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Space and Leaky Wave Radiation from Highly Lossy Biological
Cylindrical Human-Limps Models

Xenofon M. Mitsalas1, Theodoros N. Kaifas2, and George A. Kyriacou1, *

Abstract—The continuous and discrete radiation spectrum of a highly dielectric constant structure
with extremely high losses is revisited herein. This work is motivated by the need of efficient
electromagnetic power extraction from antenna-sources implanted into the human body. As the
dielectric constant of biological tissues varies between 35 and 80 with a conductivity increasing from
0.5 to 2 S/m with frequency, the involved propagation and particularly radiation phenomena cannot
be described by the current state of the art published research. Since the scope of the biomedical
applications refers to the communication or energy transfer between an implanted device and an
external one, the problem to be addressed involves primarily the near field and secondary the far-
radiated field. Many of human body parts as the hands, legs, torso, and neck can be modeled as
cylinders. Indicatively, a non-magnetic infinite cylinder with an average dielectric constant εr1 = 58.1
and conductivity σ = 1.69 S/m is considered, with focus on the hand with average radius 2.75 cm.
Although a plethora of excellent publications elaborates both analytically and numerically on the
radiation from dielectric cylinders including losses, there is not any work studying rods with so high
dielectric constants and extremely high losses (loss tangents around unity or higher), while most of
them are dealing with the far field rather than near field. Classical works reveal radiation due to the
discrete surface and leaky modes as well as a continuous spectrum, while complex modes appearing
as quadruplets are found responsible for only energy storage. These are indications of discrete modes
transitions as dielectric losses are increased. It is herein proved that indeed increasing losses are causing
not only mode transition but also a change in their nature as surface or leaky, while the complex mode
quadruplet breaks resulting in radiation in both the near and far fields, while losses have significant
effects in the continuous spectrum (sky or space wave). These phenomena are exploited to serve the
main purpose of this paper aiming to devise a physical mechanism supporting efficient energy and
signal transferring inwards or outwards a highly lossy, high dielectric constant cylinder. The novelty
of the proposed methodology stems from a Wiener-Hopf based non-meromorphic Kernel factorization
resulting in a field product representation. This is composed of well defined individual terms with each
one of them building on a specific pole-mode. The proposed formulation is found to be equivalent to the
generalized “multiplicative” and “additive” steepest descent methods regarding the far field evaluation,
but additionally is capable of providing the near field as well. The latter feature supports important
biomedical applications. Due to the huge extent of the subject and in order to facilitate the continuous
spectrum, the analysis is restricted to the excitation by an infinitesimal electric dipole positioned at the
origin and oriented along the axis of the cylinder. Studying this structure, a low attenuation low order
mode is encountered which is mainly responsible for the energy transferring. This is in accordance with
Frezza et al. findings for a “deeply penetrating” mode into highly lossy media.
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1. INTRODUCTION

Implantable medical devices are becoming an attractive bioengineering trend during the recent years
serving important issues of medical treatment and diagnosis, such as preventive and post-surgery
monitoring, local stimulation and drug delivery and biomimetic prosthesis [1–3]. Among them, brain
and cardiac implants are of critical importance with an emphasis on cardiac pacemakers [4, 5]. To
discuss the references’ findings, we should note that there are two important issues related to all
implanted devices: their wireless-power delivering-charging and their communication link to antennas
(transceivers) external to the body [1–5]. Thus, results here indicate that both of them ask for an
electromagnetic energy transferring inwards or outwards from the human body. However, the biological
tissues environment is too hostile to the required implanted antennas due to their excessively high
losses being electrolytes rather than dielectrics. This turns to be almost prohibitive to the transfer-
propagation of electromagnetic waves from the interior of the body toward its exterior. The vice-versa
electromagnetic waves transfer-propagation is the same as it which stems from the reciprocity theorem.
The tissues’ conductivity is so high (between 0.7 to 2 S/m), so that implanted antennas could be short
circuited by its surrounding media, and for this reason they are covered with silicone. Besides these
difficulties, the internal body structure is highly inhomogeneous in both the dielectric constant and
conductivity (muscles can be even anisotropic in conductivity), rendering the electromagnetic analysis
extremely complicated.

Numerical techniques could serve this task; however, they do not offer any physical insight into
how to overcome the encountered difficulties into the electromagnetic wave propagation through these
electrolyte-type media. The question to be posed here could be “Is there any type of specific antenna
geometry able, ([4–7]), to excite some kind of electromagnetic wave capable of propagating through
these biological tissues, so as to carry energy or signal-information outside the human body?” For this
question to be addressed simplified models to be analytically studied are inevitable. It was conveniently
realized by a number of researchers [5–9] that indeed most human organs as legs, hands, neck, and
torso can be modeled as dielectric cylinders. These, to a first order approximation, are considered as
infinite dielectric waveguides of very high dielectric constant of the order of 35 to 80 and excessively
high conductivity between 0.5 and 2 S/m in the RF and microwave regime. The latter yields a loss
tangent of the order of unity or even higher.

Dielectric waveguides are extensively studied in the past but for low dielectric constants and very
low loss tangents, mostly lower than about 0.1, since the targeted applications referred to microwave or
optical waveguides build for low loss wave propagation. Even though dielectric waveguides are studied
for their energy leakage-radiation, non the less the focus is mostly on their far field when being operated
as antennas. Their electromagnetic radiation is classified as a continuous spectrum and a discrete
spectrum composed of surface and leaky waves [10–12]. As for the planar dielectric waveguides, a
quad of complex discrete modes which in the absence of losses, (or for very small losses), are perfectly
symmetric in terms of their real, (phase constant), and imaginary, (attenuation constant), parts. This
property was exploited to justify their inability for energy transfer [13], based on the Poynting vector.

The problem of highly lossy dielectric waveguides has already attracted the interest of a few
researchers as [14–16], which have contributed toward the basic question considered herein but for
relatively low losses and small values in the dielectric constant. To discuss their results, we should
note that an important observation, made by Kamel and Omar [16], is that increased losses break the
perfect symmetry of the quadruplet of complex modes to two symmetric pairs enabling the possibility
for them to become radiative. Simultaneously, the surface and leaky wave poles are migrating in the
complex plane changing their nature as both become complex and, in some cases, cease to radiate
anymore. From an intuitive point of view, the extremely high losses may negate wave propagation in
the ordinary-established understanding, since this is related to the wave guidance caused by multiple
reflection-diffraction at the dielectric-air interface. The presence of so high losses renders the wave
emanating from the source-antenna very weak when it reaches the interface to the air. This point of
view leads to the expectation that the energy-leakage radiation is expected to result from waves-rays
impinging almost normally to the interface. These rays mainly comprise the continuous spectrum, which
have phase constants [17], less than the external media wavenumber, (βz < k0), and thus corresponding
to rays impinging at angles smaller than the critical for total reflection (Brewster angle). However, leaky
waves are included among these rays, with their only difference that their phase constant fulfills the
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dielectric waveguide characteristic equation, namely the condition for constructive interference when
undergoing the multiple reflection-diffraction at the dielectric-air interface, which is now questionably
sustainable due to high losses. The insight of questionable wave-guidance motivated a few researchers
to study the problem as “wave diffraction at the air-highly lossy dielectric interface”, usually assumed
locally planar as by Frezza et al. [17–20]. Focusing on those results it is readily concluded that a very
promising finding of [17–20] is that some leaky waves may deeply penetrate a highly lossy dielectric.
This is a strong indication that “there should be a discrete mode either leaky or one of the modified
complex pairs that is capable of efficiently carrying energy outwards from the lossy dielectric cylinder
(outwards from the human body)”. The fact that this should be a discrete mode is based on the
observation that this phenomenon occurs for a specific angle, not a spectrum of angles of incidence.

Modes’ excitation phenomena and radiation mechanisms in open waveguiding structures have
attracted so far considerable research attention. Propagation characteristics of leaky waves are rigorously
investigated by Tamir and Oliner in [10–12] where their field distribution and power transport properties
are explored in detail. For circular dielectric waveguides, a relative concrete analysis is given by
Snyder and Mitchell [21, 22] emphasizing the excited continuous mode spectrum due to the scattering of
a plane wave at oblique incidence from a dielectric rod. The optimization of the leaky wave radiation has
been elaborated by Jackson et al. [23–25] deriving general rules based on the dispersion characteristic
of the involved leaky waves that allow to obtain maximum power density at the desired direction.
Furthermore, with a focus on surface modes, the problem of their excitation and far field evaluation
was rigorously investigated using Green’s functions’ method by Wait [26], providing a complete solution
for the general problem of a plane wave incident obliquely on a cylinder of infinite length. Methods
regarding predictions on the placement of poles on kz-domain, in cylindrical dielectric structures, were
rigorously established by Snitzer [27]. Therein [27], the cut-off conditions of both axially symmetric
and hybrid modes are established, and the eigen-field of the lower order modes is evaluated near the
cut-off frequencies as well as far from them. Characteristics of propagation modes are also discussed
there [27], but the problem is characterized by the absence of material losses. In the analysis of the
field of open-waveguides, a very interesting orthogonal expansion technique in systems of proper and
improper modes was proposed in [28–30]. In [28–30], the ortho-normalizing factors of improper modes
revealed a strong correlation of the latter to space wave. In the work of Singh et al. [31], on a lossless
dielectric circular cylindrical rod, the strong correlation of the scanning beam characteristics to rod’s
parameters, (medium’s dielectric constant and cylinder radius), was demonstrated. Shigesawa and
Tsuji [14] were the first who introduced and examined the effects of dielectric losses, for planar lossy
structures, on the placement of leaky poles in the complex domain, (leaky spectral gap under losses).
Pole trajectories, although only cases of absence or low losses were considered, were the primary concern
of the works of Ufimtsev et al. [32]. On a similar direction, Neve and Paknys [15] focused on poles’
locations and trajectories with the presence of losses in planar dielectric structures. These works indicate
that when frequency and/or the other electrical parameters, (permeability, dielectric constant and its
loss tangent), of the structure vary, the poles’ positions, normalized phase, and attenuation constants
change respectively forming clear paths, (trajectory curves), on the complex wavenumber plane. Those
pole trajectories have definite effects on the way the respective structure radiates. In order to tackle
those complex phenomena, we contribute here the Space Wave Product Representation which stems
from the product factorization of non-meromorphic functions. Accordingly in our study, the, (near
or far), field expression is written as a product of well-defined individual terms with each depending
on a single specific pole/mode. Subsequently, the product representation produces the respective sum
formula which is the one utilized to provide understanding over the related phenomena.

