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A Polarization Insensitive Tri-Band Bandpass Frequency Selective
Surface for Wi-MAX and WLAN Applications
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Abstract—This article reports a single layer tri-band bandpass, polarization insensitive Frequency
Selective Surface (FSS). The unit cell is designed by considering different square loop elements and
cross dipole element to pass Wi-Max and WLAN frequency range with low loss. Three different shapes
of loops and one cross dipole are arranged in a way that gives a triple-band-pass characteristic from
the proposed structure. These loops and dipole are designed to pass Wi-MAX (2.5–2.7GHz, 3.4–
3.6GHz) and WLAN (center frequency, 5.5GHz) bands. The structure performance is independent of
incidence angle of wave due to its symmetrical geometry which makes the design polarization insensitive
and achieves good angular stability. A 14 × 14 array of proposed unit cell is realized and measured.
The proposed FSS achieves a 3 dB transmission bandwidth of 25% at 2.6GHz, 65.6% at 3.5GHz, and
65.6% at 5.5GHz. The advantage of the proposed design is that it has a simple and compact geometry
fabricated on a low-cost substrate and achieved tri-band band pass response with a wide angular stability.

1. INTRODUCTION

Frequency Selective Surface (FSS) consists of identical metallic patches etched over a dielectric
substrate periodically arranged in a two-dimensional array. These structures resonate at a specific
frequency determined by their equivalent capacitance and inductance. These structures selectively
reflect or transmit the frequency incident on the surface. Due to their selective property, frequency
selective surfaces are used extensively for various applications, for instance, wireless security, reflectors,
electromagnetic shielding, absorbers, and many more [1–4]. Periodic structures are also known as
High Impedance Surfaces (HIS) [1]. Munk introduced the concept of periodic structure that can work
as a frequency tuner: frequencies may be reflected, transmitted, and absorbed [2]. FSS has become
an interesting research topic due to its comprehensive applications, such as hybrid radomes, band-
stop filters, Dichroic sub-reflector, Dichroic main-reflector, circuit analog absorber, and meander line
polarizer [2, 3].

The filtering property of FSS is not only the function of frequency, but also a function of incidence
angle which makes the FSS more reliable and useful compared to a traditional microwave filter.
Therefore, it is needed that an FSS provides a stable performance at various incidence angles and
different polarization states within its operating range [2–6]. It can act as band pass radomes for
missiles and can be used for enhancing the impedance bandwidth of the antenna [4–9, 14]. Multi-band
characteristic of FSS plays a key role in deep space exploration [10]. Periodic structures can be simulated
with the help of full wave electromagnetic (EM) solvers [11], but they can also be analyzed numerically
using several approaches, such as equivalent circuit, spectral domain, vector-spectral domain, finite
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element, finite difference time domain, T-matrix, and many more [12]. Both finite [13] and infinite
arrays can be considered for the analysis, but to save computation time, finite arrays can be taken.

To get angular stability with respect to the incidence angle, a compact structure is required, and
to get polarization insensitive behavior, a symmetrical geometry is required [15–19]. Several techniques
have been reported in the scientific literature for realizing a multiband FSS from a single-band FSS.
In several reported multiband FSS, the unit cell size was large as compared to the wavelength [11]
while a few reported structures were multilayered with complex geometries, and they limit the angular
stability [17].

In this article, it is tried to overcome the issues of complex geometry, poor angular stability, and
large size. A compact, single layer tri-band bandpass, polarization insensitive FSS is proposed. The aim
of the design is to pass frequencies lying in Wi-Max and WLAN bands with low insertion loss. These
three passbands are obtained by arranging three different loops and a cross dipole. The dimensions of
the loops are adjusted in such a way that low insertion loss is achieved at the desired frequency bands.
The proposed FSS is designed, fabricated, and measured. The results obtained by means of simulation,
measurement, and equivalent circuit approach are plotted and compared. The article is organized in
the following order. The design and analysis of unit cell are discussed in Section 2. Equivalent circuit
model is derived in Section 3. Performance of the FSS in terms of S-parameters is discussed in Section 4.
Finally, the article is concluded in Section 5.

2. DESIGN AND ANALYSIS OF UNIT CELL

Figure 1 illustrates the geometry of the proposed unit cell. To achieve the tri-band characteristic, three
different loops along with a cross dipole are utilized. The dimensions of the loops and spacing between
the loops are adjusted to get the desired performance. The unit cell is realized on a 1.6mm thick
FR4 substrate with dielectric constant of 4.4. The dimension of unit cell is 0.16λ × 0.16λ, where λ
corresponds to the wavelength of first resonant frequency.

