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Exotic Band Structures and Exceptional Points for an Electric
Lattice with Periodic Modulation in Time

Alexander Gómez Rojas* and Peter Halevi

Abstract—We study electromagnetic wave propagation in a system that is periodic both in space
and in time, namely, a discrete (“lumped”) transmission line with capacitors (“varactors”) that are
modulated in time harmonically. These periodicities result in exotic electromagnetic band structures
that are periodic in the angular frequency ω and in the phase advance ka of the wave. Depending on
the strength of modulation m and the reduced modulation frequency Ω/ω0 (where ω0 is the resonant
frequency of a unit cell of the transmission line), this band structure can display frequency or wave
vector band gaps, both, or neither. Moreover, minor changes in Ω or the modulation strength can
control the aperture or closure of a gap and even transform a k-gap to an ω-gap. Such phase transitions
are intimately associated with exceptional or critical points in the (ω, k, Ω, m) space.

1. INTRODUCTION

Electromagnetic wave propagation in periodic systems has a long history [1]. Photonic crystals with
1D, 2D, and 3D spatial periodicity have been extensively studied [2, 3]. These artificial compounds
display photonic band structures and, with adequate dielectric contrast, complete frequency gaps. With
appropriate engineering of the unit cell and long wavelengths in comparison to the cell size, a photonic
crystal can even have an effective negative index of refraction. Electromagnetic wave propagation in such
“metamaterials” has been widely investigated [4–7]. Parametric amplification [8] and negative refraction
in a 2D transmission line [9] were reported in transmission lines. Among interesting applications, we also
note reconfigurable filters [10], power dividers and transmission lines with negative group delay [11–13].
In contrast to the aforementioned publications — all concerning spatial periodicity — a relatively new
line of research deals with propagation in media with at least one material parameter being periodic
in time [11–13]. Such “temporal photonic crystals” have been assumed to be spatially uniform or to
have the form of a slab; their band structures are characterized by wave-vector band gaps, and the
transmitted light takes the form of a frequency comb [14–16]. If the frequency of the incident wave is
equal to 1/2, or 3/2, etc. of the modulation frequency, the waves in the slab are stationary [17], and
for special thicknesses of the slab, the optical response can be resonant [18, 19]. Exotic properties can
also be found due to exceptional points in phase space at which two or more eigenmodes coalesce; this
property could lead to ultra-sensitive sensors for the measurment of weak signals [20–24].

A different situation arises when the medium is modulated by a large-amplitude wave, the
characteristic parameters becoming periodic in the phase of this pump wave (with period 2π). Such
“space-time” media were first investigated in the 1960s [25–28] and, more recently, by Caloz’s group [29–
31]. They give rise to band gaps with oblique alignment. On the other hand, the spatial and temporal
periodicities of the system can also be independent of each other, as in the case of discrete (“lumped”)
transmission lines with external, in-phase modulation of the capacitors (“varactors”). For propagation
in a low-pass, modulated transmission line, the first observation of a “vertical” (wave vector) band-gap
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was recently reported [32, 33]. Further, a transmission line with modulated, nonlinear varactors can
also support localized oscillations called “breathers” [34–37].

The aim of our present research is to explore the effects of the modulation frequency on the
propagation of waves in an infinitely long, dynamic transmission line, pictured in Fig. 1. The capacitors
in each unit cell are constituted by means of voltage-dependent varactors that are modulated in tandem
harmonically. This is to say that our transmission line is periodic both in space and in time. What
kind of electromagnetic wave propagation is possible in such a doubly periodic system?
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Figure 1. Nth unit cell of a dynamic transmission line with varactors whose voltage-dependent
capacitances C[VN (t)] are modulated in tandem periodically by a harmonic source VΩ(t).