The paper is organized as follows. In Section 2, the problem statement is given, and our contribution
for the Field Product Representation is presented. In Section 3, the paths of the modes’ solution
in the complex plane are investigated. In Section 4, we focus on the radiated field. Explicitly, the
studied models refer to the human-arm cylinder model. In this model, a cylinder of radius 2.75 cm,
a real part of relative permittivity of ε′r1 = 58.1, relative permeability of 1, and a conductivity of
1.69 [S/m] is used [6]. For this purpose, two operating frequencies f = 1.6 and 0.4GHz are used. The
first is referred as optimum frequency for energy transfer in body area networks by Poon et al. [1–3].
The 400MHz belongs to a band of resonant frequencies as noted in the IEEE Standards 802.15.6TM-
2012 [33, Ch. 4], of low frequency zone dealing with human exposure. The imaginary part of material’s



148 Mitsalas, Kaifas, and Kyriacou

relative permittivity is defined as ε′′r1 = σ/ωϵ0 [34, p. 13]. So, the first, (1.6GHz), operating frequency
responds to εr1 = 58.1− j19, and the second, (0.4GHz), to εr1 = 58.1− j76. Trajectories of the leaky
poles as both parts, (real and imaginary), of medium’s complex relative permittivity increase, reveal
the variation of their radiation behavior.

2. PROBLEM STATEMENT AND CONTRIBUTION TO SPACE WAVE
EVALUATION

2.1. Problem Statement

A homogeneous circular cylindrical rod, (Region-1), of complex relative permittivity εr1, (ε1 = ε0εr1)
and radius α, immersed in free space, (Region-2), and aligned along the z-axis, is considered, (as shown
in Fig. 1). The field at a point ρ, φ, z, (in cylindrical coordinates or equivalently at r, φ, θ expressed in

spherical ones), outside the rod, is given as linear expansion, of eigen-solutions, e−jmφH
(2)
m (kρρ)e

−jkzz

in [35, 36]. Note that m denotes the azimuthal index; kz, (kρ), is the longitudinal, (transverse),

wavenumber; and H
(2)
m (·) is the m-th order Hankel function of the second kind. A time convention of

e+jωt is adopted. For an infinitesimal, z-directed, electrical current density dipole, acting as a source and
placed at (ρ′, φ′, z′), the field in the air region-2 of Figs. 1(a)–(b) obeys the following equation [35, Sec. 3]
or [36]: [

Ez

Hz

]
=

−j

4πωε1

+∞∑
m=−∞

e−jm(φ−φ′)

+∞∫
−∞

dkze
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[
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]
(1)

where G
(m)
1,2 (kz; ρ, ρ

′), (multiplied by H
(2)
m (kρ2ρ)), is the so-called Spectral Domain Green’s function

determined by the boundary conditions for the two regions of Fig. 1 [35, Sec. 3].

(a) (b)

Figure 1. The structure under study: (a) A human hand modeled by a highly lossy dielectric cylinder,
(b) an open dielectric waveguide excited by a centrally located infinitesimal electric dipole source.

In Eq. (1), the integration is carried out following the Sommerfeld Integration Path, (SIP). Since
direct integration of Eq. (1) along the SIP involves major challenges, often the Cauchy theorem is
employed to integrate in the complex kz plane. In this case however, one has to take into account the
diverse kz plane terrain. Indeed, it is well known that the complex kz plane is assembled by two Riemann
sheets, (due to the ambiguity of the sign definition of the transverse wavenumber, kρ2 = ±j

√
k2z − k20).

Each sheet is assembled by four quadrants, T1, T2, T3, T4 for the top, (imaginary (kρ2) < 0), and
B1, B2, B3, B4 for the bottom, (imaginary (kρ2) > 0), Riemann sheet, respectively, (in both cases
counting the quadrants counterclockwise) [37]. Furthermore, the kz terrain hosts branch cuts, (formed
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by continuum of poles since the structure under study is open) [38, Ch. 5], and numerous discrete poles
that are distributed on the four plus four quadrants. Thus, the Cauchy complex integration, alternative
to the SIP, is not free of problems since poles should be found, and the integral around the branch cut
is to be evaluated.

Usually, the space wave estimation can be tackled by representing, (after expressing the integral
around branch cut from the longitudinal, kz, to transverse, kρ, wavenumber), the integral to a
transformed domain where the branch cut is alleviated. Indeed, utilizing [38, Sec. 5.3c], kz = k0 sinu,
(with k0 being the free space wavenumber), the kz wavenumber plane is transformed to a respective
complex angular u = uR + juI wavenumber plane. All quadrants in top and bottom Riemann sheets
are mapped in their equivalent domains-strips in the single-sheeted complex angular plane, (as it
is shown for example in [38, Fig. 5.3.4a]). This is the steepest descent plane where the steepest
descent path, (SDP), method of integration is usually employed [38, Fig. 5.3.4]. For the near field,
one usually needs to numerically compute the integral at each observation point ρ, φ, z (or r, φ, θ in the
spherical coordinates). Fortunately, for the far-field computation, (k0r ≫ 1), closed form expressions
are available since the integral gets significant contribution only from the integration path near the
saddle point. Admittedly, there are variations of the related techniques ranging from nonuniform [38] to
uniform [38, 39], asymptotic evaluation of the integral. In any case, the steepest descent method results
in the evaluation of the far-field, (space-wave radiation). Specifically, the m-th term of Equation (1) is
given in the form [31], (Z0 = 120π [Ω], the free-space impedance):

E
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kρ2
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2
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where kρi =
√

k2i − k2z , i = 1, 2, k1 = k0
√
εr1, and k2 = k0 while the normalized (to k0) radial

wavenumbers are denoted as kρ1 =
√

εr1 − (kz/k0)2 and kρ2 =
√

1− (kz/k0)2. Since the dipole is
placed at the cylindrical rod’s origin, (Fig. 1), the radiated electric field of Eq. (2) exhibits only an Eθ

far-field component resulting from the m = 0 term due to the axial symmetry [31, Eq. (15)] or [35]:

Eθ = E
(0)
θ = g(a)F (kz)

e−jk2r

r
with g(a) =
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ε2µ2k0
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The denominator D(kz) of the function F (λ) comprises the characteristic equation of the cylindrical
waveguide D(kzp) = 0 which can be solved for the propagation constants kzp.

2.2. Alternative Evaluation of Near and Far Field

The present theoretical contribution exploits an alternative evaluation of the field that extremely
augments intuition and builds on the concept of leaky wave radiation. In the expressions that follow,
kz is denoted as λ. Herein, the observation angle θc, (complementary of angle θ as in Fig. 1(b)),
is defined over the cylinder’s interface, normal to the z-axis. The proposed approach stems from the
function-Kernel factorization that is well established in Wiener-Hopf techniques. Usually, even functions
F (λ) are factorized into a product of one analytic in the upper λ-half plane F+(λ) and one analytic in
the lower λ-half plane F−(λ) as F (λ) = F+(λ)F−(λ), where for even functions F−(λ) = F+(−λ) [40–
43]. The employed approach was developed for non-even functions by Fikioris et al. [44], appearing in
ferrite loaded structures and recently exploited for magnetized plasma loaded structures in our previous
work [45]. For the function-kernel F (λ) defined in Eq. (5) the factorization is carried out in Appendix A
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and reads:
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The exponential factor in Eq. (6) comprises the usual branch-cut integrals, and their integration path
goes around the branch-cut as in [40, Fig. A-2 (p. 94)]. The infinite product in the numerator accounts
for the zeros kzn, while that of denominator collects the poles kzp contribution of the function F (λ).
For the convenience of its numerical evaluation, Equation (6) is reformulated in terms of the “positive”
and “negative” complex functions q+(λ) and q−(λ), as in Appendix B. Additionally, as poles of even
function appear in pairs, (±kzp), exhibiting an even symmetry, their residues will be of equal values
and can be accounted in pairs modifying the infinite product in the denominator of Eq. (6) to take the
following form:
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q±(λ) along with (1 − (λ/k0)
2)1/2 denote the contribution from the branches, which are defined

analytically in Appendix B. The infinite product in Eq. (8) can also be expressed as the sum of residues
L(kzp), for each pole kzp according to [39, 46]. Thus, Eq. (8) reads:
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where L(kzp) denotes the residue of kzp pole as lim
kz→kzp

(kz−kzp)F . Each pole’s contribution is encountered

in the field of Eq. (9), via the following expression (10). A similar expression was also obtained by Collin
and Zucker [10, Part II, Ch. 20] or Ostner et al. [25] or Singh et al. [31].
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However, herein the contribution from zeros of the normalized k̄ρ1 = kρ1/k0 of the numerator of Eq. (4)
is also encountered in Eq. (10). The poles kzp involved in Eq. (10) can be estimated by solving Eq. (5).
In order to track the poles’ trajectories, especially near cut-off, Eq. (5) needs to be solved numerically or
analytically. Roots can be extracted numerically by solving Eq. (5) via Davidenkos technique [47, 48].
Toward this direction, the work of Yang and Song [49] provides useful methods in order to derive initial
guesses in the vicinity of cut-off frequencies.
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2.3. Comparison against Established Techniques

The novel closed form field expressions obtained in Equations (6) and (8)–(9) must be validated against
already established techniques in terms of formulas and numerical results. For this purpose, the
established radiated field evaluation techniques are first summarized. From a first view it seems that
the formulas obtained herein Eqs. (8) to (9) share the same form as the multiplicative method proposed
in [46, 50, 51]. Following the asymptotic evaluation methodology of [38], the integral Equation (C1) of
Appendix C representing the field can be transformed into the strip-domains, and the integration path
is deformed to a steepest descent path (SDP). According to [38] the total field is comprised from the
SDP integral corresponding to the continuous spectrum and the discrete spectrum resulting from the
residue contribution of poles captured-enclosed between SDP and the original integration path (SIP) as
in Fig. 2 in the form:

Eθ = −2πj
∑

Res ·H (θc − up) +

∫
C-SDP

Ẽ
θ
(λ) e−jλze−j

√
k20−λ2ρdλ

= −2πj
∑

Res ·H (θc − up) + g (α) /rF (k0 sin θc) e
−j(k0r−π

4 ) (11)

where H(θc − up) is the Heaviside step function, and θc is the saddle point defined by:

cos (uR − θc) · cosh (uI) = 1 (12a)

via the SDP transform:
kz = k0 sinu (12b)

with u = uR + juI or kz/k0 = βz − jαz = sinuR coshuI + j cosuR sinhuI .
In the first term of the residues’ sum in Eq. (11), only the captured poles from SDP are involved.

