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Compact Differential Tri-Band Bandpass Filter with Multiple Zeros
Using Sext-Mode Stepped-Impedance Square Ring Loaded Resonator
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Abstract—In this paper, a second-order tri-band balanced bandpass filter (BPF) with multiple
transmission zeros (TZs) and compact size is presented. The structure consists of novel stepped
impedance square ring loaded resonators (SI-SRLRs), which can excite six resonance modes. For
design of SI-SRLR, we analysed the odd-mode equivalent circuit and obtained the electrical lengths
from the design graph. Meanwhile, the wider frequency distances between differential modes (DMs)
and common modes (CMs) are realized by selecting the proper admittance ratio of SI-SRLR. Then for
design of BPF, six TZs are introduced by source-load coupling, which lead to band-to-band isolation of
23 dB. Additional T-shaped stubs and open stubs are loaded on the symmetric plane of SI-SRLR, which
result in high CM suppressions of 43 dB, 25 dB, and 37 dB at three DM centre frequencies. Finally, a
tri-band differential BPF operating at 1.46GHz, 4.45GHz, and 5.48GHz is fabricated and measured.
The measured 3-dB fractional bandwidths of three passbands are 6.8%, 7.4%, and 5.6%. A wide DM
and CM stopband suppression of 20 dB is achieved to 14.6GHz (10f0). The measurements verify well
the proposed structure and the design method.

1. INTRODUCTION

With the rapid development of modern communication techniques, balanced bandpass filters (BPFs)
have attracted substantial attention due to their high immunity to electromagnetic (EM) interference,
crosstalk, and environmental noise. Many scholars have done a lot of research on balanced filters.
Moreover, as multi-band operations are widely used in wireless RF systems [1–8], balanced multi-band
BPFs are urgently required nowadays

For dual-band balanced BPFs, stub-loaded resonators (SLRs) [9, 10], stepped impedance
resonators [10–12], and coupled lines [13] are most commonly used to realize dual-band performances.
To improve the common-mode (CM) suppression, additional terminating microstrip stubs [9, 14, 15, 16]
and lumped elements [10, 11, 15] are loaded on the symmetric plane of a differential filter. By tuning
the electrical parameters of loaded elements, the CM suppression performance can be optimized.
New material is also applied to design dual-band balanced filters. In [17], a fourth-order dual-band
high temperature superconducting balanced filter based on square ring loaded resonators (SRLRs) is
developed, which implements the low insertion loss.

To the best of our knowledge, few works can achieve tri-band BPFs with differential characteristics.
In [18], a compact balanced tri-band BPF based on SLRs is firstly proposed and analysed. Four
rectangular defected ground structures are employed to increase the coupling between the I/O port
and the SLR. However, the BPF suffers from poor band-to-band isolation of 15.8 dB. Thereafter, a
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tri-band balanced filter with improved band-to-band isolation of 48 dB is proposed by using multi-stub
resonators [19], while the ideal selectivity of each side band is hard to accomplish with only three
transmission zeros (TZs). In [20], three pairs of uniform impedance resonators are coupled to realize
the tri-band performance. The quasi-elliptical bandpass responses of the filter enhance the side band
selectivity, and slotline coupled-feed structure enhances the CM suppression. However, the stopband to
2.8f need to be further improved. In summary, there is still space to be further improved for tri-band
differential operations.

In this paper, a balanced tri-band BPF with six TZs, compact size, and high level of passband
isolation has been designed based on novel stepped-impedance square ring loaded resonators (SI-SRLRs).
The analysis of the SI-SRLR and how to determine the electrical size of SI-SRLR are given in Section 2.
The design of the tri-band differential filter is given in Section 3, including the source-load coupling,
bandwidth, and common mode performance. In Section 4, the simulated and measured results of the
filter verify the proposed method. Compared with above-mentioned tri-band designs, there exist two
different designing techniques:

(1) For differential mode (DM) operation, we analyse and calculate the design graph of varied
frequency ratios versus electric lengths. Then according to centre frequency specifications, the
corresponding electrical lengths of proposed SI-SRLR can be obtained.

(2) By exploring the varied resonance frequency versus loading location of the cross-shaped stub
resonator, it is found that all resonance frequencies keep constant. This effective property can be used
to shorten the length of nearby source-load (S-L) coupled line, therefore avoiding its resonance mode
affects high-frequency passband and still maintaining sufficient coupling strength to produce six TZs.

