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Phase Synthesis of Beam-Scanning Reflectarray Antenna Based
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Abstract—In this work, we investigate the feasibility of applying deep learning to phase synthesis
of reflectarray antenna. A deep convolutional neural network (ConvNet) based on the architecture of
AlexNet is built to predict the continuous phase distribution on reflectarray elements given the beam
pattern. The proposed ConvNet is sufficiently trained with data set generated by array-theory method.
With radiation pattern and beam direction arrays as input, the ConvNet can make real-time and fairly
accurate predictions in milliseconds with the average relative error below 0.7%. This paper shows that
deep convolutional neural networks can “learn” the principle of reflectarray phase synthesis due to their
inherent powerful learning capacity. The proposed approach may provide us a potential scheme for
real-time phase synthesis of antenna arrays in electromagnetic engineering.

1. INTRODUCTION

Reflectarray is an important kind of high-gain antennas, which usually consists of a flat reflecting
surface and an illuminating feed horn [1]. By combining advantages of both parabolic reflector and
array antennas, reflectarrays have many promising features, such as high efficiency, low profile, low
cost, and easy fabrication [2]. In the design and applications of reflectarrays, phase synthesis is a vital
step. It computes the phase-shift of each unit cell given the desired beam pattern. Many array antennas
require rapid phase synthesis, such as beam-scanning reflectarrays [3] and phased arrays.

Conventional phase synthesis methods include analytical methods and nonlinear optimization
methods. Analytical methods [4–6] are fast but not accurate enough for complex beam. Nonlinear
optimization methods are usually applied to solve complex phase synthesis problems, including genetic
algorithm (GA) [7, 8], particle swarm optimization (PSO) [9], simulated annealing [10], gradient based
method [11], etc. These methods convert phase synthesis problems into optimization problems with
constraints that are solved via iterative procedure. The iterative scheme demands large computing
resources and cannot provide real-time response.

Various efforts are made to accelerate phase synthesis, such as real-valued GA [12], the accelerated
gradient calculation [11], parallel computation on Graphics Processing Units (GPU) [13]. Learning-
based methods are also applied to speed up phase synthesis with good accuracy. Artificial neural
networks (ANNs) help shape beams in various application scenarios, such as characterizing EM
response of reflectarray elements [14], multiple source tracking [15], adaptive beamforming, and inference
cancellation [16]. Support vector machines (SVMs) are also applied to model the reflection coefficients
of reflectarray unit cells [17, 18].

Recently, deep learning techniques are experiencing a huge leap forward due to the development
of high-performance computing. Deep learning techniques demonstrate powerful learning ability and
achieve remarkable successes in natural language, image and video processing [19–21]. Deep learning
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techniques have also attracted the attention from many other fields, including physics and engineering.
Various works have been reported, for example, computational fluid dynamics [22], antennas and
propagation [23], inverse scattering problems [24, 25], biomedical imaging [26], Poisson’s equation
solver [27], and programmable metasurface [28]. The common approach of these works is to sufficiently
train the deep neural network with massive data in the offline stage and then the trained network can
provide reliable computations in the online stage.

In this work, we explore the feasibility of applying deep learning techniques to phase synthesis of
a reflectarray antenna. As a starting point, we design and train a deep convolutional neural network
to predict unit cells’ phase-shifts given single beam pattern. The proposed deep convolutional neural
network (ConvNet) is built based on the architecture of AlexNet [20]. AlexNet has proven its excellent
performance in ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 2010 and 2012. The
input of ConvNet includes radiation pattern and beam direction information arrays. The output is an
array of continuous phase-shift corresponding to the input beam pattern. Both training and testing data
sets are generated by the array-theory method. The average relative error of the predicted and desired
phase-shift distribution can reach below 0.7%. The corresponding radiation patterns are also in a good
agreement, which further validates the feasibility of the proposed method. This study is more complete
and detailed with expanded numerical results compared with the previous conference paper [29].

This paper is organized as follows: Section 2 introduces the array-theory method and the
proposed deep convolutional neural network. Section 3 demonstrates numerical examples and evaluates
performance of the proposed deep convolutional neural network. Conclusions and further discussions
are summarized in Section 4.

2. FORMULATION

2.1. Array-Theory Method

Array-theory method stems from the conventional array antenna theory [6]. It is widely used to calculate
the radiation pattern in the modeling and design of reflectarrays. The typical structure of reflectarray
antenna is illustrated in Figure 1. It consists of an illuminating horn antenna and a reflecting surface
on which unit cells are periodically distributed.

Figure 1. The typical structure of reflectarray.