The function F (·) is already defined in Eq. (4). Applying the saddle point method, where the observation
angle u = θc in Eq. (11), yields the space wave (second term of Eq. (11)). It is important to recall that
as noted by Senior and Volakis [50, p. 33] as well as in [39, 46, 51] formulas (11) are valid when θc is a
first order Saddle point (true herein), and function F (k0 sin θ) is slowly varying in its vicinity as well
as that F (k0 sin θ) to be free of poles near the SDP path. However, the main purpose of the present
effect is to evaluate the radiated field of a cylindrical rod when its losses are increased to very high
degree as they occur in biological media. It will be proved in the next section that increasing the rod
losses causes the poles to migrate reaching or even crossing the SDP path. Hence, it is inevitable to
employ a methodology which accounts for poles near the SDP path or close to the saddle point θc. It is
even preferably to utilize a method accounting for poles contributions through an appropriate weighting
factor, wherever their position is. According to Rojas [39], two appropriate methods, a “multiplicative”
(Pauli-Clemmow) and an “additive” (Van der Waerden) which are asymptotically the same (term by
term) can handle multiple poles lying anywhere in the complex plane, while they can cross the SDP
path anywhere or even close to the saddle point. These involve a transition function introduced by
Kouyoumjian and Rojas [39]. As concluded in [39] these two methods constitute a generalization in
the classical SDP method in Eq. (11) of Felsen and Marcuvitz [38]. In the special case when the poles
are far from the saddle point, the transition function tends to unity, and the general expressions can be
replaced by an asymptotic expansion which is the same as that of [38]. The multiplicative method was
first proposed by Gennarelli and Palumbo [46], later validated by Rojas [39] and summarized by Senior
and Volakis [50]. The multiplicative method for the case elaborated herein reads:
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√
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(
z2
)
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where FKP denotes the Kouyoumjian-Pathak transition function, while FC is the Clemmow transition
function. For the Clemmow transition function in Eq. (13a), there is a sign interchange from
“minus” if the pole is captured when −3π

4 < arg(z) < π
4 to “plus”, if the pole is captured when
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π
4 < arg(z) < 5π

4 [50, p. 333–334]. The equivalent “additive” method was originally developed by Van
der Waerden [50, p. 334], and it was later generalized by Volakis and Herman [51] and summarized
in [50, p. 335]. Applying this method to the present case, the radiated field reads:

Eθ = ek0rf(θc)
√

π

k0r

∑ Res

µp
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1− FKP
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2
p

)]
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ek0rf(θc)k0F (k0 sin θc) (14a)

µ2
p = f(θc)− f(up) (14b)

Both the multiplicative Eq. (13) and the additive method Eq. (14) involve the transition function
FKP (z

2
p); z2p = k0rb

2
p. This function is defined in terms of the standard error function as in

Eq. (13c) [52, Ch. 7], and accounts for the proximity of a pole up relative to the saddle point θc as in
Eq. (16d). FKP is explicitly defined in [50, 53], wherein they prove that when its argument is increased
beyond z2p ≥ 2, FKP → 1. Hence, when this tends to unity, a pole (up) is away from the saddle point so

that z2p > 2, then its effect on the SDP integral is negligible, and expressions (13) and (14) are reduced
to the classical SDP given in Eq. (11). The same is expected for formulas (8)–(9) proposed herein.

Let us now compare the expression resulting from the Wiener-Hopf factorization in Eqs. (8) to (9) to
the “multiplicative” Eq. (13a) and additive Eq. (14a) in a term-by-term approach as done by Rojas [39].
First, the poles residue contributions are the same in the three cases. The branch cut integral herein
is defined in Equation (5), and it appears as an argument of an exponential function. The important
observation is that the integrand does not involve any oscillating terms, but on the contrary the Kernel
function F ′(x)/F (x) is multiplied by a logarithmic term. This exhibits logarithmic singularities of
x = ±λ and x = 0, which can be handled by established techniques during numerical integration.
It is important to notify that this integral, denoted as Fp(λ) in Eqs. (8) to (9) multiplies the poles
residue contribution acting as a weighting factor accounting for their relative position with respect to
the integration path. However, the same role is played by the transition function FKP in the two
equivalent multiplicative [46] and additive formulas [50, 51] formulas (13)–(14). Thus, it seems that
Fbranches(λ) encapsulates the action of the transition function along with the branch-cut integral, but
in the λ-domain. Although this is cumbersome as a numerical integration is prerequisite, it offers the
possibility to evaluate both the near and far fields. On the contrary, the multiplicative and additive
expansions are directly developed as asymptotic approximations, thus they can only estimate the far
field. The latter is adequate for most traditional electromagnetic problems, but not for the case of
wearable antennas, or antennas implanted in biological tissues. In the present case what is of primary
importance is the evaluation of the field just outside the biological object (cylinder herein) or in its
close vicinity. Due to the extremely high losses involved, only this type of near field is expected to be
possibly exploited for transferring information or energy inwards or outwards from the human body.

3. MODES-POLES SUPPORTED BY HIGHLY LOSSY DIELECTRIC CYLINDERS

Different parts of the human body can be modeled adequately as biological cylinders: arms, legs, torso,
and neck. Although these are cylinders of finite length, important conclusions regarding electromagnetic
signals and energy transferring inwards and outwards can be extracted considering infinite cylinders for
mathematical convenience. Once a physical insight is acquired, the resulting expressions can be extended
to finite cylinders as resonators made from a section of the corresponding waveguide. Herein, an
infinite cylinder representing the human arm is considered with a radius 2.75 cm and complex dielectric
constant (including the conductivity) of εr1 = ε′r1−jε′′r1 = 58.1−j76 and εr1 = ε′r1−jε′′r1 = 58.1−j19 at
frequencies 400 and 1600MHz respectively following the Drude model [6]. In order to study the involved
mode-pole migration phenomena, the real part ε′r1 = 58.1 is kept constant, while the imaginary part is
varied as ε′′r1 = 0 to 76. The study starts with the modes-poles’ estimation and their migration. Then,
it is extended to the radiation regarding both the near and far fields.

3.1. Poles Migration due to Increased Losses

The modes of the dielectric rod can be estimated by the roots of the characteristic equation D0(kz) = 0,
which constitutes the denominator of Eq. (4). This corresponds to the special case of axially symmetric
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modes (m = 0), while the general form for arbitrary azimuthal index m can be written as (Appendix C):
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(15)

where the arguments of Bessel and Hankel functions are denoted as s = kρ1α and y = kρ2α, respectively.
The dielectric rod is studied for two different frequencies of 0.4 and 1.6GHz and three different levels
of losses:

(i) Lossless: 400MHz (ε′r1 = 58.1, ε′′r1 = 0), 1600MHz (ε′r1 = 58.1, ε′′r1 = 0)

(ii) Moderate Losses: 400MHz (ε′r1 = 58.1, ε′′r1 = 35), 1600MHz (ε′r1 = 58.1, ε′′r1 = 8)

(iii) High Losses: 400MHz (ε′r1 = 58.1, ε′′r1 = 76 or tan δ = 1.31), 1600MHz (ε′r1 = 58.1, ε′′r1 = 19 or
tan δ = 0.33).

The characteristic equation is solved using the Davidenko’ technique [47, 48]. Three types of
modes are expected, surface waves, leaky waves, and complex improper modes. The results for the
axially symmetric case are presented in Figs. 2–3, and they can be discriminated into surface and
leaky waves. In order to get an insight into the migration when losses (ε′′r1) are increased, these
roots are transferred to the complex steepest descent domain where the branch cut Re(kρ2) = 0 of

kρ2 = (k20−λ2)1/2 is removed through the transformation up = uR+juI and kz/k0 = sinup = βz−jαz =
sinuR coshuI + j cosuR sinhuI . Modes are evaluated as roots of the characteristic equation D(kzp) = 0
defined in Eq. (5), and consequently their positions are plotted at both operating frequencies (400MHz
and 1600MHz) in the kz and kρ2 planes (Figs. 2(c)–(d) and Figs. 3(c)–(d)), as well as in the complex
angle (SDP) plane domain (Figs. 2(a)–(b) and Figs. 3(a)–(b)) via the SDP transform of Eq. (12b). The
horizontal and vertical axes in Figs. 2(a)–(b) (for 400MHz) and Figs. 3(a)–(b) (for 1600MHz) denote
the real and imaginary parts of the complex angle up, respectively. Extreme steepest descent paths
which determine the upper and lower limits of the captured region in complex angle plane are indicated
as Upper Steepest Descent Path (USDP) and Lower Steepest Descent Path (LSDP) in Figs. 2(a)–(b)
and 3(a)–(b), and their contour is evaluated by setting θc = π/2 in Eq. (12a) for USDP and θc = −π/2
for LSDP. Light dashed lines in Figs. 2(a)–(b) and 3(a)–(b) denote the original Sommerfeld Integral
path (SIP). The improper leaky mode with the minimal axial attenuation constant αz is marked with
the letter A in Figs. 2–3. In the kρ2-plane, quadrants with Im(kρ2) > 0 belong to the improper
(bottom) Riemann sheet, while those with Im(kρ2) < 0 belong to the proper (top) Riemann sheet.
Those quadrants are also deformed in the complex angle plane, via the transform of Eq. (12b) and
consequently are labeled as B (for Bottom Riemann Sheet) and T (for Top Riemann Sheet) in Figs. 2–3
similar to [37, 39].