2. ANALYSIS OF PROPOSED SEXT-MODE SI-SRLR

In Section 2, we mainly design the electrical parameters of the resonator. The design strategy is as
follows. Under the proposed SI-SRLR, firstly use odd-mode analysis method to calculate and plot the
design graph. Then according to the desired centre frequencies, the corresponding electrical parameters
can be obtained from the design graph. Secondly, choose the appropriate admittance ratio to keep the
CMs away from the DMs. In summary, the electrical size of the SI-SRLR is basically determined.

(a) (b)

(c) (d)

Figure 1. Proposed sext-mode SI-SRLR and equivalent TLM. (a) Sext-mode SI-SRLR. (b) Ideal TLM.
(c) DM equivalent circuit. (d) CM equivalent circuit.
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2.1. Equivalent Circuit of SI-SRLR

Figure 1(a) shows the geometry of the proposed sext-mode SI-SRLR. It consists of one stepped-
impedance square ring and a pair of horizontal loaded cross-shaped stubs. L1, L2, L3, L4, Lr and W1,
W2 stand for physical lengths and widths of corresponding microstrip lines. The equivalent transmission
line model (TLM) of the proposed SI-SRLR is depicted in Figure 1(b). Y1, Y2 and θ1, θ2, θ3, θ4, and θr
denote the characteristic admittances and electrical lengths of specific transmission lines.

The configuration is symmetrical to dashed plane T -T ′; therefore, the classical odd-mode and
even-mode analysis method can be employed to interpret the resonant features. Under odd-mode
excitation (with respective to DM excitation), the symmetrical plane T -T ′ acts as a perfect electrical
wall, and its equivalent circuit is shown in Figure 1(c). YinDM−U and YinDM−D respectively stand for the
input admittance of upward and downward of the red dashed line. Under even-mode excitation (with
respective to CM excitation), the symmetrical plane T -T ′ acts as the magnetic wall. Its equivalent
circuit is shown in Figure 1(d). YinCM−U and YinCM−D represent the input admittances of upward
and downward of the red dashed line. In following parts, DM and CM resonant characteristics will be
investigated and designed separately based on odd-mode/even-mode analysis method and equivalent
TLM simulations.

2.2. Analysis of DM Resonances

To simplify analysis, let θr = θ3. Based on presented DM equivalent circuit and microwave transmission
line theory, the DM resonant frequencies can be calculated by setting Im (YinDM−U + YinDM−D) = 0,
as follows:

(tan θ1 + tan θ2 + 2 tan θ3)× tan (θ3 + θ4)× (k tan θ3 + tan θ4) + [1− tan θ2 × (tan θ1 + 2 tan θ3)]

× [tan (θ3 + θ4)× (tan θ3 × tan θ4 − k)− k tan θ3 − tan θ4] = 0 (1)

where

YinDM−U = jY1
tan θ1 + tan θ2 + 2 tan θ3

1− tan θ2 × (tan θ1 + 2 tan θ3)
(2)

YinDM−D = jY1
tan (θ3 + θ4)× (tan θ3 × tan θ4 − k)− k tan θ3 − tan θ4

tan (θ3 + θ4)× (k tan θ3 + tan θ4)
(3)

The admittance ratio k of SI-SRLR is defined as k = Y2/Y1. It can be seen from Eq. (1) that both
the varied electrical lengths and admittance ratio k influence DM resonance frequencies. By solving
Eq. (1), three DM frequencies are obtained and denoted as fd1, fd2, and fd3. Then the resonance
performances will be investigated in detail.

 

Figure 2. Variations of DM frequency versus different admittance ratio k (under the specific parameters
of θ1 = 35◦, θ2 = 25◦, θ3 = θr = 25◦ and θ4 = 25◦).
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Firstly, the DM frequency responses versus varied admittance ratio k are calculated and drawn
in Figure 2 by numerical calculation software MATLAB, under the specific electrical parameters of
θ1 = 35◦, θ2 = 25◦, θ3 = θr = 25◦ and θ4 = 25◦. It is obvious that three DMs almost keep constant
when the k varies. Therefore, for simplicity, k is set to 1.5 preliminarily in next analyzations.