The radiation pattern of a reflectarray can be formulated using array-summation technique [6]:

E(θ, φ) =

M∑
m=1

N∑
n=1

cosqe θ
cosqf θf,mn

|r⃗mn − r⃗0|
e−jk0(|r⃗mn−r⃗0|−r⃗mn·û) cosqe θe,mne

jϕmn (1)

where rmn, r0, and û denote the position vector of the mn-th unit cell, horn antenna, and observation
direction, respectively; ϕ(m,n) represents the reflection phase of themn-th unit cell. In order to simplify
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the calculation, array-theory method uses the cosine q model to approximate the radiation patterns of
the horn antenna and each unit cell of the reflectarray. In Eq. (1), qf and qe denote different q factors
of the horn antenna and reflectarray unit cell. As illustrated in Figure 1, the distances between unit
cells and the illustrating horn antenna are different. Then the incident phase of each unit cell that is
introduced by the horn antenna is different, which can be written as:

ϕinc(m,n) = −k0dmn (2)

where dmn denotes the distance between the mn-th unit cell and the horn antenna; k0 denotes the
propagation constant. To generate a main beam in the direction (θr, ϕr), the reflection phase of the
mn-th unit cell of a reflectarray can be written as:

ϕ(m,n) = −k0 sin θr cosφrxmn − k0 sin θr sinφrymn (3)

where (xmn, ymn) is the Cartesian coordinate of the mn-th unit cell. Its phase-shift to form the main
beam can be obtained:

ϕele(m,n) = ϕ(m,n)− ϕinc(m,n) = k0dmn − k0 sin θr(cosφrxmn + sinφrymn) (4)

2.2. ConvNet Model

A deep convolutional neural network is built based on the structure of AlexNet [20]. Figure 2 shows the
architecture of the proposed ConvNet. The ConvNet consists of five convolutional layers and three full
connected layers(FCNs). The convolutional kernel sizes from the first to fifth layer are 11 × 11, 5 × 5,
3× 3, 3× 3 and 3× 3 respectively. The stride of the 11× 11 convolutional kernel is 2 while the stride
of others is 1. The input and output channels of convolutional kernels are denoted in Figure 2. ReLUs
are included in all layers except the last layer to introduce nonlinearity and max pooling are included in
the first, second and fifth layer of ConvNet to perform downsampling. The local response normalization
(LRN) is applied in the first and second convolutional layer to improve the generalization ability. LRN
is inspired by the lateral inhibition mechanism in the biological neuron system [20]. It can normalize
the output of convolutional layers based on the competition scheme, which can be written as [20]:

bix,y =
aix,yk + α

min(N−1, i+n
2

)∑
j=max(0, i−n

2
)

(ajx,y)
2


β

(5)

where bjx,y is the output of LRN; n is the number of neighboring kernels at the same spatial position;
N is the total number of kernels in one layer; aix,y is the output of i-th convolutional kernel with ReLU

Figure 2. Architecture of the proposed convolutional neural network.
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nonlinearity at the spatial position (x, y). In Eq. (5), α, β, n, and k are hyper parameters and set as
0.0001, 0.75, 4, and 1. The output size of FCN is the same as the number of unit cells in the reflectarray.
Dropout [30] is applied into the first two FCNs and the dropout rate is set as 0.7. Dropout can reduce the
computational complexity and prevent over-fitting by random dropping some connections in FCNs [30].

The input of the ConvNet includes two arrays representing the desired radiation pattern and
beam direction information, as shown in Figure 3. The radiation pattern is calculated in the uv plane
(u = sin θ cosφ, v = sin θ sinφ). The beam direction (θr, φr) can also be transformed into a point
(ur, vr) in the uv plane. Therefore, the beam direction can be represented as a two-dimensional array,
of which every element is the distance between the (ur, vr) and (ui, vj). It can be written as:

dist =
√

(ui − ur)2 + (vj − vr)2 (6)

where i, j is the index of each element in the beam direction array. The value of the center point is set
to 0 as the anchor point, as shown in Figure 3. The output of the ConvNet is the continuous phase-shift
distribution given the desired radiation pattern.

Figure 3. Four examples of input pairs of ConvNet. The first row is the beam direction array and the
second row is the radiation pattern (unit: dB).

The objective function of the ConvNet is designed as:

fobj =
1

N1N2

N1∑
j=1

N2∑
i=1

∣∣∣∣∣ log 10(ϕi,j)− log 10(ϕ′
i,j)

log 10(ϕ′
i,j)

∣∣∣∣∣
2

(7)

where (i, j) is the index of each unit cell; ϕ′ and ϕ denote the continuous phase-shift distribution
computed by the array-theory method and predicted by the ConvNet, respectively. Eq. (7) evaluates
the difference between the logarithm values of both ϕ′ and ϕ, which can help stabilize the training
process by avoiding fast attenuation of phase-shift values.