Improper poles in Figs. 2–3 are depicted with filled markers and proper poles with empty markers.
It is important to observe that for this axially symmetric m = 0 case TMz

0n or TEz
0n, the complex

quadruplet of mode is absent. Although this work is focused on m = 0 case, the next group of hybrid
modes HEz

1n or EHz
1n are estimated and presented in Subsection 3.4. It is then observed that indeed a

quadruplet of complex hybrid modes exists. As expected, when losses are increased the imaginary part
of both kz and kρ2 becomes higher, (Figs. 2(c)–(d)), while in the transformed domain the poles move
away from the real axis, (uR), deeper into the strips or larger imaginary part, (uI), as in Figs. 2(a)–(b).
Similar phenomena are observed at both frequencies of 400MHz and 1600MHz as denoted in Figs. 2
and 3. The main question here is whether increasing losses causes a change in the nature of a pole
making that to alter its contribution to radiated near or far field as well as regarding its maximum
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(a) (b)

(c) (d)

Figure 2. TMz
0n poles’ positions at 400MHz: (a) lossless (blue)-moderate losses (red) comparison on

SDP plane, (b) moderate losses (red)-high losses (green), on SDP plane, (c) kz-plane, (d) kρ2 plane.
Quadrants T1–T4 and B1–B4 numbering follows [37, p. 12]. Common index in the last figure.

(a) (b)

(c) (d)

Figure 3. TMz
0n poles’ positions at 1600MHz: (a) lossless (blue)-moderate losses(red) comparison on

SDP plane, (b) moderate losses (red)-high losses (green), on SDP plane, (c) kz-plane, (d) kρ2 plane.
Quadrants T1–T4 and B1–B4 numbering follows [37, p. 12]. Common index in the last figure.
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field angle. A first indication from Figs. 2(a)–(b) or Figs. 3(a)–(b) is that captured poles of the lossless
case (blue circles) may move outside the LSDP-USDP area. According to the classical SDP, these poles
should cease to contribute to radiation. On the contrary according to [39, 50], these may still have
a significant contribution depending on their proximity to the saddle point. Explicit investigation of
modes-poles trajectories is discriminated next for three different types: leaky and surface modes, the
dominant mode, and quadruplets of complex modes.

3.2. Leaky and Surface Modes

The first five modes supported by the dielectric rod of Fig. 1 are tabulated in Table 1 ordered according to
an increasing imaginary part of their propagation constant. This table is restricted to axially symmetric
TM0n modes, since only these can be excited by the centrally located dipole source oriented along the
z-axis due to its symmetry. A first important observation is that each surface wave mode (βz/k0 > 1)
exhibits both a proper branch (located in T4) and an improper branch (located in B4) as illustrated in
Figs. 2, 3, 4 and depicted in Table 1. This is in accordance to a plethora of publications (e.g., [37, 49]),
which prove that surface waves above their cut-off (actually turn-on) may exhibit a bifurcation to a
proper and an improper branch. However, the first dominant mode (#1 in Table 1) remains in the
improper quadrant B4, when either its βz/k0 is less or greater than 1, because it is not reaching any
possible bifurcation point. It will be then proved that this is the dominant leaky mode responsible for
the main part of energy leakage (inwards or outwards) from the dielectric rod. Thus, its trajectory will
be closely followed versus the increasing losses. Besides that, it is herein realized that this is the mode
enabling the deep wave penetration into highly lossy media, which was first observed by Frezza et al. [18–
20]. A separate subsection is devoted to this phenomenon due to its high importance. Additionally, it
must be noted that the excited modes are not strictly surface or leaky, but they became complex due to
high losses. However, they are checked with Hessel’s formula [10, Part II, p. 174–181] for leaky modes
and found to obey that, providing their maximum contribution to the radiated field (Table 1) toward
upR = θc, (θc the complementary angle-direction as in Fig. 1), namely when the real part of the pole
(upR) is equal or close to the saddle point.

The pole locations in Figs. 2–3 and Table 1 are depicted for specific losses encountered in the human
arm model. It was then decided to track the locus of these modes when losses are increased from zero to

Table 1. TM modes in the arm cylinder at frequencies 1.6 and 0.4GHz, ordered by increasing
attenuation constant in z-direction. Orientation of corresponding modal maximum in radiation pattern
is denoted by θc,max.

freq Character Number kz/k0 kρ2/k0 uR = θc,max uI

1.6GHz

Improper

#1 1.0223− j0.0084 0.0398 + j0.2159 87.77◦ −12.28◦

#2 6.546− j1.454 1.4704 + j6.4729 77.34◦ −148.45◦

#3 3.106− j3.119 3.2 + j3.027 44.14◦ −124.64◦

#4 1.209− j8.073 8.1334 + j1.2 8.45◦ −160.22◦

#5 0.796− j12.306 12.35 + j0.79 3.69◦ −183.75◦

Proper

#2 6.556− j1.445 −1.4613− j6.4829 102.53◦ 148.52◦

#3 3.071− j3.015 −3.0975− j2.9892 135.25◦ 123.34◦

#4 1.144− j8.075 −8.1355− j1.1355 172◦ 160.17◦

0.4GHz

Improper

#1 1.03632− j0.0292 0.1044 + j0.2898 84.25◦ −16.46◦

#2 2.582− j14.975 15.0074 + j2.5764 9.76◦ −195.68◦

#3 1.323− j29.477 29.4939 + j1.322 2.57◦ −233.66◦

#4 0.905− j43.47 43.4815 + j0.9048 1.19◦ −255.86◦

#5 0.693− j57.297 57.3057 + j0.6929 0.69◦ −271.67◦

Proper
#2 2.491− j15.035 −15.067− j2.486 170.61◦ 195.84◦

#3 1.258− j29.549 −29.566− j1.256 177.56◦ 233.79◦
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these values as ε′′r1 = 0 to 76 at 400MHz and ε′′r1 = 0 to 19 at 1600MHz. These trajectories are sought
so as to gain an insight on whether their radiation-energy leakage is maximized. As noted above, the
energy leakage is maximized toward uRp = θc, and its intensity increases as the pole itself comes closer
to θc, (close to the saddle point). Since θc scans the angles from −90◦ to 90◦ or uRp from −π/2τoπ/2,
then the leakage will be maximized when the pole up tends closer to the real axis, (uI = 0) [10, Part II,
Sec. 21]. The resulting poles trajectories versus the increasing losses (ε′′r1) are depicted in Fig. 4. It is
observed that only the dominant #1 leaky wave mode is close to real axis (uI = 0). At a specific loss,
the dominant mode trajectory crosses the USDP as ε′′r1 = 27 at 400MHz, while at 1600MHz it remains
in the whole range of ε′′r1 = 0 to 19 outside the USDP. Beyond that point, the pole is not captured
between the LSDP and USDP (shaded in Fig. 4(a)) in the classical mean. However, it is expected to
contribute to radiation as discussed in Section 2.3. Regarding the higher order modes, some of them
remain captured, while others are driven outside the LSDP-USDP area.

(a) (b)

(c) (d)

Figure 4. TM poles’ trajectories following a complex relative permittivity increase of ε′′r1 = 0 to 76
at f = 400MHz on: (a) SDP plane, (inset: focus on #1 mode’s trajectory), (b) kz-plane (inset: focus
on #1 mode’s trajectory), (c) kρ2 plane (inset: focus on #1 mode’s trajectory), where with continuous
and dashed curves are marked B4 and T4 modes respectively. Common index of Figs. 4(a)–(c) in the
last figure, (d) verification of dominant pole’s movement with results of [31].

The pole’s (kzp) contribution is taken into account regardless its position as depicted in
Equation (12), where the ordinary residue L(kzp) is modified to account for its proximity to the saddle
point θc (observation angle). A maximum contribution occurs when kzp = k0 sin θc = real , equivalent
to uRp = θc, which becomes more intense as the imaginary part of kzp is minimized (closing to the real
axis). From this point of view, the contribution of the dominant pole at 1600MHz is expected to be
higher than that at 400MHz, as its trajectory is closer to the real axis (Figs. 2–3). A strange situation
occurs when the pole approaches the branch point at kz = k0 where maximum leakage is expected as
θc tends to 90◦. Then Equation (10) becomes indefinite as 0/0, but taking the limit kzp → k0 and
θc → π/2 using L’Hospital rule, and then Eq. (10) yields the expected maximum toward the endfire for
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the dominant mode as:

Fp(θc = π/2, kzp = k0)= lim
θc → π/2,
kzp → k0

Fp(k0 sin θc) =
L’Hospital

lim
θc → π/2,
kzp → k0

((
εr1 + 2 cos2 θc − 1

)
· 2Lp

2 cos θc
√

εr1 − sin2 θc

)
(16)

which tends to infinity at this limit.
Substituting the values θc = θc,max for the dominant mode #1 in Table 1, the limit reads:

(i) f = 400MHz: θc = θc,max = 84.25◦ → L1 = L(kz1) = 0.0012 and Fp1,max = 0.087.

(ii) f = 1600MHz: θc = θc,max = 87.77◦ → L1 = L(kz1) = 0.0041 and Fp1,max = 0.303.

At this point, it would be interesting to examine the dominant energy leakage using the theory
developed by Frezza et al. [17–20], although this is established for a planar dielectric interface.

In order to verify the dominant pole’s movement, its position in the λ-domain is tracked when the
real part of dielectric constant varies from 1 to 58.1 in Fig. 4(d). In this way, the dominant mode’s
curve is verified with the respective one studied by Singh et al. [31]. The condition a/λ0 = 0.0667,
which is used therein [31], answers to operating frequency 727MHz for the human arm model cylinder.
However, the most significant verification of the validity of poles’ positions constitutes the radiation
results of Section 4, where it is indeed proved via Equation (9) that they compose the total far field
given by expressions (3)–(4).