The design of a compact and stable FSS to be operated at lower frequencies is slightly difficult.
In order to possess insensitivity towards polarization, symmetrical structure is needed. Therefore,
a symmetrical metallic square loop has been introduced to achieve the lower operating frequency and
miniaturized design as well. The lowest frequency band, i.e., 2.5–2.7GHz, is achieved which corresponds
to the outer square loop. To obtain the second frequency band, i.e., 3.4–3.6GHz, two plus-shaped loops
are etched. The third frequency band, i.e., 5.2–5.8GHz, is achieved by etching a cross dipole in the
centre of the unit cell. The optimized dimensions of the unit cell are listed in Table 1.

Figure 1. Geometry of a single unit cell. Figure 2. Fabricated FSS by realizing an array
of 14× 14 unit cells.
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Table 1. Dimensions of the proposed unit cell.

Name of Dimension Symbol Value (in mm)

Height of the substrate H 1.6

Width of substrate and outer loop W 19.5

Length of outer loop L 17.8

Width of outer plus-shaped loop W1 4.5

Length of inner plus-shaped loop L2 14.6

Width of inner plus-shaped loop W2 3.2

Width of inner cross dipole W3 1.0

Length of inner cross dipole L3 10

FSS is designed by making an array of proposed unit cell in CST Microwave Studio using frequency
domain solver, and Floquet port analysis is done for TE and TM modes. A 14 × 14 array with a size
of 273mm× 273mm is fabricated through a chemical etching process as shown in Fig. 2.

3. EQUIVALENT CIRCUIT MODEL ANALYSIS

When the plane wave is obliquely incident on the metallic surface of FSS, the electrons on the metal
surface starts oscillating, and the current gets induced in the loops. These loops behave as electrical
components, and an equivalent circuit is derived for the proposed unit cell as shown in Fig. 3. The
metallic closed loop of the unit cell acts as inductance, and the spacing between the loops acts as the
capacitance. These inductances and capacitances are realized by properly arranging the loops to get
desired passband response. Three parallel LC resonant circuits represent three passbands as shown in
Fig. 3.

Figure 3. Equivalent-circuit model of a unit cell.

The equivalent-circuit model of proposed unit cell is derived and the response evaluated
mathematically. This equivalent model is applicable to normal incidence of plane wave.

The values of lumped elements L1, L2, L3 and C1, C2, C3 can be calculated from Eqs. (1) and (2) [1]:

C = ε0εeff
2p

π
ln

 1

sin

(
πd

2p

)
 (1)



130 Yadav, Sharma, and Singh

L = µ0µeff
l

2π
ln

 1

sin
(πw
2l

)
 (2)

In above equations, C is the capacitance, ε0 the free space permittivity, εeff the effective relative
permittivity, p (where p = l = D−w−s) the periodicity, D the size of the element, s (where 2d = s) the
space between elements, w the width of the element, L the inductance, µo the free space permeability,
and µeff the effective relative permeability.

Individual inductance and capacitance are calculated from Equations (1) & (2). Based on these
inductance and capacitance values resonant frequencies are calculated from Equation (3), and fr is the
resonating frequency of the particular passband.

fr =
1

2π
√
LC

(3)

The calculated values from above equations are illustrated in Table 2.

Table 2. Dimensions and values of the equivalent circuit of proposed unit cell.

D

(mm)

w

(mm)

s

(mm)

p

(mm)

d

(mm)

L

(nH/mm)

C

(pF/mm)

fr
(GHz)

Outer ring 19.5 0.8 0.5 18.2 0.3 6.89 0.591 2.49

Middle ring 17.8 1.0 0.9 15.9 0.4 5.19 0.415 3.4

Inner ring 14.3 1.0 1.6 12.0 0.8 3.54 0.226 5.6

Using these parameter values, circuit simulations have been performed with Advance System Design
(ADS) simulation tool to verify the model.

4. RESULTS AND DISCUSSION

4.1. Simulated Results

The proposed unit cell has been modelled and analysed using the Floquet port over the required
frequency ranges. Transmission response is achieved for the Transverse Electric (TE) and Transverse
Magnetic (TM) modes as plotted in Fig. 4. It is observed that three passbands at center frequencies of
2.5GHz, 3.5GHz, and 5.5GHz are achieved. Insertion loss of 0.32 dB, 1.18 dB, and 0.76 dB has been
achieved in the first, second, and third operating bands, respectively, and rest of the frequencies are
reflected back.

Similarly, reflection performance has been obtained. Reflection coefficient of −34 dB, −19 dB, and
−33 dB has been achieved at the first, second, and third operating bands, respectively. Reflection
coefficients are plotted for TE and TM modes in Fig. 5.

The outer square loop is responsible for the lowest frequency band, 2.5GHz, which is the desired
lowest frequency band. The electric current flows on the perimeter of the outer square loop as illustrated
in Fig. 6(a). The metallic part of two inner plus-shaped loops acts as inductance and spacing between
them acts as capacitance, and their combination is responsible for the resonance at 3.5GHz. The
maximum current flows on the periphery of outer and inner plus-shaped loops as illustrated in Fig. 6(b),
the metallic cross dipole operates at 5.5GHz band. The current flows on the periphery of cross dipole
as illustrated in Fig. 6(c).