2. TRANSMISSION LINE SYSTEM

Transmission line is formed by unit cells where each cell is composed by a capacitance C in the
N ’th unit cell which depends on the voltage VN between its terminals; C(VN ) itself depends on the
modulating source voltage VΩ(t). Each cell also incorporates two self-inductances L that are coupled
to the neighboring cells by mutual inductances M . Moreover, we allow for an auxiliary capacitance Cx

that eliminates DC currents and, hence, inhibits an average, DC component of VN . A narrow band
pass filter is used to eliminate current flow toward the modulation source. This band pass filter can be
modeled as a non-reciprocal resistance RΩ whose value is small when the voltage has frequency Ω and
has a high value for other frequencies. Kirchhoff’s voltage and current laws applied to this N ’th cell
give

VN + 2L
dIN
dt

+M
dIN+1

dt
+M

dIN−1

dt
+

QxN

Cx
= 0

IN = ICN
+

VN − VΩ

RΩ

(1)

Here, QxN is the charge on the auxiliary capacitor Cx; thus dQxN/dt = IN . The current through the

varactor is conveniently expressed in terms of the dynamic or differential capacitance C̃(VN ) as

ICN
=

dQN

dt
=

d(CVN )

dt
≡ C̃

dVN

dt
, C̃ = C + VN

dC

dVN
(2)

2.1. Transmission Line Analysis without Propagating Wave

First we study the transmission line in the absence of a propagating wave. With all the cells being
identical, the voltages VN and currents IN are the same for all N , so that VN = V and IN = I.
Eliminating the current I reemplacing Eq. (1) lower equation into Eq. (1) higher equation, we are left
with a complicated nonlinear differential equation for the varactor voltage V (t); in this equation the

nonlinear capacitance C̃(V ) is specified, corresponding to a hyper-abrupt varactor diode (SM1249).



Progress In Electromagnetics Research Letters, Vol. 101, 2021 159

In a subsequent paper we will compare in detail the solutions V (t) of this differential equation with
the modulation voltage VΩ(t) for a choice of parameters. Here, we confine our attention to the most
desirable situation — that these two voltages are nearly equal in magnitude and phase. In order to
achieve this, the voltage drop over the resitance RΩ should be made as small as possible in comparison
to V (t). If the modulation frequency Ω is near the resonance frequency ω0(= 1/

√
2C0[L+M ]) of the

lower current loop in Fig. 1, then, indeed, most of the current will be drained from the resistor; here
the auxiliary capacitor has been neglected on account of its very small impedance in comparison to

the average impedance of the varactor (Cx ≫ C̃(V ) ≡ C̃0). This qualitative argument is vindicated
by exact solutions of the differential equation for V (t) for a series of reduced modulation frequencies

Ω̂ = Ω/ω0. In Fig. 2, we compare the maximal values of V (t) and VΩ(t) = V̄Ω[1 +m sin(Ωt)], where V̄Ω

is the average modulation voltage, and m is the modulation strength. The coincidences in magnitude
and phase are excellent over two orders of magnitude, 0.1 < Ω/ω0 < 10. The inset shows the varactor
voltage (dots) and modulation voltage (line) as a function of time. The practically perfect fit has been
aided by a choice of a very small value for the resistance RΩ when the frequency is Ω. We can then
safely write V (t) = VΩ(t) as long as there is no propagating wave.
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Figure 2. Comparison of the voltage over a varactor with the voltage VΩ of the modulation source
as function of the normalized modulation frequency Ω̂ = Ω/ω0 = Ω

√
2C0[L+M ]. The two voltages

are practically the same in the range 0.1 < Ω̂ < 10. Inset: VΩ(t) (line) and V (t) (dots) for Ω̂ = 1.
Parameters used: L = 10nH, M = 6nH, Cx = 10nF, RΩ = 1Ohms, V̄Ω = 0.3V, m = 0.3, C0 = 2pF
(varactor diode SM1249).