3.3. Dominant Leaky Mode Penetration-Leakage

The group of Frezza and his colleagues [17–20] considered an inhomogeneous plane wave incident at
the planar interface of the lossy media as shown in Fig. 5(a). Enforcing the boundary condition (or the
Snell law and the separability condition) at the interface, the Authors were able to identify a specific
angle of incidence at which the wave could propagate (penetrate) inside the highly lossy medium
without attenuation. Based on the reciprocity theorem, this phenomenon is expected to occur also
herein. Namely, a wave emanating from a source inside the highly lossy medium and propagating at the
predicted angle (specific phase constant βz = k1 cos θ) would exhibit zero (or small) attenuation constant
and would be transmitted to the low-loss medium without any attenuation away from the interface.
The question herein is whether the observed dominant leaky wave obeys the condition predicted by
Frezza et al. [17–20]. To address this question, the lossy cylinder is assumed as medium #1 and the

(a) (b)

Figure 5. (a) Scattering of inhomogeneous wave on an interface between a highly lossy medium-1 and
a low-loss medium-2, (b) Poynting vector representing the energy delivered from highly lossy medium-1
(ρ < α in Fig. 1) by the dominant improper mode (#1 in Table 1).
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air as medium #2 (Fig. 5). The propagation constant along the direction of propagation (along a ray)

is equal to the wavenumber k⃗ti = k⃗i = k⃗z + k⃗ρ and kti = βti − jαti, i = 1, 2, where for medium-1

k⃗t1 is complex, while for medium-2, k2t2 = k20 = real. Notably, medium-2 is lossless thus βt2⊥αt2 or
ζ2 − ξ2 = π/2, but medium-1 is lossy, thus βt1 and αt1 are not orthogonal. Transferring the analysis
of [19] for the symbols utilized herein, it reads:

β2
t1 − a2t1 = Re

(
k21
)
= Re

(
k20εr1

)
and 2βt1at1 cos (ζ1 − ξ1) = Im

(
k21
)
= Im

(
k20εr1

)
(17a)

β2
t2 − a2t2 = Re

(
k22
)
= Re

(
k20εr2

)
and 2βt2at2 cos (ζ2 − ξ2) = Im

(
k22
)
= Im

(
k20εr2

)
(17b)

The optimum angle of incidence for the above phenomenon to occur is given in [18, Eq. (8)]
or [20, Eq. (25)] as:

tan ξop1 =
tan η1 ±

√
tan2 η1 − 4χ (χ− 1)

2 (χ− 1)
(18)

where χ =
Im(k22)

Im(k21)
and η1 = ζ1 − ξ1. If ξop1 is sufficiently small, the small argument approximation [52]

(from Taylor expansion) gives tan ξop1 ≈ ξop1 [rad], and the latter can be used in Eq. (18). Substituting
the values for the mediums-1, 2 of the dielectric waveguide of Fig. 1 and the dominant mode propagation
constant from Table 1 in Eq. (18) yields for the two frequencies:

(i) f = 400MHz, εr1 = 58.1 − j76, kt1/k0 = 8.78 − j4.36, kρ1/k0 = 8.717 − j4.36, χ = 0 since
Im(k22) = 0, ζ1 → 0◦, ξop1 = 6.8◦, η1 = ζ1 − ξop1 ≈ −6.8◦, ξop2 = 84.25◦, ζop2 = 90◦ + ξop2 = 174.25◦.

(ii) f = 1600MHz, εr1 = 58.1 − j19, kt1/k0 = 7.72 − j1.23, kρ1/k0 = 7.65 − j1.23, χ = 0 since
Im(k22) = 0, ζ1 → 0◦, ξop1 = 7.5◦, η1 = ζ1 − ξop1 ≈ −7.5◦, ξop2 = 87.7◦, ζop2 = 90◦ + ξop2 = 177.7◦.

The above values exactly confirm the angle of maximum radiation-leakage of the dominant mode
as predicted in Table 1, θc,max = ξop2 = 84.2◦ at 0.4GHz and θc,max = ξop2 = 87.7◦ at 1.6GHz. At
f = 0.4GHz, the Poynting vector of #1 mode in mediums-1 and -2 is evaluated and plotted using
Eq. (10) and (Eq. (C3) in Appendix C). It is clearly observed in Fig. 5(b) that the Poynting vector,

which is indexed as vector P⃗ in Fig. 5(b), is almost normal to the interface in the lossy region-1, while it
tends toward the axial direction (parallel to the interface) in the lossless region-2. The Poynting vector
at mediums 1 and 2 form the same angles ξ1 = 6.8◦ and ξ2 = 84.25◦ as indicated in Fig. 5(b). These
coincide identically with the wave fronts’ angles ξop1,2 from Frezza’s expression (18), as also defined by

the phase vectors of the waves propagating in the two media (Fig. 5(a)). Besides that, its amplitude
(length of arrows) is retained almost constant (unattenuated) in the lossy region-1 (ρ < α).

3.4. Increasing Losses Break the Symmetry of Quadruplets Complex Modes

As explained before, the axially symmetric excitation of Fig. 1 supports only TM0n modes, among
which there are no complex quadruplets. However, it is interesting to study the effects of high losses
on them. For this purpose, the hybrid EHz

12 case is tracked in Fig. 6(a) as ε′′r1 is increased from zero
to 76 for 400MHz, and the hybrid EHz

17 case is tracked in Fig. 6(b) as ε′′r1 is increased from zero to
19 for 1600MHz. Specifically, the hybrid modes EHz

12 and EHz
17 were found to behave as complex

quadruplets. As expected for the lossless case, (εr1 = 58.1− j0), a perfect symmetric quadruplet EHz
12

or EHz
17 complex mode set (±kz,±k∗z) is observed at points A, B, C, D of the inset in Fig. 6. It is well

understood that the net energy (or the total Poynting vector) carried by this symmetric set is zero,
e.g., [13]. However, as losses are increased the symmetry breaks down leading to points (A′, B′, C′,D′)
in Fig. 6, which is in accordance to Kamel and Omar [16] who already studied a similar phenomenon,
but for a planar structure. It is observed that the pair of modes B, D move on the imaginary axis of kz
becoming purely attenuated waves. On the contrary, the pair A, C retain almost the same imaginary
part of kz and move to highly increased real kz. Hence, the pair (A′, C′) is then an ordinary forward and
reverse propagating set of modes, which may carry a net energy or radiate when the poles are located
close to the saddle point as explained in the previous paragraphs.
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(a) (b)

Figure 6. Behavior of a quadruplet of complex poles on kz-plane: (a) 400MHz, (b) 1600MHz as
dielectric losses increase. A, B, C, D positions of poles respond to the lossless case, while A′, B′, C′,
D′ respond to the lossy cases of 400 and 1600MHz arm-model. In the insets the initial symmetrical
positions are presented.

4. NUMERICAL RESULTS-VALIDATION

The proposed methodology addressing the mode transition due to the extremely high losses of high
dielectric constant biological cylinders will be validated in this section. For this purpose, both the
discrete and continuous spectra are evaluated keeping a mind that the ultimate aim is to identify the
optimal technique for maximizing the electromagnetic energy-signal transferring inwards or outwards
from biological cylinders. In order to validate the proposed method as well as to establish a reference, a
lossless cylinder studied in [31] is first elaborated. In turn, a cylindrical human arm model is examined
mainly at the characteristic frequencies of 400 and 1600MHz.

4.1. Validation against a Lossless Cylinder

The lossless cylinder studied in [31] has a radius a = 0.0667λ0 (λ0 the free space wavelength) and a
varying real dielectric constant taking values as εr1 = 9.8, 13, 22, 33. Again, excitation by a z-oriented
infinitesimal dipole is assumed, which is placed at the axes’ origin. The three first possibly excited
TMz modes are presented in Table 2, but only for the highest dielectric constant εr1 = 33. Notably,
all modes existing in this case are of improper nature, and they occur below the cut-off frequency
of the first proper guided mode. It is again justified that the dominant mode is of leaky wave type,
and it has an axial propagation constant slightly smaller than the free space wavenumber (βzp = k−0 ).
Since k2zp = k20 − k2ρ2, the corresponding kρ2 tends to zero, thus the leaky electromagnetic energy will
be directed parallel to the cylinder’s surface. As described in the previous Section 3 and proved by
Frezza et al. [18–20], this leaky mode provides the capability for “deep penetration” into lossy media.
However, the work of Singh et al. [31] reveals that the same phenomena occur for any dielectric constant
for both lossy and lossless media. Thus, its propagation constant is estimated and depicted in Table 3.

Table 2. First three leaky waves’ normalized propagation constant for dielectric constant εr1 = 33 and
cylinder’s radius α = 0.0667λ0. The switching criterion for transition function argument is zp ≤ 2.

Mode

Number
kz/k0 kρ2/k0 uR uI

Maximum at

angle θc

Transition

Function

Argument

#1 ±0.9985∓ j0.00068 0.056 + j0.0121 ±86.8◦ ∓0.69◦ ±86.8◦ 1.22

#2 ±0.119∓ j7.133 7.203 + j0.1178 ±0.947◦ ∓152.57◦ ±0.947◦ 68.8

#3 ±0.082∓ j15.73 15.762 + j0.082 ±0.298◦ ∓197.65◦ ±0.298◦ 145.9
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Table 3. Dominant leaky wave’s normalized propagation constant with respect to the cylinder dielectric
constant, (α = 0.0667λ0). The switching criterion for transition function argument is zp ≤ 2.

