
Progress In Electromagnetics Research, Vol. 171, 171–184, 2021

Mechanisms and Modeling of 2D-Materials-Based Resistive Random
Access Memory Devices

Hao Xie1, 2, Zhili Wang3, Yanbin Yang4, Xiaohui Hu1, Hong Liu1, and Wei Qi1, *

(Invited Review)

Abstract—Resistive random access memory (RRAM) devices are promising candidates for next
generation high capacity data storage due to their superior properties such as cost-effective fabrication,
high operating speed, low power consumption, and long data retention. Particularly, the two dimensional
(2D)-materials-based RRAM has attracted researchers’ attention because of its unique physical and
chemical properties without the constraint of lattice matching. In this review, the switching mechanisms
and modeling of RRAM devices based on the 2D materials such as hexagonal-boron nitride (h-BN) and
graphene are discussed. Firstly, the monolayer and multilayer h-BN RRAMs are introduced, and their
mechanisms and compact model are further described. Then, the mechanisms of graphene electrode-
based RRAM (GE-RRAM) for different applications are also introduced and compared. Furthermore,
the electrical conductivity, multi-physic and compact models of GE-RRAM are introduced. This review
paper provides the guidance for the design and optimization of the 2D-materials-based RRAM in the
next generation memories.

1. INTRODUCTION

The mechanism of resistive random access memory (RRAM) is resistance switching through the
conductive filament growth and rupture which is controlled by applied voltage [1–5]. The most common
resistance switching materials are transition metal oxides, such as HfOx, TiOx, ZnOx, WOx, TaOx,
NiOx, and AlOx [6–14]. However, RRAM with traditional resistance switching materials has some
problems such as large reading current, low integration density, and big power consumption. Recently,
2D-materials-based RRAMs using h-BN resistance switching layer and graphene electrode become a
research hotspot due to their large on-off current ratio, low power consumption, stable high resistive
state (HRS) and low resistive state (LRS) resistances, and good mechanical properties [15–20].

Various novel RRAM structures using h-BN resistance switching material have been proposed
for solving the problems in traditional RRAM. In 2018, Wang et al. reported that multiple weak-
filaments in h-BN RRAM are formed by defective paths in the crystalline structure [18]. In 2018,
Ranjan et al. proposed a simple model based on drift-diffusion principle to explain resistance switching
mechanisms of multilayer h-BN RRAM [21]. Besides, there are also many h-BN RRAMs with good
performance [18, 21, 24–27]. In 2019, Wu et al. observed characteristics of free formation and large
on-off current ratio in monolayer h-BN RRAM [22]. In 2019, Zhu et al. reported the first 2D-
materials-based memristors with switchingstably between two or three resistive states for multiple
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storage applications [23]. In 2021, Zhuang et al. reported that the rupture of conductive filaments
one by one is probably governed by Joule heating effect rather than electrical field [24].

Moreover, many RRAM problems such as scalability and power consumption can be solved by
using graphene electrodes. In 2013, Tian et al. proposed a low power consumption RRAM with single-
layer graphene inserted between TiN/Ti electrode and oxide [28]. In 2015, Lee et al. inserted a defective
graphene layer between oxide film and metal electrode to control the formation and rupture of conductive
filament [29]. In 2015, Lee et al. proposed a GE-RRAM to improve the performance [30]. In 2016, Lee et
al. demonstrated that the movement of oxygen ions can be controlled by modulating the opening of
graphene nanopores [31]. In 2020, our research group developed the electrical conductivity model
of graphene electrode and further built multi-physical model by solving current transport equation,
oxygen vacancy migration equation, and heat conduction equation [32]. In 2020, Alimkhanuly et al.
built a compact model of GE-RRAM to fit experimental I-V characteristics and study electric potential
distribution [33].

In this review paper, we introduce and discuss the mechanisms of several different 2D-materials-
based RRAM devices, in which the corresponding merits are also discussed. Besides, multi-physic and
compact models of both h-BN and graphene-based RRAM devices are presented and discussed, which
are consistent with the experimental results. Finally, a conclusion is given.