Secondly, to explain the influence of main electric parameters on resonance frequencies, we
investigate and depict the variations of three DMs versus θ1, θ2, θ3, θ4, and θr in Figure 3. Figures 3(a)
and (b) show that θ1, θ2, and θ3 all influence fd1. From Figure 3(c), we find that θ4 influences fd2 and fd3,
while fd1 is hardly affected. Moreover, θr only manages fd3 in Figure 3(d). Thereby, different from the
harmonic passbands, three DM passbands can be controlled independently as follows: Simultaneously
change the θ1, θ2, and θ3 to approach accurate fd1. Afterwards, by choosing proper θ4, the ideal
fd2 is designed without affecting fd1. Finally, tune θr to realize the required fd3, and fd1 and fd2
remain unchanged. From these relationships between electrical lengths and resonance frequencies, the
characteristics of SI-SRLR can be further analysed.

We next investigate how to determine the accurate electrical parameters based on the ideal centre
frequencies. To relieve the complicity of DM analyzations, the fundamental frequency should be
determined primarily. Figure 3 shows that fd1 is influenced by θr, θ1, θ2, and θ3, except θ4. Thereby
in order to find out the specific relationship among these electrical lengths, we choose fd1 as the
fundamental frequency f0.

After that, according to the proposed SI-SRLR, the fundamental electrical length corresponding
to fundamental frequency f0 is obtained as θ = θ1 + θ2 + 2θr + 2θ3. The ideal fd1 is 1.5GHz,

(a) (b)

(c) (d)

Figure 3. DM frequencies of SI-SRLR with varied (a) θ1, (b) θ2 and θ3, (c) θ4, (d) θr (under the
specific parameter of k = 1.5).
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so f0 = fd1 = 1.5GHz. Then based on TLM simulations, the fundamental electrical length θ0 is
approximately satisfied as:

θ0=θ1+θ2+2θr+2θ3=105◦ (4)

Herein with varied θ1 and θ2, θ3 can be calculated from Eq. (4). For normalizing DM frequencies,
we set ri = fdi/f (i = 1, 2, 3). Thereby the relationship of electrical lengths and resonance frequencies
is written as:

θ′i = θi × fdi/f0 = θi × ri (5)

In order to simplify the solved electrical parameters, set θ4 to 25
◦. Finally, based on Eq. (1), Eq. (4),

and Eq. (5), the variations of DM frequency ratios (fd3/fd1, fd2/fd1) versus θ1, θ2, and θ3 with θ4 = 25◦

and k = 1.5 are derived and drawn in Figure 4 by utilizing calculator MATLAB. According to the
design graph and Eq. (4), the resonant frequencies specifications can be satisfied by properly choosing
θ1, θ2, and θ3. For example, the desired DM resonant frequencies of SI-SRLR are specified at 1.55,
4.3, and 5.65GHz, respectively. Thus two frequency ratios are extracted as: fd2/fd1 = 4.3/1.55 = 2.77,
fd3/fd1 = 5.65/1.55 = 3.65. From Figure 4, the parameters of θ1 = 35◦, θ2 = 22.5◦ are indicated with
the black pot, and the corresponding θ3 and θr can be calculated as 11.875◦ from Eq. (4).

 

Figure 4. Variations of DM frequency ratios (fd3/fd1, fd2/fd1) versus θ1, θ2 and θ3 under the specific
parameters of k = 1.5 and θ4 = 25◦.

2.3. Analysis of CM Resonances

Similarly, the CM resonant frequencies are calculated by setting Im (YinCM−U + YinCM−D) = 0, as
follows:

(tan θ1 + tan θ2 + 2 tan θ3)× (1− k tan θ3 × tan θ4) + [1− tan θ2 × (tan θ1 + 2 tan θ3)]

× [tan (θ3 + θ4)× (1− k tan θ3 × tan θ4) + tan θ3 + k tan θ4] = 0 (6)

where

YinCM−U = jY1
tan θ1 + tan θ2 + 2 tan θ3

1− tan θ2 × (tan θ1 + 2 tan θ3)
(7)

YinCM−D = jY1
tan (θ3 + θ4)× (1− k tan θ3 × tan θ4) + tan θ3 + k tan θ4

1− k tan θ3 × tan θ4
(8)