εr1 kz/k0 kρ2/k0 uR uI
Maximum at

angle θc

Transition

Function Argument

9.8 ±0.9015∓ j0.186 0.5586 + j0.3002 ±58.22◦ ∓19.84◦ ±58.22◦ 4.88

13 ±0.9234∓ j0.1065 0.4535 + j0.2168 ±63.84◦ ∓13.71◦ ±63.84◦ 3.86

22 ±0.9696∓ j0.0267 0.2648 + j0.0977 ±74.72◦ ∓5.79◦ ±74.72◦ 2.4

33 ±0.9985∓ j0.00068 0.0561 + j0.0121 ±86.8◦ ∓0.69◦ ±86.8◦ 1.22

Additionally, its contribution to the leaked far field can be estimated through the pole contribution
as Fp/ cos θc which is identical to the one evaluated in [31] (since the cos θc term inside Eq. (10) is
not encountered in [31] also). It is important to note that this pole contribution is composed of the
ordinary residue, but as modified in Equation (10), so as to account for its proximity to the saddle point
similar to Ostner et al. [25] or Collin and Zucker [10, Part II, Ch. 20.2]. The corresponding maximum
occurring at θc defined in Eq. (12) is also shown in Table 3. As proved by Frezza et al. [18–20], this
mode may be excited by a wave incident at the critical angle thus in Eq. (18) above it is ξopt, which
is also utilized in [31]. The resulting contribution in the far field is illustrated in Fig. 7(a), where it is
observed that besides the beam toward θc caused by the forward propagation, a similar beam toward
−θc appears due to the symmetrical propagation of k′zp = −kzp toward negative z. In turn, the total

(a) (b)

(c) (d)

Figure 7. Comparison of present results (dashed black curves) with the ones (colored curves) of [31] for
different cylinder’s dielectric constant and radius a = 0.0667λ0: (a) Normalized, (to its maximum value),
dominant leaky wave power radiation pattern, (b) total far-field power radiation pattern normalized to
its maximum value, (c) comparison of dominant leaky wave versus total far field power patterns, (d)
logarithmic representation of far field power pattern.
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radiated far field is calculated according to the proposed formulas of Eqs. (8)–(9). The results are
compared in Fig. 7(b) against those of [31] and observed to be identical, while dominant leaky wave
and total far field patterns are compared against each other in Fig. 7(c). A significant dominant mode’s
contribution from Equation (9) toward the broadside direction is observed in Fig. 7(b), along with a
minor contribution of the high order modes of Table 2. The total far field is illustrated in logarithmic
scale [dB] in Fig. 7(d) which reveals that as the dielectric constant is increased, the first leaky wave
dominates; the beam directivity is increased; the maximum turns towards endfire.

Evaluating the trajectory of the dominant leaky mode in Fig. 8(a) by varying the real part of
dielectric constant εr1 as in [31] reveals that this mode belongs to the fast-wave improper region and
is always captured in this range by upper SDP path. Although the dominant mode is captured by the
USDP path, it is relatively close to the saddle point (λ = kz/k0 = 1). Hence, its proximity to the saddle
point is expected to affect the resulting radiated field. This could make the classical SDP inaccurate,
and (according to our previous arguments) either the generalized formulas (13)–(14) or the proposed
herein Eq. (9) should be employed. However, the classical SDP was utilized in [31], and their results are
validated by the commercial stimulator HFSS. Phenomenically, this contradicts the claim that classical
SDP fails when poles are in proximity to the saddle point. However, Senior and Volakis [Fig. 3.12 in
p. 66, 50] therein depict that the transition function tends to unity FKP (z

2
p) → 1 as its argument zp is

increased and reaches 0.99 for zp = 2. A similar proof is given by Daniele and Zich [53, p. 44]. Besides
that, the FKP argument involves a limiting approach as r → ∞, (far field), and a pole proximity to
observation angle θc, which correspondingly yields bp → 0 as defined in Equation (13). Thinking on how
to reveal the proximity effect and since the pole location depends on a lot of structures’ parameters,
we decided to examine it for a near (at k0r = 2, performing a numerical integration via Romberg

(a) (b)

(c)

Figure 8. (a) Trajectory (red curve) of the dominant leaky wave of Table 3, varying real permittivity.
Shadowed region denotes the region where poles may be captured among the SIP and USDP paths,
while points A, B, C and D denote the positions for the examined dielectric constants εr1 = 9.8, 13,
22, 33 respectively. (b) Near field at k0r = 2 versus the total far field (continuous curve) for different
cylinder’s dielectric constants. (c) Intermediate field (dashed curves) at k0r = 9 compared against the
total far field (continuous curve) for cylinder’s dielectric constants εr1 = 33.
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method) and intermediate field (at k0r = 9, employing saddle point method). The latter corresponds to
a transition function loss of −8 dB only for the case εr1 = 33, and transition functions FKP argument
zp = 4.88, 3.86, 2.4, and 1.22 (values over the angular range) for εr1 = 9.8, 13, 22, and 33, respectively.
The resulting total field from Equation (14), given by [50] and the herein proposed Eq. (9) are depicted
in Figs. 8(b)–(c) and compared against the far field of Fig. 7(d). It is clearly evident from Fig. 8(c) that
significant changes are observed around the angle of dominant mode maximum. Notably the difference
between the intermediate (e.g., k0r = 9) and far field, (k0r → ∞), are more pronounced for the case
εr1 = 33 where the argument of FKP is zp = 1.22, thus less than 2. On the contrary for the other cases of
εr1 = 9.8 and 22, negligible differences are observed as zp > 2. Although this is an indirect comparison,
it is appropriate for the scope of this work which primarily aims at the near and intermediate field
around cylinders modeling human organs. The near field of the cylindrical model elaborated in [31] for
cylinder’s radius a = 0.0667λ0 is evaluated in Fig. 8(b) and compared to the far field in logarithmic
scale. It is clear that significant deviation between the intermediate (k0r = 9) and far field is observed
only around the radiated beam maximum and thus is due to the proximity of the pole up to the saddle
point.

4.2. Near and Far Field Around the Human Arm Model

4.2.1. Far Field

a) Effect of Losses on Modal Contributions

The TMz modes possibly excited by the z-oriented infinitesimal dipole placed at the origin are
already depicted in Table 1, as explicitly analyzed in Section 3. The dominant mode trajectory, when
losses are increased, crosses the USDP when ε′′r1 = 27, or tan δ = ε′′r1/ε

′′
r1 = 0.4647. Thus, beyond that

and for the human arm (biological) losses ε′′r1 = 76 this pole is located beyond SDP, and it is thus
not captured. However, it may still contribute to the radiated field depending on its proximity to the
USDP and particularly its location with respect to the saddle point, e.g., [10, Part II, Ch. 20.2]. Its
contribution can be calculated by Eq. (9) proposed herein, as well as by Eq. (14) [50].

Explicitly, for the human arm model, the dominant mode’s axial propagation constant becomes
slightly higher than the free space wavenumber, as kz/k0 = 1.0363−j0.0292 (400MHz, εr1 = 58.1−j76)
or 1.0223 − j0.0084 (1600MHz, ε′′r1 = 58.1 − j19). Thus, it becomes a slow wave (up < c), which is
not captured from SDP path, but it retains a small imaginary part. Hence, it is expected to retain
its almost (axial) endfire radiation beam at angles close to 90◦. Its contribution Fp, evaluated from
Eq. (10) for the dominant mode, at 0.4 and 1.6GHz is depicted in Figs. 9(a)–(b), where the corresponding
maxima are observed at θc, lossy = 84.25◦ (0.4GHz) or 87.77◦ (1.6GHz). At both operating frequencies,
the lossless case ε′′r1 = 0, (where the pole is captured by SDP), is depicted for the comparison in
Figs. 9(a)–(d) for which the corresponding total field maxima are oriented toward θc, lossless = 71.38◦

(400MHz) or 70◦ (1600MHz). The total far field calculated from Eqs. (8) and (9) is also depicted in
Fig. 9 by continuous curves. It is important to note that the increase in losses, while it retains almost
the same maxima directions, but it significantly altered the radiation-leakage toward other directions,
including the broadside where the radiated field is not zero anymore, but it has a significant value by
84% (400MHz) and 71.4% (1600MHz) below the maximum. While the absolute field values shown in
Figs. 9(a)–(b) depict the effect of losses, it would be interesting to examine the normalized radiation
pattern given in Figs. 9(d)–(e), in polar coordinates. At 400MHz, the normalized radiation increases
toward broadside when losses are increased, but the opposite happens at 1600MHz. This is a direct
consequence of the opposite behavior of the dominant mode behavior (Figs. 9(a)–(b)) resulting from
its pole location (Fig. 4). Besides the dominant improper (leaky) mode, higher order modes of the
same character are classified in Table 1 according to an increasing attenuation constant. These are also
expected to contribute to energy leakage both in the near or far field and are already included in the
total field of Fig. 9; however, they should be examined separately. Their contribution calculated using
Equation (10) and their overall sum manipulated as in Eq. (9), provide the second term of Eq. (11),
which is plotted in Figs. 10(a)–(b), at both 0.4 and 1.6GHz. It is important to observe that although
their maximum occurs at broadside, their overall contribution is much lower than that of the dominant
leaky mode, even at broadside.
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(a) (b)

(c) (d)

Figure 9. Total far field (continuous curves) pattern of |Eθ| and dominant leaky pole’s (dashed
curves) radiated field versus variations of internal medium’s losses (ε′′r1) at: (a) 400MHz, (normalized to

g(α) e
−jk0r

r ), (b) 1600MHz, (normalized to g(α) e
−jk0r

r ), (c) 400MHz, (normalized to maximum values),
(d) 1600MHz, (normalized to maximum values). The angle is measured with respect to the normal to
cylinder’s surface.

(a) (b)

Figure 10. Far field radiation pattern of |Eθ| for the human arm cylinder, (normalized to g(α) e
−jk0r

r ),
versus the observation angle, which is defined with respect to the normal, (to cylinder’s interface), axis,
(a) at 400MHz, (b) at 1600MHz.

b) Effect of Losses on Continuous Spectrum

The next task refers to the examination of how the losses affect the branch-cut integral namely the
space wave radiation or the continuous spectrum. For the proposed method, branch-cut contribution
could be identified by “Fbranches” in Eqs. (8) to (9). Its normalized value is given by exp[q+(λ)+q−(λ)] in



164 Mitsalas, Kaifas, and Kyriacou

(a) (b)

Figure 11. (a) Contribution of term exp[q+(λ) + q−(λ)] at 400 and 1600MHz operating frequencies.
(b) Contribution from both Fpoles and Fbranches into space wave and validation of the current factorized
method versus the SDP space-wave at 400 and 1600MHz, inset: lossless cylinder’s space wave validation.