2. h-BN RRAM

In this section, different h-BN-based RRAM devices are introduced, and their mechanisms and compact
models are further described.

2.1. h-BN Resistance Switching Material

h-BN is regarded as an ideal 2D insulator material owing to its excellent properties such as large band
gap and outstanding thermal characteristics [19, 34–38]. Recently, the resistance switching phenomenon
was reported in both monolayer and multilayer h-BN RRAM devices [18, 19, 22, 39–43].

2.1.1. Monolayer h-BN

Due to the excessive leakage current, there is no nonvolatile resistance switching phenomenon in the
vertical metal-insulator-metalstructure [22, 40, 44]. Wu et al. observed nonvolatile resistance switching
effect in monolayer h-BN RRAM with vertical metal electrodes as shown in Fig. 1(a) [22]. Monolayer
h-BN atomic transistors show the characteristic of free formation, and its on-off current ratio is up to
107 [22].

(a) (b)

Figure 1. (a) Schematic of monolayer h-BN MIM sandwich structure. (b) Top: the initial states of
simulation. Bottom: the final state of gold ion and boron vacancies in monolayer h-BN [22].

Boron and nitrogen vacancies generally exist in h-BN sheets, which have great impact on electronic
conduction. The mechanisms of resistance switching are explained by ab-initio simulation results [22].
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The simulated initial structure is a single-layer h-BN sheet with boron vacancies and a positive gold ion
as shown in Fig. 1(b).

During the set process, the gold atoms migrate under the applied voltage, meanwhile, losing the
electrons and becoming gold ions with positive charge. Interaction in the h-BN can be represented as,

Au → Au+ + e− (1)

Moreover, the ions are attracted by boron vacancies and then reduced by the process as in Eq. (2).
As a result, the conductive paths in the vertical direction are formed, and the low resistive state (LRS)
can be established.

Au+ + e− → Au (2)

Multilevel switching can be implemented at different compliant currents, thus realizing multiple
storage applications.

2.1.2. Multilayer h-BN

Zhu et al. reported the first 2D material-based memristors for multiple storage applications, which can
switch between each two or three stable resistive states by using the current limitation (CL) and reset
voltage [23, 45]. The multilayer h-BN stack sandwich RRAM device consists of Au/Ti/Graphene/h-
BN/Graphene/Au/Ti/SiO2/Si, as shown in Fig. 2.

Figure 2. Schematic of multilayer h-BN sandwich RRAM [23].

Three stable resistive states can be realized due to the formation of a narrower conductive filament
across the multilayer h-BN, as shown in Fig. 3(d). An intermediate state named soft-low resistive state
(S-LRS) is generated between the HRS and LRS. Thus, the device can switch among three resistive
states of HRS, S-LRS, and LRS, while CL is 1mA, and its I-V curves are given in Fig. 3(b).

2.2. Model

Although 2-D materials like h-BN have aroused great interest, RRAM based on 2-D materials is very
scarce in the market [46]. In addition, analytical tools that can describe and predict RRAM performance
are also deficient, which are necessary for the design and measurement of 2D-materials-based RRAM [47].

2.2.1. Multiple Conductive Filaments in h-BN RRAM

Wang et al. reported that multiple weak-filaments in h-BN RRAM are formed by defective paths in the
crystalline structure [18]. Zhuang et al. reported that the rupture of conductive filaments is probably
governed by Joule heating effect rather than electrical field [24], and the possible schematic diagram is
shown in Fig. 4.

Ranjan et al. proposed a simple model based on drift-diffusion principle as shown in Fig. 5 to
explain resistance switching mechanisms of multilayer h-BN RRAM [21]. During the set process, the
boron ions move towards the Pt electrode on which a high voltage is applied as shown in Fig. 5(a),
thus leaving boron vacancies inside h-BN to form conduction filaments. During the reset process, a low
voltage is applied on the Pt electrode, and boron ions are pushed back from the Pt electrode to h-BN
to annihilate the boron vacancies, resulting in the rupture of conduction filament as shown in Fig. 5(b).
The directional movement of boron ions is controlled by the interaction between diffusion and drift.
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(a) (b) (c)

(d)

Figure 3. I-V curve of the h-BN sandwich RRAM [23] (a) in HRS and S-LRSas CL is 0.5mA, (b) in
three resistance switching states (HRS, S-LRS and LRS) as CL is 1mA and (c) in LRS and HRS as CL
is 5mA. (d) Schematic of different resistance switching states (HRS, S-LRS and LRS).