2.2. Transmission Line Analysis with Propagating Wave

In the presence of a propagating wave of voltage vN (t), the varactor voltage becomes modulated in
space, as well as in time. Its value in the N ’th cell is

VN (t) = VΩ(t) + vN (t) = V̄Ω[1 +m sin(Ωt)] + v(t)eikaN (3)

where ka is the phase advance over a single unit cell. Assuming a wave of small amplitude, |v(t)| ≪ V̄Ω,

the capacitance C̃(V ) changes little and can be approximated as

C̃(VN ) = C̃ +
dC̃

dV
vN (4)

Substituting Eqs. (3) and (4) in Eq. (1), we find that the amplitude v(t) of the small signal vN (t)
satisfies the equation

P (t)
d3v

dt3
+ S(t)

d2v

dt2
+ T (t)

dv

dt
+ U(t)v = 0 (5)

where we have neglected terms of the order of v2 and higher. The functions P (t), S(t), T (t), and U(t)
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are defined in ref.†; they depend on time only through C̃(VΩ(t)) and are therefore periodic, with the
period 2π/Ω. The solution must then be given by the Bloch-Floquet theorem in time,

v = ṽ(t)e−iωt =
∑
r

ṽr(ω)e
−i(ω−rΩ)t (6)

According to this theorem, the function ṽ(t) must also have the period 2π/Ω, thus allowing the
Fourier expansion given by the second equality. The frequency ω plays a similar role to the Bloch wave
vector k in the case of spatial periodicity and is the wave frequency in practice. Substituting Eq. (6)
in Eq. (5) and also expanding the functions P , S, T , and U in Fourier series, we obtain an eigenvalue
equation for the Fourier coefficients ṽr(ω):∑

r

[
−i(rΩ− ω)3Ps−r − (rΩ− ω)2Ss−r + i(rΩ− ω)Ts−r + Us−r

]
ṽr(ω) = 0 (7)

Here, Pn, Sn, Tn, and Un are, respectively, the Fourier coefficients of P (t), S(t), T (t), and U(t). The
indices r and s run over all integer values; thus we have an infinite number of equations in s for the
infinite number of unknowns ṽr(ω). Then the determinant of the expression in the square brackets
must vanish, leading to a functional relation between ω and ka, that is, the dispersion relation for the
propagating wave. The structure of Eq. (7) implies that k(ω+Ω) = k(ω), that is, periodicity in ω with
the period Ω. Further, it follows from the coefficients Pn, Sn, Tn, and Un that ω(ka + 2π) = ω(ka),
meaning periodicity in ka with the period 2π. Our dispersion relation ω(ka) then has the form of a
“double band structure”; the periodicities in both time and space transform into periodicities in both the
frequency and wave vector. There is also mirror symmetry around the frequencies ω = ±Ω/2,±3Ω/2,
etc.

Before turning to the numerical solution of Eq. (7), it is instructive to analyze the limit of vanishing
modulation strength, m → 0. (Its spatial analogue is called the “empty lattice approximation”). In this

limit C̃(VΩ(t)) → C̃(V̄Ω) = C̃0 and Ps−r = P0δsr, etc. for S, T and U in Eq. (7). This equation then is
reduced to

−iP0(rΩ− ω)3 − S0(rΩ− ω)2 + iT0(rΩ− ω) + U0 = 0 (8)

with P0, S0, T0, and U0 given in ref.‡. With frequency ω of the propagating wave being real, this equation
has complex solutions for k, its imaginary part describing damping. However, the resistance RΩ in Fig. 1
models a non-reciprocal element that prevents currents flowing toward the modulation sources. Hence,
for frequencies different from Ω we can assume a large resistance (RΩ = 1kOhm) experienced by the
propagating voltage which has frequency ω, while the modulation voltage with frequency Ω in Fig. 1 is
subject to a small resistance (RΩ = 1Ohm). It is then a a good approximation to take S0 = U0 = 0,
thus neglecting damping. Eq. (8) is thus reduced to

ω̂ = r ± 1

Ω̂

√
1 + M̂

1 + M̂ cos(ka)
(9)

for the normalized frequency ω̂ = ω/Ω, with M̂ = M/L. For r = 0, the positive sign gives the dispersion

relation for the unmodulated (static) band-pass transmission line. It has the lower band edge ω̂ = 1/Ω̂

or ω = ω0 for ka = 0 and the upper edge ω̂ = (1/Ω̂)