By solving Eq. (6), three CMs are obtained and denoted as fc1, fc2, and fc3, respectively. Based
on preliminary selected electrical parameters of θ1 = 35◦, θ2 = 22.5◦, θ3 = θr = 12◦, θ4 = 25◦,
and k = 1.5, the comparison between the numerical calculation results from MATALB and simulated
resonance results from ADS of SI-SRLR is plotted in Figure 5. The numerical calculation results agree
well with the simulation ones. Moreover, we find CM fc3 is closer than DM fd3.
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Figure 5. Calculation results and simulation
results of SI-SRLR with weak coupling (under
the specific parameters of θ1 = 35◦, θ2 = 22.5◦,
θ3 = θr = 12◦, θ4 = 25◦ and k = 1.5).

 

Figure 6. Variations of distance D1 and D2 with
different admittance ratio k (under the specific
parameters of θ1 = 35◦, θ2 = 22.5◦, θ3 = θr = 12◦

and θ4 = 25◦).

Therefore, in order to prevent the CMs from affecting DM passbands, CMs should be shifted far
away from DMs while DMs are kept constant. From Eq. (6), both the electrical lengths and admittance
ratio k influence CM resonance frequencies. In addition, k does not affect DMs from Figure 2. Thus, by
properly choosing the admittance ratio k, CM can be kept away from DM without affecting DM since
fd3 and fc3 are closer, and the preliminary simulation shows that fc2 changes greatly under different
k. We select fc2 and fc3 for research. Define D1 = |fd2fc2|, D2 = |fd3fc3|. Then the variations of D1

and D2 versus admittance ratio k are simulated by ADS and depicted in Figure 6. Figure 6 shows that
when k increases, D1 increases greatly while D2 decreases slightly. When k = 1.76, the two frequency
separations get superior results, respectively. The corresponding distances of D1 and D2 are calculated
as 0.815GHz (|4.19–3.375|) and 0.43GHz (|5.55− 5.12|).

3. DESIGN OF BALANCED TRI-BAND FILTER

In this section, based on aforementioned analyzations of SI-SRLR, tri-band differential BPF will be
designed in detail. The design process is summarized as follows. Firstly, properly select the initial
electrical lengths and admittance ratio according to the desired centre frequencies. Secondly, in order
to improve band-to-band isolation level and sideband selectivity, we introduce and analyse the S-L
coupled lines. Thirdly, investigate the relationship between the fractional bandwidths (FBW) and the
coupling strength to meet the desired passbands bandwidths. Fourthly, for enhancing CM suppression,
multiple additional stubs are loaded at the symmetrical plane of the differential filter [6–8, 15]. Finally,
by using full wave electromagnetic (EM) simulator HFSS 2018, the physical dimensions are optimized.

3.1. Determination of Electrical Parameters

To satisfy the desired centre frequencies of SI-SRLR, the initial electrical lengths are derived from the
design graph of Figure 4. The detailed electrical parameter values are as below: θ1 = 35◦, θ2 = 22.5◦,
θ3 = θr = 12◦, and θ4 = 25◦. Plus, the admittance ratio k is chosen as 1.76 from Figure 6 to obtain
further gaps between DMs and CMs.

The two-order balanced tri-band BPF is designed with centre frequencies of 1.5GHz, 4.4GHz, and
5.6GHz, and 3-dB FBWs of 6.9%, 6.1%, and 8.8%. The overall configuration of the balanced filter is
shown in Figure 7. The stub l1 is folded for compact size. The balanced tri-band filter will be designed
and simulated based on full-wave EM simulator. Herein, the substrate is selected as Rogers4003C with
a thickness of 0.508mm, loss tangent of 0.0029, and relative dielectric constant of 3.55.
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Figure 7. Initial configuration of balanced tri-band BPF.

3.2. Design of S-L Coupled Lines

The frequency response of initial differential filter in Figure 7 is shown as blue dashed line in Figure 8.
It is observed that the passband selectivity should be further improved, and the coupling characteristics
of the third passband need to be properly adjusted. Introducing an additional transmission path from
the source port to the load port is a commonly used method to generate transmission zeros. Therefore,
in order to achieve superior passband selectivity, a pair of S-L coupled lines will be added and analysed
in the geometry.

 

Figure 8. DM simulation results of balanced BPF with or without coupled lines.