Figure 4. The possible evolution of conductive filament [24].

2.2.2. Compact Model

Pan et al. built a compact model based on the nonlinear Landauer approach which accurately describes
the functions of h-BN stack sandwich RRAM device as show in Fig. 2. The corresponding I-V
characteristics of forming, set and reset processes got by the proposed compact model are shown in
Fig. 6, and they are consistent with the experimental results [47].

The current through N independent conductive filaments of multilayer h-BN can be described as
Eq. (3) [47].

I = I+ − I− (3)

I+ =
2e

h

∑N

i=1

∫ +∞

−∞
Ti(E, V )f [E − βieV ]dE (4)
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(a) (b)

Figure 5. (a) The set process. (b) Reset process of the resistance switching mechanisms based on
drift-diffusion principle, where black and red balls are boron vacancies and ions, respectively [21].

(a)

(b)

Figure 6. The I-V characteristics between experiment and model [47]. (a) IV curves of forming process
using Eq. (1). (b) IV curves of HRS and LRS using Eq. (2).

I− =
2e

h

∑N

i=1

∫ +∞

−∞
Ti(E, V )f [E − (1− βi)eV ]dE (5)

where I+ and I− are the right- and left-going current components, respectively. Ti is the transmission
probability for CFi, and f is the Fermi-Dirac distribution function. V is the applied voltage, and E is
the energy measured from the equilibrium fermi level.

During the forming progress, the tunneling barrier in the h-BN is large, the transmission probability
can be approximated as [47],

T (E, V ) ≈ exp[α(E − φ)] (6)

where ϕ and α are the height and width of the confinement potential barrier, respectively.
There are series of resistance effects in the h-BN RRAM devices with multiple conductive filaments.

The current during the forming progress can be described as [47],

I=
1

αeRs

{
1

β
W

{
NβRs

R0
exp[α(βeV − φ)]

}}
+

1

1− β
W

{
−N(1− β)Rs

R0
exp[−α((1− β)eV + φ)]

}
(7)

where W is the Lambert function, and Rs is the series resistance.
During the set and reset progresses, the current can be solved by using the circuit model and

Thévenin transformation [47], which is given by,

I =
V Gp − I0
1 +RsGp

+
1

αeRs
W

{
αeI0Rs

1 +RsGp
exp

[
αe(V +RsI0)

1 +RsGp

]}
(8)
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Gp = G0n (9)

I0 =
2e(N − n)

αh
exp(−αφ) (10)

3. GRAPHENE RRAM

In this section, the RRAM mechanisms of different GE-RRAMs are firstly introduced. Then, multi-
physic and compact models of GE-RRAM are further described [32, 33, 48, 49].

3.1. Graphene Electrode

The most common electrode materials in RRAM are conventional metals such as Al, Cu, Au, Pt,
and active metals such as Ti and Ni [50–56]. Oxygen atoms accumulate near the conventional metal
electrode, resulting in a large current, which will then generate Joule heat and make the conductive
filament reputed [57]. On the contrary, oxygen atoms can migrate into active metal electrode under
bias voltage, and as a result, the conductive filament will be formed near the active metal electrode [55].
However, large leakage current will occur in the initial state, which will affect the service life of RRAM
devices. To solve the above problems, researchers have proposed many GE-RRAMs to optimize the
performance of RRAM [23, 28–31, 46, 58–64].