Eq. (9) and is evaluated for the two operating frequencies in Fig. 11(a). Correspondingly in the classical
SDP, the space wave is defined by the second term of Eq. (11). For the established general case, we
employ the “additive” approach in Eq. (14) which is already proved to be equivalent to the general
multiplicative method in Eq. (13). In this approach, the space wave includes the effect of the poles as
the branch cut integral which is clearly indicated by the presence of the sum terms within the brackets
of Eq. (14a). This is the only difference from the classical SDP approach of Eq. (11). Comparing
the multiplicative method proposed herein Eq. (9) with the classical one Eq. (11), it is not possible
to make a one-to-one correspondence and thus is also impossible compared to the “additive” method
in Eq. (14). However, examining Eq. (9) it is clear that Fbranches = exp[q+(λ) + q−(λ)] represents
the branch cut integral in the absence of zeros and absence of poles. In the established methods
of literature [38, 39], performing a saddle point integration of the field defined by function F along
the SDP contour cos(uR − θc) · cosh(uI) = 1 provides the space wave. Herein, the SDP method is
performed along the same path in function F , but on its factorized expression of Eqs. (8)–(9), as
F = Fpoles, zeros · Fbranches, as the second term of expression (11) indicates. Thus, leaky waves fall into
the second term of (14) [29, 30], being evaluated together with Fbranches into the space wave term. The
latter multiplicative form expression proves that poles also contribute to the continuous wave by virtue
of their proximity to the branch cut integral, similar to the additive expression of [51]. We expect that
the complete expression (9) will give the same results as the general approaches of Eq. (13) or (14). For
a more concrete proof, these must be compared numerically on the factorized expression of F . For this
purpose, the space wave term is compared against SDP integral in Fig. 11(b) for the 0.4 and 1.6GHz
frequencies. It is observed that indeed the two results are almost identical. In turn the total far field
expressions including the modal contribution Fp of Eq. (10) and branch-cut contribution are calculated
using the three formulas (9), (13), and (14) for both the lossless and lossy cases and at the two operating
frequencies of 0.4 and 1.6GHz. The results are depicted in Figs. 11(a)–(b). The transition functions in
Eq. (13c) do not introduce any changes into the space wave term, thus the result obtained from Eq. (11)
coincides to the space wave term obtained from Eqs. (13) and (14).

Searching for a case, when the transition functions correct the field for the human arm geometry
structure, a lossless dielectric constant of εr1 = 36.5 is chosen at 1600MHz, where the argument of FKP ,
zp = 0.9, is less than 2. It is clear from Fig. 12(a) that significant deviation between the intermediate
field at k0r = 8 and far field is observed only around the radiated beam maximum and thus is due to
the proximity of the pole up to the saddle point. The resulting total far field from the method utilized
in [50] and also presented herein in Equations (13)–(14) and the present method of Eq. (9) are compared
against the result of the classical SDP method of Eq. (14) and also given in [38], for the case of εr1 = 36.5
and f = 1600MHz. The results are depicted in Fig. 12(b), where it is observed that indeed the classical
SDP has a significant deviation (overestimation) in the field around the beam maximum (pole close to
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(a) (b)

Figure 12. (a) Intermediate field (dashed curves) at k0r = 8 compared against the total far
field (continuous curve) for a human arm cylinder geometry operating at 1600MHz, filled with a
lossless dielectric of εr1 = 36.5. (b) Comparison of the far field obtained via different methods of
literature [38, 50] and present method.

the saddle point), with respect to the generalized SDP [50] and proposed method in Eq. (9). On the
contrary, the two latter methods are in excellent agreement and very close to the numerically calculated
intermediate field (k0r = 8). Further investigation through numerical integration reveals that the results
become identical to the far field asymptotic approximation, which is in accordance to [50].

(a) (b)

(c) (d)

Figure 13. Electric field components at 400MHz: (a) Ez, Eρ and, (spherical), Eθ in the near field
in the human arm model, (ε′′r1 = 76), (b) Ez, Eρ and, (spherical), Eθ in the near field in the lossless
human arm model, (ε′′r1 = 0), (c) variation of |Eθ|: near cylinder’s interface with tiny-dashed curve, at a
distance not as far from cylinder’s interface (k0r = 2.3) with heavy dashed curve and at larger distance
(k0r = 9) with solid curve, (d) |Eρ|, |Ez| field pattern at near (k0r = k0α

+, 2.3) and far field (k0r = 9).
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4.2.2. Near Field

Since the present work elaborates on dielectric rod emulating biological organs, the near field is even
more important than the far field. The implanted devices may aim at communications or energy
transfer with wearable devices, (at a small distance forms the sum), or devices inside the room or on its
ceiling. Then it is important to evaluate the near field as well as to estimate the distance at which this
becomes the same as that approximated by the above far field approaches. For this purpose, the field
expression for the Eθ component given in Eq. (9) can be utilized. However, the involved branch cut
integrals must now be evaluated numerically along the original SIP path defined in Fig. 2. Although
this integral is defined for the Eθ component in Eq. (9), it is relatively easy to isolate the corresponding

Green’s functions G
(0)
2 (kz, ρ, ρ

′) for the air region-2, as explicitly shown in Appendix C. In turn, this is
substituted in the general expression (1) to obtain the Ez and Hz components. Any field component can
be estimated through the general relations between axial and transverse field components for cylindrical
structures waveguides, e.g., Pozar [54] or from [35], for the lossy cylinders at 400 and 1600MHz, as well
as the lossless ones, (ε′′r1 = 0). The required numerical calculations are carried out through Mathematica
11 [55], wherein a Romberg scheme is employed for the branch cut integral. All electric field components,

(normalized to the term g(α) e
−jk0r

r ), are in turn calculated and illustrated in Figs. 13–14, at 0.4 and
1.6GHz for distances k0r = k0α

+, 2.3 and 9 where α = 2.75 cm is the cylinder radius. The amplitudes
of the three field components versus the angle θc are depicted in Figs. 13–14. First similar behavior is
observed at the two frequencies, but the field is about five times stronger at 1.6GHz with respect to that
at 0.4GHz. The axial field Ez is maximized at broadside (θc = 0◦), while the radial Eρ and spherical
Eθ components exhibit strong maximums toward the endfire θc = −90◦ and +90◦. As expected, the
radial field component decreases with an increase in the distance from the cylinder surface as shown in

(a) (b)

(c) (d)

Figure 14. Electric field components at 1600MHz: (a) Ez, Eρ and, (spherical), Eθ in the near field
in the human arm model (ε′′r1 = 19), (b) Ez, Eρ and, (spherical), Eθ in the near field in the lossless
human arm model (ε′′r1 = 0), (c) variation of |Eθ|: near cylinder’s interface with tiny-dashed curve, at a
distance not as far from cylinder’s interface (k0r = 2.3) with heavy dashed curve and at larger distance
(k0r = 9) with solid curve, (d) |Eρ|, |Ez| field pattern at near (k0r = k0α

+, 2.3) and far field (k0r = 9).
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Figs. 13(d) and 14(d). Regarding the spherical Eθ component in Figs. 13(c) and 14(c), its amplitude
at the endfire direction is gradually reduced to zero with an increasing distance. However, its values
are retained almost constant toward broadside, while it becomes finally identical with the far field. The
latter phenomenon is also verified by Sammut [56], who proves that up to a certain distance the leaky
waves attenuate, while beyond that, they attain their far field characteristics.

Summarizing the above results, for near or far field, its intensity at 1600MHz is approximately
4–5 times greater than that at 400MHz. This is in accordance with Poon et al. [1–3], who on the
basis of human phantom models (Debye or Cole-Cole [1–3]), proved that indeed the frequency range
of 1.6–1.7GHz becomes optimal, and explicitly in this range high leakage is expected. This peculiar
phenomenon is due to the lower dielectric losses around 1600MHz than those at lower frequencies like
400MHz, as predicted by the Drude model [6]. While one expects losses to increase proportional to
frequency a step back is observed in the range 1.6 to 1.7GHz. However, as it is proved herein, at
lower frequencies (like 400MHz), the radiation mechanisms of the excited modes permit significant
leakage (although smaller) provided that the dominant mode identified herein is efficiently excited.
Thus, transferring energy inwards or outwards from the human body is possible at lower frequencies,
but effectively only in the 1.6–1.7GHz range.

5. CONCLUSION AND DISCUSSION

In this paper, the radiation characteristics of the discrete and continuous spectra for the “human arm
infinite cylinder-rod model”, excited by an infinitesimal dipole oriented along the symmetry axis-z and
placed at axes’ origin, are investigated. The above analysis has revealed the correlation of leaky modes’
pattern with their positions in the complex steepest descent plane. The effects of dielectric losses in the
radiation mechanisms are investigated through the poles’ trajectory in the complex domain. However,
an important feature of the current work arises from the numerical and analytical proof that indeed
improper modes affect the formation of the space wave through a proposed field product representation.
This field product stems from the Wiener-Hopf factorization of non-meromorphic functions and is
capable of handling poles when they are either close to the saddle point (observation angle) or even
outside the classical steepest descent capture zone. Although the proposed method is found herein to
be equivalent to the “multiplicative” and “additive” steepest descent methods as summarized by Senior
and Volakis [50], its derivation is more straightforward, and more importantly it can be utilized for both
the far and near field evaluations. This is of particular importance in biomedical applications especially
when implanted antennas are involved, where the near field is of primary significance. Furthermore, a
very important low order leaky wave is encountered having very small attenuation constant and being
capable of significant energy transferring inwards-outwards highly lossy dielectric cylinders. This is in
accordance with the findings of Frezza et al. [17–20] who proved the existence of a deeply penetrating
inhomogeneous wave into planar highly lossy structures when it impinges at a specific angle. Finally,
the observation of Poon et al. [1–3] that the optimum frequency range for energy-signal transferring
inwards-outwards biological tissues occurs around 1.6GHz is also verified, but it is herein pointed that
this is again due to the previously mentioned dominant leaky mode.