To select the appropriate location of S-L coupled lines, current density distribution of three DMs
should be analysed first. Figure 9 shows that current density mainly concentrates on the whole SI-SRLR
without the lr segments at fd1. Current density mainly focuses on l1, l2, l4, and l5 segments at fd2.
For fd3, current density concentrates on the whole cross-shaped stubs. We find the segment lr only
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(a) (b) (c)

Figure 9. Simulated current density distribution of SI-SRLR at three DM resonance frequencies, (a)
fd1, (b) fd2, (c) fd3.

 

Figure 10. Modified configuration of balanced tri-band BPF.

resonates at fd3. Therefore, a pair of S-L coupled green lines with length of Lo and width of Wo is
added close to the blue feed lines and the lr segment in Figure 10. This selection has the following two
purposes. Firstly by changing the length of S-L coupled line, different numbers of TZs can be achieved.
Meanwhile, by adjusting the gap between S-L coupled line and the lr segment, desired coupling level of
the third passband can be obtained.

It is noticed that the S-L coupled line also introduces an unwanted mode, which is shown in Figure 8.
To relieve its influence on the third DM passband, the over-length coupled line should be avoided. The
coupled line is composed of segments lo1 and lo2 in Figure 10. Based on preliminary simulations, we find
that only a longer lo2 can obtain sufficient coupling strength to produce multiple TZs. So we choose a
shorter lo1 to shorten the coupled line without affecting lo2. Fortunately, the loading location of cross-
shaped stub has minor influence on three DMs. Therefore by shifting the left and right cross-shaped
stubs closer, the shortened lo1 can be obtained.

The detailed interpretation about the loading location of cross-shaped stub hardly affects DM
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(a) (b)

Figure 11. Analysis of the loading location t of cross-shaped stub. (a) Geometry of loaded cross-shaped
stub, (b) resonance frequency characteristics with varied t (under the specific θ1 = 35◦, θ2 = 22.5◦,
θr = 12◦, θ4 = 25◦, k = 1.76).

response which is organized as follows: Define the location of a cross-shaped stub resonator on a square
ring as t, which is shown in Figure 11(a). The variations of six resonance frequencies versus t are
depicted in Figure 11(b). It is obvious that both DMs and CMs are constant with varied t. Therefore,
the left and right cross-shaped stubs can be moved closer to shorten S-L coupled lines.

The final length of S-L coupled lines is chosen as 1/2λ wavelength at 7GHz. Modified geometry
is shown in Figure 10. The corresponding DM response is plotted as the blue solid line in Figure 8.
Compared with the DM response without S-L coupled lines, six TZs are generated at both sides of each
passband, which significantly improve the band-to-band isolation. The optimized parameters of tri-band
filter are θ1 = 34.39◦, θ2 = 18.49◦, θ3 = 18.35◦, θ4 = 24.3◦, θ5 = 12.2◦, θr = 14.99◦, θo1 = 13.41◦ and
θo2 = 5.32◦ at 1.5GHz, Y1 = 0.0107 S, Yo = 0.01008 S and k = 1.76.

3.3. Design of Coupling Structure

For meeting desired passband bandwidths, the coupling structure needs to be designed properly. In
this part we will investigate the variation of the bandwidth versus the coupling distances among the
resonator, feed line, and S-L coupled line.

Figure 12 provides the simulated FBW curves of three DM passbands versus the gaps S1, S2, and
S4. S1 is the gap between the feed line and the SI-SRLR. S2 is the gap between the two square ring
resonators. S3 is the gap between the S-L coupled line and the feed line. S4 is the gap between the S-L
coupled line and the cross-shaped stub resonator. It is seen from Figures 12(a) and (b) that both the
gaps S1 and S2 influence FBW 1, while only gap S2 affects FBW 2. S4 shown in Figure 12(c) mainly
has influence on FBW 3. Therefore, the three desired bandwidths can be satisfied as follows: Firstly,
properly tune the gaps S1 and S2 to approach the ideal FBW 1 and FBW 2. Then the wanted FBW 3

can be acquired by tuning the gap S4 without affecting FBW 1 and FBW 2. Based on the desired FBWs
of 6.9%, 6.1% and 8.8%, the final tuned coupling gaps are S1 = S2 = S3 = 0.1mm, S4 = 0.11mm.