3.1.1. Blocking Graphene Layer

Tian et al. proposed an RRAM structure with single-layer graphene inserted between TiN/Ti electrode
and oxide by using the impermeability of graphene, as shown in Fig. 7(a) [28]. Fig. 7(c) shows the
schematic diagram of oxygen ions movement mechanisms during set and reset processes. During the set
process, the oxygen ions move towards the interface between TiN/Ti electrode and oxide under the action
of electric field as shown in Fig. 7(c) [28]. Due to the impermeability of single-layer graphene, oxygen ions

(a) (b)

(c)

Figure 7. (a) Structure of RRAM. (b) Resistance switching behavior of RRAMs. (c) Schematic
diagrams of oxygen ions movement mechanisms [28].
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cannot migrate into Ti electrode, but enter the single-layer graphene. Oxygen ions form covalent bonds
with graphene defects, and this process is reversible during the reset process [57]. Fig. 7(b) shows the
resistive switching behavior of RRAMs with and without single-layer graphene. The significant current
reduction of graphene RRAM is obtained during the reset process, due to the large low resistance state
resistance caused by the single-layer graphene.

3.1.2. Defective Graphene Layer

The randomness growing and rupture processes of conductive filament lead to the instability switching
parameters during different cycles [57, 58]. In order to solve this problem, Lee et al. inserted a defective
graphene layer between oxide film and metal electrode to control the formation and rupture of conductive
filament as shown in Fig. 8 [29]. The specific defects in the graphene monolayer are generated by Ar+

ion assisted reaction system, inducing broken C-C bonds [29]. The growing region of conductive filament
can be controlled by inducing confirmed current path distribution in the oxide. The switching voltages
range of metal-graphene-insulator-metal (MGIM) in both reset and set processes is small, and its HRS
and LRS resistances are more stable as shown in Fig. 9. Therefore, defective graphene electrode can
reduce fluctuations in switching parameters, and further improve the service life of RRAM [30, 59].

Lee et al. further demonstrated that the movement of oxygen ions can be controlled by modulating
the opening of graphene nanopores on Pd/Ta/Graphene/Ta2O5/Pd RRAM as shown in Fig. 10 [31].
Only oxygen ions near the opening of nanopores can migrate through, leaving oxygen vacancies to form
the conductive filament, as shown in Fig. 10(c). Therefore, the position and diameter of conductive
filament can be perfectly controlled relying on the location and size of the engineered nanopores
on graphene. Furthermore, the operation current is significantly decreased during the set and reset
processes as shown in Fig. 10(c). The smaller the size of the engineered nanopores is, the larger its
resistance is, resulting in a smaller current in the RRAM [57].

Figure 8. Illustration of fabrication process for MGIM structure [29].

(a) (b)

Figure 9. Experimental measurements between MGIM and normal RRAM [29]. (a) Cumulative
probability of switching voltages. (b) Resistances at HRS and LRS.



178 Xie et al.

(a) (b)

(c)

Figure 10. (a) Structure of Pd/Ta/graphene/Ta2O5/Pd RRAM. (b) I-V characteristic with different
sizes of the engineered nanopores. (c) Schematic of the formation of conductive filament with different
nanopores sizes [31].

3.1.3. Graphene Edge Electrode

Many novel vertical RRAMs such as plane electrode (Pt)/HfOx/pillar electrode (TiN) (Pt-RRAM)
structure have been developed to increase their integration density [65]. However, the thickness of each
insulating material cannot be less than a safe value to avoid cross-talk from adjacent cell [66].

Lee et al. proposed a graphene edge electrode RRAM to improve the performance as shown in
Fig. 11(a) [30]. The contact mode between graphene and oxide is edge contact, and the edge contact
resistance is much smaller than that of conventional Pt-RRAM. Besides, its power consumption is 300

(a) (b)

Figure 11. (a) Schematic structure of GE-RRAM. (b) Reset power distribution of GE-RRAM and
Pt-RRAM [30].
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times lower than that of Pt-RRAM as shown in Fig. 11(b) [30]. Besides, the integration of RRAM is
highly increased because the thickness of monolayer graphene is only 0.3 nm.

Our research group studied the mechanism of GE-RRAM and established its multi-physical
simulation model [32]. Different from conventional Pt-RRAM, the oxygen ions can migrate horizontally
into graphene electrode rather than accumulating near the electrode during the set process. Part of
the oxygen ions react with carbon atoms and form graphene oxide with different oxidation degrees.
As a result, the leaving oxygen vacancies in the resistive switching material HfOx form conductive
filament [30]. The sp3 structure is introduced into the graphene due to the covalent cross linking during
the formation of graphene oxide, which leads to the decrease of its electrical conductivity [67]. During
the reset process, oxygen ions return from the graphene electrode to metal oxide, causing the rupture
of conductive filament.