Overall, it is herein proved that indeed it is possible to transfer energy inwards-outwards highly
lossy biological cylinders at specific frequencies and by a specific leaky wave. Also, the proposed field
product representation is equivalent to generalized steepest descent methods in handling the far field,
but it additionally offers a convenient near field evaluation.

APPENDIX A. FIELD PRODUCT REPRESENTATION

The factorization presented in this appendix is identical to the one utilized in Wiener-Hopf problems
following [40] and [42]. It is well known that every meromorphic function can be written in the
form [57, p. 116]:

1

2πj

∫
C

K ′(x)

K(x)
φ(x)dz =
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φ(kzn)−
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φ(kzp) (A1)
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where kzn, (kzp), denote the n-th, (p-th), root, (pole), of the K function. Note that if we chose in

Eq. (A1) as φ the function
[
ln
(
1 + λ

x

)
− λ

x

] K′(x)
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where C is a path enclosing all singularities of K. On the other hand, an entire function takes the
form [42, 57]:
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K(λ) =
P (λ)

Q(λ)
=

P (0)e
λ

P ′(0)
P (0)

+∞∏
n=1

(
1 +

λ

kzn

)
e−

λ
kzn

Q(0)e
λ

Q′(0)
Q(0)

+∞∏
p=1

(
1 +

λ

kzp

)
e
− λ

kzp

(A4a)
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Also note that if the function under study is even, then:

K(λ) = K(0) exp
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In the case that a function is not meromorphic, meaning that it has branch cuts, a limiting process can
be employed. Let us assume that the previous theory can be enforced as follows [40]:

M(λ) = lim
b→∞

[K(λ; b)] (A6)

such that K is meromorphic, but through the limiting process it reaches M which is not meromorphic.
Then it is [40]:
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Comparing Eqs. (A7c) and (A5), one may observe that the exponential terms are identical, thus this
expression holds irrespective if the function is meromorphic, Eq. (A5) or not, Eq. (A7). Now that
Eq. (A7) has been established, let us proceed with its evaluation. In the case that the function is
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not meromorphic, meaning that apart from isolated singularities, (poles), it exhibits non-isolated ones,
(branch-cuts), then one may proceed as follows. The integration path that encloses all the singularities
can be thought as assembled by two parts, the path that encircles all the isolated poles and the one
that encircles the branch cuts:
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Note that Eq. (A8) is identical to Eq. (5) of the main text. It is important to note that for Eq. (A7),
one must be able to swap the limits within the exponential integral, leading from Eq. (A7a) to
Eq. (A7b). Also note that this is the case presented in the Wiener-Hopf factorization of Pathak and
Kouyoumjian [40, p. 91–100], as well as in the related work of Mittra and Lee [42, p. 119, Eq. (10.16a–b)].

APPENDIX B. DEFINITION OF FUNCTIONS OF THE FACTORIZATION METHOD

A factorization procedure of characteristic equation F is employed herein. Before we proceed to the
factorization procedure of a kernel-function, it is prerequisite this function converges at infinity as
λνe−h|λ|, with ν and h real constants and λ = kz. Using the asymptotic expansions of Bessel and
Hankel, (of second kind), functions [52, p. 364]], F behaves at infinity as λνe−h|λ| with h = 0, ν = 1. For

the branch-cut integrals of Eq. (6), these should be evaluated by substituting x =
√

k20 − w2 [40–45].
Since the kernel function is even, the two terms involving ±λ/x of the branch integral in Eq. (6) cancel
each other’s contribution, and only the logarithmic terms are retained according to [42]:

F branches(λ) = exp

[(
q+ (λ) +

1

2
ln

(
1 +

λ

k0

))
+

(
q− (λ) +

1

2
ln

(
1− λ

k0

))]

=

(
1−

(
λ

k0

)2
)1/2

· exp (q+ (λ) + q− (λ)) (B1)

The above term (1 ± λ
k0
)1/2 encounters the contribution at w = 0. The general factorized expression

developed by Mittra and Lee [42, 43], reads:

F± (λ) =
√

F (0)

(
1± λ

k0

)ν0/2

∏
n

(
1± λ

kzn

)
∏

p

(
1± λ

kzp

) · e
jk0h

2
−j

hkρ2
π

ln
(±λ−kρ2

k0

)
+q+(λ)+q−(λ) (B2)
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where:

ν0 = lim
w→0

wB (w) (B3)

B (w) =

∂

∂w
F
(√

k20 − w2
)

F
(√

k20 − w2
) (B4)

q± (λ) =

∫ ∞

0
K (w) ln

[
1± λ√

k20 − w2

]
dw (B5)

K (w) =
h

π
+

1

2πj
[B (w) +B (−w)] (B6)

The opposite sign of j in Equations (B2)–(B6) is due to the e+jωt time dependence assumed herein,
instead of e−jωt considered in [42, 43]. These formulas are adopted herein in order to factorize the
functions F (λ) of Eq. (5). For this purpose, functions q±(λ) are defined from Eq. (B5) via integration

through the saddle points at ±
√

k20 − w2 as:

q± (λ) =
1

2πj

∞∫
0

[B (w) +B (−w)] ln

(
1± λ√

k20 − w2

)
dw (B7)

Defining the variable:

τp =
(
w2 + k20εr1 − k20

) 1
2 (B8)

B(w) is expressed from Eq. (B4) via a symbolic computation from Mathematica [55] as

B (w) =

{[[a
2

(
εr2τ

3
p − εr1w

2τp
)
J0 (aτp) + εr1

[(
w2 − τ2p

)
J1 (aτp) +

aw2τp
2

J2 (aτp)

]]
·H(2)

0 (aw)

+awτ2p (εr1 − εr2) J1 (aτp)H
(2)
1 (aw)− a

2
εr2τ

3
pJ0 (aτp)H

(2)
2 (aw)

]}
·
[
εr1wτ

2
pJ1 (aτp)H

(2)
0 (aw)− εr2τ

3
pJ0 (aτp)H

(2)
1 (aw)

]−1
(B9)

The exponential term v0 can be evaluated through Eq. (B3). This can be utilized via Mathematica [55],
yielding v0 = 1, as in the expression (B1). Finally, “positive F+(λ)” and “negative F−(λ)” are expressed
as:

F±(λ) =
√

F (0) · exp

 1

2πj

 ∫
C-branch

[
ln

(
1± λ

x

)
∓ λ

x

]
F ′(x)

F (x)
dx

 ·

+∞∏
n=1

(
1± λ

kzn±

)
+∞∏
p=1

(
1± λ

kzp±

) (B10)

So, F can be obtained as in the expression (8) of the main text.

APPENDIX C. NEAR FIELD AND CHARACTERISTIC EQUATION FOR
DIELECTRIC ROD

For an infinitesimal, z-directed, electrical current density dipole, acting as a source and placed at
(ρ′, φ′, z′), the field in the air-region obeys the following equation [35]:[

Ezi

Hzi

]
=

−j

4πωϵ1

∑+∞

m=−∞
e−jm(φ−φ′)

∫ +∞

−∞
dkze

−jkz(z−z′)f̄mi

(
ρ, ρ′

) ←
D

(z)

m (C1)
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with
←
D

(z)

m defined for the current problem, as [35]:

←
D

(z)

m =

[ (
ẑk21 − jkz∇′) ẑ
jωϵ1ẑ (ẑ ×∇′)

]
=

[
k21 − k2z

0

]
=

[
k2ρ1
0

]
(C2)

For the external lossless air region 2, f̄m2(ρ, ρ
′) gives [35, Sec. 3.1]:

f̄m2

(
ρ, ρ′

)
= H(2)

m (kρ2ρ) T̄12Jm
(
kρ1ρ

′) (C3a)

where:

T̄12 =
2ω

πk2ρ1α
D̄−1

m

[
ϵ1 0

0 −µ1

]
(C3b)

D̄m =
[
J̄m (kρ1a)H

(2)
m (kρ2a)− H̄(2)

m (kρ2a) Jm (kρ1a)
]

(C3c)

where D̄−1
m is the inverse matrix of D̄m. Similarly, for the i = 1, (internal), region, f̄mi(ρ, ρ

′)
yields [35, Sec. 3.1]:

f̄m1

(
ρ, ρ′

)
= H(2)

m (kρ2ρ) Jm
(
kρ1ρ

′)+ Jm (kρ1ρ) R̄12Jm
(
kρ1ρ

′) (C3d)

where:
R̄12 = D̄−1

m

[
H(2)

m (kρ1a) H̄
(2)
m (kρ2a)−H(2)

m (kρ2a) H̄
(2)
m (kρ1a)

]
(C3e)

Naming the arguments of Bessel and Hankel functions s = kρ1a and y = kρ2a the Bessel and Hankel
matrices involved in Eq. (C3) are expressed as:

J̄m (s) =
(
k2ρ1a

)−1
[
−jωϵ1sJ

′
m (s) −mkzJm (s)

−mkzJm (s) −jωµ1sJ
′
m (s)

]
(C4a)

H̄(2)
m (y) =

(
k2ρ2a

)−1

[
−jωϵ2yH

′(2)
m (y) −mkzH

(2)
m (y)

−mkzH
(2)
m (y) −jωµ2yH

′(2)
m (y)

]
(C4b)

Substituting Eqs. (C4a)–(b) in Eq. (C3c) and after multiple algebraic manipulations, we reach
expression (15), which defines the inverse D−1

m function of Eq. (15) in the full text. The near field
of a dielectric rod is given in the following form [35]:[

Ez2

Hz2

]
=

−j

4πωϵ1

∫ +∞

−∞
dkze

−jkz(z−z′)
∑+∞

m=−∞
H(2)

m (kρ2ρ)Cm (C5)

where:

Cm =

[
C11
m

C12
m

]
= e−jm(φ−φ′) 2ω

πa
D−1

m

[
ϵ1Jm (kρ1ρ

′)

0

]
(C6)
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