3.4. Loaded Stubs for CM Suppression

From above discussion, the DM design methodology is demonstrated in detail. The corresponding CM
transmission response of modified differential filter in Figure 10 is plotted as the dashed line in Figure 14.
It is seen that the CM suppressions at three DM centre frequencies are about 41 dB, 14 dB, and 33 dB,
and an unwanted CM resonance peak between the first two passbands is excited. Therefore, the CM
suppression performance of the balanced filter should be further improved.
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(a) (b)

(c)

Figure 12. Varied FBW of three DM passbands with different coupling gaps. (a) S1, (b) S2, (c)
S4 (under the specific θ1 = 34.39◦, θ2 = 18.49◦, θ3 = 18.35◦, θ4 = 24.3◦, θ5 = 12.2◦, θr = 14.99◦,
θo1 = 13.41◦ and θo2 = 5.32◦, k = 1.76).

For the schematic of the balanced BPF in Figure 13, the symmetrical plane T -T ′ acts as the
perfect electrical wall under DM excitation. Under CM excitation, the symmetrical plane T -T ′ acts as
the magnetic wall. Therefore, by loading additional stubs at the symmetric plane, the CM resonances
can be separated, and the CM responses can be further suppressed. Because the symmetry plane is
short-circuited under DM excitation, loading additional stubs on this symmetry plane does not affect
the DM topology and responses [6–8, 15]. As shown in Figure 13, a microstrip line is added on the
symmetric plane to connect the l4 and l5 segments of square ring resonator. A pair of T-shaped stub
and open stub is loaded on this line. In addition, an open stub is loaded at the symmetric plane of the
right ring resonator. By tuning the lengths and locations of T-shaped stubs and open stubs, two CM
TZs can be generated near the last two DM centre frequencies to improve in-band CM rejection.

The modified CM transmission characteristics are depicted as the solid line in Figure 14. Figure 14
shows that the optimized CM suppression at three DM centre frequencies is up to 43 dB, 25 dB, and
37 dB. Two CM TZs are generated in last two DM passbands, which significantly enhance the in-band
CM suppression. Other four CM TZs are generated among three passbands over a wider frequency
band. The CM resonance peak at 2.4GHz is suppressed from 2dB to 19 dB.
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Figure 13. Layout of balanced tri-band BPF
with additional stubs loaded at symmetrical
plane.

 

Figure 14. CM simulation results of balanced
tri-band BPF with or without additional stubs
loaded at symmetrical plane.

4. EXPERIMENTAL RESULT AND DISCUSSION

To verify above analyzations, a sext-mode balanced tri-band BPF is fabricated and measured. After
final full-wave EM simulations and optimizations, the geometrical dimensions are selected as follows
(units: mm): w1 = 0.3, w2 = 1, wk = 0.3, wo = 0.25, wc = 0.525, L11 = 3.41, L12 = 6.52, L13 = 2.1,
L2 = 6.5, L3 = 10.44, L4 = 8.5, t = 6, Lo1 = 4.69, Lo2 = 1.86, Lc1 = 3.4, Lc2 = 5.975, Lc3 = 2.8,
Lc4 = 2.585, Lc5 = 1.05, Lc6 = 2.07, Lc7 = 6.5, S1 = 0.1, S2 = 0.1, S3 = 0.1, S4 = 0.11. A photograph
of fabricated balanced tri-band BPF is shown in Figure 15. The tri-band balanced filter occupies the
area of 22.98 × 35.4mm2 (excluding feed lines), which corresponds to 0.179λg × 0.276λg, where λg is
the guided wavelength at centre frequency of the first DM passband. The fabricated filter is measured
by a four-port Agilent vector network analyser N5247A.

Figure 15. Photograph of fabricated balanced
tri-band BPF.

 

Figure 16. Simulated and measured results of
fabricated balanced tri-band BPF.
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Figure 16 plots the comparison of measurement and simulated results. For the DM responses,
the simulated centre frequencies of three passbands are 1.49GHz, 4.5GHz, and 5.53GHz, with 3-dB
FBWs of 7.23%, 7.33%, and 8.9%. The simulated minimal insertion losses of three passbands are
1.98 dB, 1.1 dB, and 0.96 dB, and the return losses are respectively > 16.5 dB, > 156 dB, and > 17.8 dB.
Meanwhile, six DM TZs are generated by the upper and lower sides of each passband to improve the
selectivity of passbands. For CM response, the simulated CM suppressions at DM centre frequencies
are 43 dB, 25 dB, and 37 dB. Six CM TZs are generated within simulated frequency range, which further
restrain the transmission of CM response.