3.2. Model

Researches on the GE-RRAM are mostly based on experiments. However, modeling and simulation of
GE-RRAM to provide physical insight and guide for its optimization design are also very meaningful.

3.2.1. Multi-Physic Model

Our research group developed the electrical conductivity model of graphene electrode with different
degrees of oxidation [32]. Further, the in-house developed finite difference algorithm is used to solve the
current transport, oxygen vacancy migration, and heat conduction equations to simulate the GE-RRAM
cell.

From the particle conservation law, the number of oxygen atoms in the graphene electrode is equal
to that of the oxygen vacancies in HfOx, which is given by

V · n(r⃗, t) = S · o(r⃗, t) (11)

where V is the volume of conductive filament, S the area of graphene oxide, n(r⃗, t) the oxygen vacancy
density of HfOx, and o(r⃗, t) the oxygen atoms density of graphene oxide.

The electrical conductivity of graphene oxide is highly dependent on its degree of oxidation [32]. An
electrical conductivity model of graphene oxide, in which the conductivity is exponentially dependent
on the density of oxygen atoms in the partially oxidized graphene oxide, is proposed as follows,

σox(r⃗, t) = σoe
(−r×o(r⃗,t)) (12)

where σo is the electrical conductivity of pure graphene, r a constant, and o(r⃗, t) the oxygen atoms
density of graphene oxide.

(a) (b)

Figure 12. (a) The reset I-V characteristics of the GE-RRAM in simulation and experiment. (b)
Oxygen vacancy density distributions and boundary conditions [32].
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The I-V curves and oxygen vacancy distribution are investigated numerically by building a multi-
physic model as shown in Fig. 12 [32].

3.2.2. Compact Model

Alimkhanuly et al. built a compact model of GE-RRAM to simulate the I-V characteristics and further
study electric potential distributions [33]. The development of the conductive filament can be described
by vertical and horizontal growths.

Firstly, the horizontal evolution of the conduction path can be described as the grow or rupture of
the conductive filament. The tunneling gap distance variation can be used to accurately demonstrate
the RRAM resistance switching process of the GE-RRAM model as shown in Fig. 11 [33].

I = I0 × exp

(
−dgap
d0

)
× sinh

(
V

V0

)
(13)

where V is the applied voltage, and dgap is the tunneling gap distance.
Secondly, the vertical evolution of the conduction path can be modeled as an increase or decrease

in the width of conductive filament. The geometrical shape of conductive filament in the GE-RRAM
model can be modeled as a cylinder or truncated cone. The current density is linearly related to the
diameter of conductive filament because of the dominant Ohmic nature of the conduction path [33].

I = πd2CF · V/(4ρ · tox) (14)

where tox is the thickness of oxide, and ρ and dCF are the resistivity and diameter of the conductive
filament, respectively.

The I-V characteristics of GE-RRAM obtained by compact model and experiment are shown in
Fig. 13(a), which are in good agreement.

(a) (b)

Figure 13. (a) The I-V characteristics of GE-RRAM got by compact model and experiment. (b) The
electric potential of GE-RRAM [33].

4. CONCLUSION

In summary, many promising 2D-materials-based RRAM devices have been recently uncovered that
deserve further exploration. In particular, we have highlighted novel h-BN and graphene-based RRAM
devices in this review paper. Compared to ordinary RRAM, the free formation, large on-off current ratio,
three stable resistive states, etc. properties of h-BN-based RRAM and low power consumption, stable
HRS and LRS resistance, etc. properties of graphene-based RRAM make them have strong competitive
power in the memory fields. Multi-physic and compact models of both h-BN and graphene-based RRAM
devices are consistent with the experimental results, which provide physical insight and guide for their
optimization design. The mechanisms and modeling of 2D-materials-based RRAM devices discussed
above represent a crucial step toward the realization for future high density RRAM applications.
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