3. RESULTS AND ANALYSIS

The numerical experiment takes a square aperture 20 × 20 reflectarray as an example. Its operation
frequency is 12.5GHz, and the square aperture’s length is 10λ. The direction of incident wave is fixed
as (φi = 180◦, θi = 25◦). The elevation angle φr of the reflected wave varies from 0◦ to 179◦, and
the azimuth angle θr varies from 1◦ to 60◦. The sampling interval of the reflected direction is 1◦. We
generate 10800 samples based on the array-theory method, of which 8640 samples are randomly selected
as training data, and 2160 samples are used as testing data.
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(a) (b)

Figure 4. Convergence curve of the objective function and performance evaluation function, (a)
convergence curve of objective function, (b) performance evaluation curve.

The input of the ConvNet is two 50× 50 arrays, as shown in Figure 3, and the output is a 20× 20
array representing the phase-shift distribution on the reflectarray surface. The ConvNet is implemented
on Tensorflow, and the computation platform is an Nvidia P100 GPU card. With Eq. (7) as the objective
function, the ConvNet is trained by the adaptive moment estimation (Adam) optimizer [31] that is a
first-order stochastic gradient optimization algorithm. The learning rate of Adam optimizer is initialized
at 0.00005, and it is multiplied by 0.5 every 250 epochs. The mini-batch training scheme is employed to
take 40 data samples as a batch to update the parameters of ConvNet. The convergence curve is shown
in Figure 4(a). The convergence curve drops sharply with the large learning rate at the beginning of
training. Then with the decrease of learning rate, the convergence falls marginally until convergence.
The training loss agrees well with the testing loss, which means that the ConvNet is trained sufficiently.
For a more detailed evaluation of the ConvNet’s performance, the average relative error is defined as
the evaluation function of the ConvNet. For a single unit cell’s phase-shift, the average relative error
can be written as:

re error(m,n) =
|ϕ(m,n)ConvNet − ϕ(m,n)array−theory |

|ϕ(m,n)array−theory |
(8)

where ϕ(m,n)ConvNet and ϕ(m,n)array−theory are mn-th unit cell’s phase-shift predicted by the ConvNet
and computed by the array-theory method. Then the average relative error of the i-th samples can be
written as:

re erroraver i = 20 log 10

(∑
m

∑
n rel error(m,n)∑

m

∑
n 1

)
(9)

(a) (b)

Figure 5. Average relative error histogram of training and testing data set, (a) training data set, (b)
testing data set.
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(a)

(b)

(c)

Figure 6. Phase-shift distributions and their 3D and 2D radiation patterns computed by the array-
theory method and the ConvNet. In each subfigure, the first row (from left to right): phase-shift
distribution obtained by the array-theory method, the corresponding 3D and 2D beam pattern, the
average relative error distribution (dB) between radiation patterns computed by array-theory method
and the ConvNet; the second row (from left to right): phase-shift distribution obtained by the ConvNet,
the corresponding 3D and 2D beam pattern, the beam pattern comparison on the principle plane of
these two methods. (a) Example 1. (b) Example 2. (c) Example 3.
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Figure 4(b) shows the convergence curve of the evaluation function during the training and testing
process. The average relative error finally converges below −43 dB (0.7%). Figure 5(a) and Figure 5(b)
show the average relative error histogram of all samples in the training and testing data sets, respectively.
The mean and standard deviation of the average relative errors are 0.0067, 1.9223× 10−05 for training
data set and 0.0067, 1.9229 × 10−05 for testing data set. The training and testing data sets have
almost the same distribution of average relative errors. It is consistent with the convergence curve of
the performance evaluation function. It also validates that the ConvNet is trained sufficiently, and
there exists no overfitting. Figure 6 shows three results randomly selected from the testing data set.
The phase-shift distributions obtained by the array-theory method and the ConvNet reach a good
agreement. Thus, the discrepancy between the corresponding radiation patterns is very small. The
detailed comparison on the principle plane shows that minor differences concentrate on side lobes, and
the main beams are almost the same. As to computing time, the ConvNet takes 0.00017 s to generate
a phase-shift distribution given the beam pattern. This reveals a good potential that the deep learning
techniques may provide accurate and real-time responses in the phase synthesis of reflectarrays.

4. CONCLUSIONS AND DISCUSSIONS

In this paper, we investigate the feasibility of applying deep learning techniques to phase synthesis
of reflectarrays. As a starting point, the phase synthesis of a 20 × 20 beam-scanning reflectarray is
taken as an example. A deep convolutional neural network is built and sufficiently trained, then it
can compute fairly accurate phase-shift distributions in milliseconds. The final average relative error
reaches below 0.7%. This work may open a new door for real-time phase synthesis of reflectarrays in
complex application scenarios. It also shows that deep learning techniques can capture the inner law
between radiation patterns and the corresponding phase-shift distributions via learning process. In the
future work, we will try to apply deep learning techniques to compute more complex phase synthesis
problems.
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