√
(1 + M̂)/(1− M̂) or ω = ω0

√
(1 + M̂)/(1− M̂)

for ka = ±π. Figs. 3(a)–(l) compare the modulations m = 0 and m = 0.4, and Figs. 3(m)–(x) compare
m = 0.4 and 0.6 in a single period of ω̂ (corresponding to 0 < ω < Ω) that has to be repeated in
the vertical direction, with no change of form, for all the integers r. There are two periods of ka
(−2π < ka < 2π), to be extended infinitely in the horizontal direction to obtain the complete double
band structure. The black lines in the atlas of Figs. 3(a)–(l) correspond to Eq. (9) for r = 0 with the

positive root for a sequence of the parameter Ω̂ ranging from 5.5 in (a) to 0.5 in (l). Also in black
lines, we plot Eq. (9) for r = 1 with the negative root; these are mirror images of the former curves

† K(ka) = 2L + 2M cos(ka), P (t) = K(ka)C̃, S(t) = 3dP (t)/dt + K(ka)/RΩ, T (t) = 3d2P (t)/dt2 + C̃/Cx + 1, U(t) =
d3P (t)/dt3 + (1/Cx)dC̃/dt+ 1/(RΩCx), F (t) = P (t)d3VΩ(t)/dt

3 + (2dP (t)/dt)d2VΩ(t)/dt+ (d2P (t)/dt2 + 1 + C̃/Cx)dVΩ(t).
‡ P0 = K(ka)C̃0, S0 = K(ka)/RΩ, T0 = C̃0/Cx + 1, U0 = 1/(RΩCx).
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Figure 3. In (a)–(l) electromagnetic band structures ω̂(ka) are compared for the modulation strengths
m = 0 (“empty temporal lattice”) and m = 0.4 (“weak modulation”) for 12 values of the reduced

modulation frequency Ω̂ = Ω/ω0. In (m)–(x) a similar comparison is shown for m = 0.4 and m = 0.6

(“strong modulation”) for 12 in general different values of Ω̂. The horizontal yellow bands indicate
frequency band-gaps created by a change in m. Similarly, the vertical green bands denote wave-vector
band-gaps produced by a change in m. We used the approximation V (t) = VΩ(t), as justified by Fig. 2.
Parameters as in Fig. 2, with RΩ = 1kOhm.

with respect to the frequency ω̂ = 1/2 and are absent for the static transmission line. For this empty
temporal lattice, the frequency values at the center and edges of the Brillouin zone are

ω̂(ka=0) = r ± 1

Ω̂
, ω̂(ka=±π) = r ± 1

Ω̂

√
1 + M̂

1− M̂
(10)

3. RESULTS

For Ω̂ = 5.5 and m = 0 in Fig. 3(a), there is a frequency gap between the “twin bands” pictured. As Ω̂

is decreased, this gap is reduced, until it vanishes for Ω̂ = 4, see (c); the two bands touch at ka = ±π.

With further decrease of Ω̂, these bands overlap more and more, reaching the limits ω̂ = 0 and ω̂ = 1
at Ω̂ = 2, (h). At that point propagation is allowed for any frequency in the empty lattice limit. For

Ω̂ < 2.1 the peaks of the twin bands exit the frequency region shown (the first temporal Brillouin zone),
only to re-emerge from the neighboring Brillouin zones at the opposite ends of the first zone. This
creates a new stop band, centered at ω̂ = 0.5, as in (i) and (j). However, for Ω̂ ≈ 1.33 the upper and
lower bands again touch at ka = ±π, thus eliminating the stop propagation band. Further reduction of
Ω̂ will not result in passbands, of either ω or k, see (k). More and more k-bands are created, becoming
narrower and narrower (l).
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For finite modulations, the eigenvalue equation (7) has been solved for m = 0.4 and m = 0.6.
The corresponding band structures are graphed, respectably, in blue and red lines in the Fig. 3 atlas.
Generally speaking, the band structures ω̂(ka) for m = 0.4 are quite similar to the limit m → 0.
However, a qualitatively new feature emerges, namely, now prohibited wave vector bands are produced.
We also note that the group velocity dω/dk vanishes at the borders of the spatial Brillouin zones
(ka = 0,±π,±2π) but is infinite at the border of the temporal Brillouin zone (ω/Ω = 1/2). The latter
is explained by the mirror symmetry with respect to ω = Ω/2 or by the interchange of roles played by