For the DM responses, the measured first, second, and third DM passbands of 1.41–1.51GHz, 4.28–
4.61GHz, and 5.33–5.64GHz are respectively centred at 1.46GHz, 4.45GHz, and 5.48GHz, with 3-dB
FBWs of 6.8%, 7.4%, and 5.6%. The measured minimal insertion losses of three passbands are 3.49 dB,
5.74 dB, and 6.57 dB, and the return losses are > 10.8 dB, > 12.5 dB, and > 18.3 dB, respectively. Six
DM TZs are introduced to show good agreements with simulated ones. For CM response, the measured
CM suppressions at the DM centre frequencies are 43 dB, 25 dB, and 33 dB, which show a good CM
suppression within DM passbands. It is worth noting that there is a gap between measured and simulated
insertion losses for the second and third passbands. Based on our analysis, the dissimilarities mainly
result from the fabricated tolerance and radiation loss. From EM simulations, we find that a variation

Figure 17. Measured DM and CM response of balanced tri-band BPF in wide frequency range.

Table 1. Comparison of some previous dual-band/tri-band differential/balanced filters.

Ref.

Centre

Frequency

(GHz)

Insertion

loss (dB)

Number

of Zeros

Band-to-Band

Isolation

(dB/GHz)

DM

stopband

In-Band CM

attenuation

(dB)

Circuit size

(λg × λg)

[16] 0.9/2.49 2.67/4.65 3 40 35 dB@5.6f0 30/40 0.67× 0.32

[18] 2.5/3.5/5.8 0.8/2.3/2/4 3 15.8 17.5 dB@5.2f0 32/31/32 0.25× 0.21

[19] 1.23/2.39/3.5 1.09/2.15/1.33 3 48.2 20 dB@3.7f0 25/21/28 0.58× 0.19

[20] 2.4/3.51/5.2 2.43/3.5/3.6 6 17.5 15 dB@2.8f0 41/42/41 0.25× 0.25

[21] 1.9/3.35/5.8 0.94/1.21/1.93 5 17 15 dB@3.7f0 54/27/32 0.19× 0.23

[22] 2.45/3.5/4.45 1.44/1.68/2.16 3 7.2 11.8 dB@2.5f0 46/39/35 0.68× 0.29

[23] 2.44/5.25 2.4/2.82 0 N/A 55 dB@2.8f0 55/51 0.84× 0.76

[24] 9.23/14.05 2.9/2.7 N/A 38.8 38 dB@1.8f0 48/40 2.7× 1.27

This

work
1.46/4.45/5.48 3.49/5.74/6.57 6 26 20 dB@10f0 34/25/33 0.18× 0.28
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in coupling gap of 80 microns induces 2 dB insertion loss varieties. Therefore, the fabricated tolerance
may be a main cause. Additionally, a small shielding box is set up during simulating process, which is
not connected in measurement. Thus the radiation loss may be another important reason, which is far
more obvious at higher frequencies.

To further investigate the out of band performance of fabricated tri-band BPF, we measure and
depict the DM and CM responses within 15GHz frequency range in Figure 17. The measured DM and
CM stopband suppression is greater than 20 dB to 14.6GHz (10f0), which achieves an extremely wide
stopband feature. The comparison of other reported balanced tri-band/dual-band BPFs is shown in
Table 1. It can be seen that the proposed filter outperforms the others in terms of the compact size,
number of TZs, band-to-band isolation, and wide stopband suppression.

5. CONCLUSION

In this paper, a two-order balanced tri-band BPF based on novel SI-SRLRs and S-L coupled lines is
presented. The proposed tri-band BPF has more degrees of freedom in controlling the DM response with
admittance ratio and S-L coupling. Also, its CM suppression has been optimized by loading different
stubs on SI-SRLR. The simulated and measured results verify the proposed method well. With the
features of multiple TZs, wider DM and CM stopband, desired CM suppression, compact size, and high
band-to-band isolation, the balanced tri-band BPF is attractive in applications of balanced multiband
wireless systems.
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