce to zero as the number of terms
is increased to infinity. In practice, however, the use of matrix inversion has the potential to destabilize
the solution if conditioning is very poor. It is therefore important to quantify the numerical stability of
each solution method as the number of terms grows very large.

Figure 6 explores this relationship by calculating the condition number for the system matrix U
as the total number of coefficients is increased. For the special case of MDSE, the condition number
is calculated for UTU since this is the matrix that ultimately gets inverted. Immediately, we see that
collocation is the least stable of all three methods, but that MDSE and MMSE eventually overtake it
for very large N . The most useful finding is that, even at the comparatively large value of N = 10000,
the condition number is only on the scale of about 108. For noise-free double-precision arithmetic, this
is a very reasonable value, and instability will generally not manifest until the condition number reaches
upwards of 1015.

11. DISCUSSION

This paper shows how to model the classic stripline geometry as an infinite series solution to the Laplace
equation. The key obstacle was a mixed boundary condition along y = 0, which cannot be solved using
traditional orthogonality relations. Instead, the solution was expressed in terms of error minimization
along each respective boundary condition. This introduces a number of interesting avenues of research,
in that many other useful configurations can potentially be solved using similar methods. For example,
the coupled stripline is a common embodiment with many practical applications [16, 17, 19], and it seems
straightforward to construct a corresponding model using the same mathematical techniques. For the
even-mode symmetric stripline, we would simply add a Neumann boundary condition at the center and
then impose a second mixed boundary condition for the space between lines. For the odd-mode case,
we would then repeat the analysis with a Dirichlet boundary condition at the center.

As noted earlier, the key distinction between a stripline and a microstrip is the size of the domain
enclosing the central strip. Thus, in order to model a true microstrip, we need to let h1 → ∞ and
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a → ∞. The first condition is numerically stable, as it merely forces Bn = 0. The second condition,
however, cannot be realized with a finite value for N . Thus, the trick is to allow a to grow reasonably
large, but not so large that the N becomes prohibitively large as well. We must also be careful not to
destabilize the solution, as it is unclear how well conditioned the system matrix will remain under such
stress.

Finally, the singular behavior of charge density around the edges of the stripline poses an interesting
mathematical challenge. Since the Fourier series cannot perfectly capture the sharp edge in scalar
potential, the model tends to behave as if the stripline is slightly shorter than it truly is. In practice,
this small amount of error may be tolerable, but it is unclear whether or not it will remain so under all
possible conditions. This is a question that may require further investigation if the same technique is
applied to more complex geometries.

APPENDIX A.

We are interested in evaluating the integral with the following form:

I =

b∫
a

cos(knx) cos(kmx)dx. (A1)

Using the product identity, we can rewrite the integrand as

cos(knx) cos(kmx) =
cos(ux) + cos(vx)

2
, (A2)

where u = kn − km and v = kn + km. For the special case of kn = km = k, we find that

I =
b− a

2
+

sin(2kb)− sin(2ka)

4k
. (A3)

For kn ̸= km, we have

I =
sin(ub)− sin(ua)

2u
+

sin(vb)− sin(va)

2v
. (A4)
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