ω/Ω and ka. It is important to note that a change in Ω̂ or in m can generate forbidden frequency or
wave-vector bands. For example, the comparison of (b) and (c) shows that for m ≤ 0.4 an increase of

Ω̂ from 4 to 5 brings about a transition from a k-gap to an ω-gap. On the other hand, the yellow and
green bands indicate, respectively, the opening up of ω- and k-gaps due to a change of m, with Ω̂ held
constant. The band structure behavior for m = 0.6 is quite similar to m = 0.4, but the transitions from
ω-gap to k-gap occur in higher values of Ω̂ in comparison withm = 0.4, see Figs. 3(m)–(x). Interestingly,
the changes occasioned by increasing m from 0.4 to 0.6 often resemble those incurred by an increase
from m = 0 to m = 0.4: Compare (m), (n), (q), and (w) with, respectively, (a), (b), (e), and (k).

The delicate nature of the ω- and k-gaps is illustrated in Fig. 4(a) by zooming in on the behavior
of the dispersion curves in the region of the small square in Fig. 3(b) and small variations of parameter

Ω̂ for the weak modulation m = 0.4. There is a k-gap for Ω̂ = 4.9918129 (#5). This gap is closed for

Ω̂ = Ω̂crit = 4.9968097 (#6). However, further increase of Ω̂, to the value Ω̂ = 4.9973649 (#7), does
not lead to an overlap of the two bands, but to the creation of an ω-gap! The intersection of the lines
# 6 defines a critical or exceptional point, for which no band gaps (either of ω or of k) exist. In the 3D
representation of Fig. 4(b), this is also a saddle point. Such a point is given by specific values of the

variables ω and k and parameters Ω̂ and m in (ω, k, Ω, m) space.
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Figure 4. Zoom in on dispersion curves at ω̂ = 1/2 and ka = π for m = 0.4; see small rectangles in

Figs. 3(b) and (n). The reduced modulation frequency goes from Ω̂ = 4.9918129 (#1) to Ω̂ = 5.0018065

(#11) through Ω̂ = Ω̂crit = 4.9968097 (#6). Proceeding from Ω̂ < Ω̂crit to Ω̂ > Ω̂crit there is a phase
transition from k-gaps to ω-gaps. The 3D representation in (b) demonstrates that the exceptional point

for Ω̂ = Ω̂crit is also a saddle point.

4. CONCLUSION

The discrete transmission line in Fig. 1, with capacitors that are periodically modulated in time, is
convenient for the investigation of wave propagation in systems with periodicity both in space and in
time. In Fig. 2 we found that, with suitable choice of parameters, the voltage on the varactors can
be made practically equal to the modulation voltage over three orders of magnitude of the reduced
frequency Ω̂. The band structure for electromagnetic waves that can propagate along such a modulated
transmission line depends qualitatively on Ω̂, as well on the modulation strength m. This results in the
exotic electromagnetic band structures in Fig. 3, displaying gaps in the frequency or phase advance,
simultaneous gaps in both, or no gap at all. Very small changes in either Ω̂ or m can control the
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aperture or closure of an ω- or k-gap, and even transition from a k-gap to an ω-gap, as seen in Fig. 4.
This behavior generates a critical or exceptional point at which no gap at all exists. This variability
could lead to easily reconfigurable applications for filters, frequency multipliers, delay transmission
lines, and metamaterial properties. Analogously, propagation of other kinds of waves in other kinds
of systems that are periodic in both space and time could give rise to interesting band structures and
useful applications.
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