4.2. Experimental Setup and Fabrication

The proposed FSS array of 14×14 unit cells is fabricated as shown in Fig. 2. To measure the performance,
the fabricated FSS is placed between two identical wideband double-ridged horn antennas surrounded
by absorbers as illustrated in Fig. 7.
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(a) (b)

Figure 4. Simulated transmission coefficient of proposed unit cell for (a) TE mode, (b) TM mode.

(a) (b)

Figure 5. Simulated reflection coefficients of proposed unit cell for (a) TE mode, (b) TM mode.

The performance of FSS is measured inside an anechoic chamber by selecting frequencies from 1GHz
to 8GHz. The proposed structure is mounted on a rotatable table to measure the angular performance.
The distance between the two horn antennas remains fixed during the complete measurement.

4.3. Measured Results

The measured response of proposed FSS in terms of transmission and reflection coefficients is shown
in Figs. 8 and 9, respectively. The measured response is compared with the simulated one for TE
mode where the tangential component of electric field is zero in z-direction. Measured results agree well
with the simulated ones as shown in Fig. 8. Similarly, the structure is also tested for TM mode where
tangential component of magnetic field is zero in z-direction as shown in Fig. 8(b).

Stability is the behavior of transmission characteristics at different incidence angles. As working
in space, the angle of incidence theta (θ) could strike the FSS at any arbitrary angle, and its frequency
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(a) (b) (c)

Figure 6. Simulated electric field of proposed unit cell at (a) 2.5GHz, (b) 3.5GHz and (c) 5.5GHz.

Figure 7. Measurement of FSS under TM mode in an anechoic chamber.

(a) (b)

Figure 8. Measured and simulated transmission coefficient of proposed FSS for (a) TE mode, (b) TM
mode.

response must be unchanged as theta changes. Measured transmission coefficients are obtained at
different values of theta as plotted in Fig. 9. 2.5GHz band remains the same, and it is irrespective
of theta. 3.5GHz band becomes broader as theta increases while 5.5GHz band becomes narrower as
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Figure 9. Transmission coefficients showing variation of incident angles for TE mode.

Figure 10. Transmission coefficient of unit cell at different polarization angle phi.

theta increases, but these changes are insignificant. The variation of theta does not shift the resonance
frequency of operating bands, hence it can be said that the structure is quite stable with respect to the
incidence angle.

While changing the polarization angle phi (Φ) from 0◦ to 90◦, frequency response does not change
due to the symmetrical nature of the unit cell as shown in Fig. 10.

As dielectric material FR4 is a lossy material, it absorbs power. Absorption along with the
transmission and reflection is plotted in Fig. 11. It can be calculated from Eq. (4),

A = 1− |S11|2 − |S21|2 (4)

where,

A = Absorption,

|S11| = Linear magnitude of reflection,
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Figure 11. Characteristics of FSS: Transmission, reflection and absorption (in linear magnitude).

Table 3. Comparison of the performance of proposed structure with previous works.

Reference
Frequency

(GHz)

Size of

unit cell (λ2)

No. of operating

bands

Type of

FSS

Type of

Structure

Angular

Stability

[6] 8.11, 9.81 and 11 0.55× 0.55 3 Bandpass One Sided NA

[11] 0.621, 0.822 and 0.981 0.7× 0.7 3 Bandpass 3 Dimention NA

[17] 2.5 0.167× 0.167 1 Bandpass Two Sided 0◦–45◦

[19] 5.72 and 9.79 0.156× 0.14 2 Bandpass Two Sided 0◦–30◦

This work 2.6, 3.5 and 5.5 0.16× 0.16 3 Bandpass One Sided 0◦–45◦

|S21| = Linear magnitude of transmission.

The performance of the proposed structure is compared with previously reported bandpass
structures. Comparison is made in Table 3. After comparing the performance of proposed structure
with previously reported works, we can say that the proposed structure is compact in size, and it is
a single-layered structure. The orientations of all unit cells are in the same direction. The proposed
structure is simple in terms of realization and operates in three different frequency bands. The ratio of
the higher to lower resonance frequency is greater than 2.1. It is possible to realize a structure which
can have operating bands very distinct from each other, and it can cover wide range of frequencies. The
future scope of the proposed work is to realize a structure by integrating FSS with EBG [20, 21].

5. CONCLUSION

A novel single layer tri-band bandpass FSS with stable response has been designed for Wi-MAX and
WLAN applications. Tri-band bandpass performance is obtained by etching two different metallic loops
and one dipole over a low cost FR4 substrate. The stable response is obtained up to 45◦ angle of incidence
for TE and TMmodes, and it is achieved due to symmetric nature of the geometry. Approximately, 96%,
87%, and 91% of signal are transmitted at the first, second, and third frequency bands, respectively. A
tri-band bandpass characteristic with wide angular stability makes the structure compatible for large
range of wireless applications.
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